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an affine distorting function ω where γ = 0.3, µ∗ = 0.5. Right: Red
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ABSTRACT OF THE DISSERTATION

Human-Centered Machine Learning: Algorithm Design and Human Behavior

by

Wei Tang
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Professor Chien-Ju Ho, Chair

Machine learning is increasingly engaged in a large number of important daily decisions and

has great potential to reshape various sectors of our modern society. To fully realize this

potential, it is important to understand the role that humans play in the design of machine

learning algorithms and investigate the impacts of the algorithm on humans.

Towards the understanding of such interactions between humans and algorithms, this disser-

tation takes a human-centric perspective and focuses on investigating the interplay between

human behavior and algorithm design. Accounting for the roles of humans in algorithm design

creates unique challenges. For example, humans might be strategic or exhibit behavioral

biases when generating data or responding to algorithms, violating the standard independence

assumption in algorithm design. How do we design algorithms that take such human behavior

into account? Moreover, humans possess various ethical values, e.g., humans want to be

treated fairly and care about privacy. How do we design algorithms that align with human

values? My dissertation addresses these challenges by combining both theoretical and empiri-

cal approaches. From the theoretical perspective, we explore how to design algorithms that

account for human behavior and respect human values. In particular, we formulate models of

human behavior in the data generation process and design algorithms that can leverage data

with human biases. Moreover, we investigate the long-term impacts of algorithm decisions and

xii



design algorithms that mitigate the reinforcement of existing inequalities. From the empirical

perspective, we have conducted behavioral experiments to understand human behavior in the

context of data generation and information design. We have further developed more realistic

human models based on empirical data and studied the algorithm design building on the

updated behavior models.
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Chapter 1

Introduction

Machine learning is increasingly engaged in a large number of important daily decisions and

has great potential to reshape various sectors of our modern society. To fully realize this

potential, it is important to understand the role that humans play in the design of machine

learning algorithms and investigate the impacts of the algorithm on humans.

To provide more motivation, when there exists a sufficient amount of data, machine learning

algorithms can often discover the patterns within the data and make predictions accordingly.

However, in many cases, such data is obtained from humans either directly or indirectly. For

example, researchers have leveraged workers in crowdsourcing markets to annotate data. In

online services, human feedback (such as upvotes or views) is utilized to learn whether a

product or service is meeting customers’ needs. To efficiently solve problems that humans

are involved in, we need to design proper algorithms that address the human components in

the process. On the other hand, the decisions made by algorithms could also impact human

welfare. For example, a discriminatory machine learning algorithm can negatively affect

the well-being of minority communities. Therefore, to advance the deployment of machine
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learning algorithms or applications, it is important to understand any potential impact of it

on both individual and societal levels.

This dissertation advances the understanding of human-centered machine learning through

both theoretical and empirical approaches. In particular, this dissertation answers the

questions of how humans would impact algorithm design in machine learning, and how

algorithms could be designed to align with human values.

1.1 Algorithm Design: Accounting for Human Behavior

One major theme of this dissertation has focused on how to design learning algorithms

from human behavior. For example, many works often assume data collected from human

are independent, and even identically distributed, which is usually violated especially when

humans are involved in to generate the data in need. On the other hand, full knowledge of how

human respond to the algorithm’s output are often required to get tractable analysis, which

is also not realistic in complex environments. To solve the learning problems that humans

are involved in, we need to design proper algorithms that address the human components in

the process.

Learning from Biased Human Feedback. I first studied how to include human biased

behavior in online learning frameworks. User-generated content platform usually relies on

user feedback (e.g., number of likes, upvotes, etc) to learn the content qualities so that to

select the best content to display to users. Empirical studies show that humans exhibit a

tendency to agree with the majority opinion even if their personal opinion disagrees. In

[173], I modeled the platform’s learning problem as a multi-armed bandit problem, with

arm representing a content. When an arm is played, (present such content to a user), a

user receives a realized reward drawn from the distribution of the arm. She then provides a
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biased feedback of the realized reward, that depends on both the realized reward and the

feedback history of the arm. Differing from the standard bandit problem where the learner

(i.e., platform) can directly observe the realized reward of an arm, in our setting, the learner

can only observe user’s biased feedback on the realized reward.

The goal of the learner is to design a strategy to sequentially choose arms to maximize the

total rewards users receive while only having access to the biased user feedback. The challenge

is that the learner can observe only the biased feedback but not the realized rewards. I

explored two natural feedback models, one is that user feedback is biased only by the arm’s

average feedback, and one is biased by both the average feedback and the number of arm’s

collected feedback. Under this behavioral model, I showed it is possible for platform to learn

an optimal policy. However, in the other model when user feedback is biased by both the

average feedback and the number of feedback instances, I proved there exists no efficient

algorithm for the platform to learn the arm’s quality if there’s no intervention taken on how to

collect human-generated feedback. The results demonstrate the importance of understanding

human behavior in algorithm design. A small deviation on the user behavior model and/or

the design of the information structure could have significant impacts on the overall system

outcome. Therefore, platforms and decision makers should carefully take these into account

when designing learning algorithms in systems with humans in the loop.

Robust Learning from Uncertain Human Behavior. One ignored issue in previous

research is the need of the full knowledge of human behavior model. A transparent algorithm

allows humans to verify the data and trace the steps that led to a specific decision and, thereby,

to allow human discretion to change algorithmic decisions that cause undesirable outcomes

by manipulating actionable data they have access to. In response to this “gaming” behavior,

there has been a recent flurry of work in studying decision-making under strategic behavior.

To make the analysis tractable, many current works explicitly assume decision-maker’s full
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knowledge of humans’ action space and the corresponding costs for manipulating the features.

To relax this assumption, I studied the design of robust optimal decision rules with strategic

agent [177]. I defined the robustness as used in robust contract design in economics. I

first showed that under mild conditions, for any robust optimal decision rule, there exists

a linear one that is equally robust optimal. I then explored the computational problem of

searching for the robust optimal decision rule. By leveraging techniques from distributionally

robust optimization, our results inform efficient algorithms for searching the robust optimal

one especially in settings when non-robust strategic decision-making problem is efficiently

solvable.

1.2 Algorithm Design: Aligning with Human Values

The previous discussions have examined how human would impact algorithm design, through

the lens of human behavior. On the other hand, the consequential decisions output from

an algorithm will, in turn, induce complex social dynamics by changing human outcomes.

Furthermore, the algorithm’s process to output such consequential decisions usually rely on

personal information provided by the participants. If not handled carefully, a data breach

over these information can have potentially disastrous consequences. Here, I describe several

examples of this research where I first draw on how the consequential outcomes from the

algorithms would have the impact on humans in repeated decision-making environment, and

then I discuss the information-leakage issue in a general decision-making framework.

Consequential Outcome Impact of Repeated Decision-making. I examined the

long-term impact of actions informed by the consequential decisions [175]. These long-term

impacts of actions often came up when the well-being of the people is involved. Consider

following concerns: If being insensitive with the long-term impact of actions, the decision
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maker may risk treating a historically disadvantaged group unfairly. Making things even

worse, these unfair and oblivious decisions might reinforce existing biases and make it harder

to observe the true potential for a disadvantaged group. To formulate the above problem, I

generalized the multi-armed bandit setting by introducing the impact functions that encode

the dependency of the “bias” due to the action history of the learning to the arm rewards.

This history-dependency structure of observed rewards makes the problem substantially more

challenging. In particular, I first showed that applying standard bandit algorithms leads to

linear regret, i.e., existing approaches will obtain low rewards with a biased learning process. I

then demonstrated that, under relatively mild conditions, efficient algorithms with theoretical

guarantees for solving this problem are possible.

Privacy-preserving in Sequential Decision-making. I consider the following sequential

learning framework: A learner makes sequential decisions with online arriving agents. The

agent gives feedback based on the action, and the learner obtains utility based on the agent’s

feedback. The learner aims to maximize her reward, which can be defined either as the cumu-

lative reward over time or the reward based on the learning outcome. The above sequential

learning framework is general and covers a wide range of real-world applications. For example,

the online sellers price their products using buyers’ information; and in federated learning,

the learner aims to optimize the parameters of their learning models using gradient decent

where the gradient information comes from data-holding users. However, this framework

bears potential privacy-leakage issues on both user’s end and learner’s end. I first studied

privacy leakage on agent’s (i.e., user’s) end in the contextual dynamic pricing setting [176].

By adopting differential privacy as privacy measure, I explored the design of differentially

private pricing algorithms that minimize the regret w.r.t the oracle policy that knows the

distribution of users’ preferences, while satisfying a pre-defined privacy guarantee. I proposed

a differentially private algorithm that achieves sublinear regret. To complement this line of
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research, I then studied privacy preserving on learner’s end [178]. In particular, I studied the

secure stochastic convex optimization, in which the learner aims to optimize the accuracy, i.e.,

obtain an accurate estimate to the optimal point, while securing her privacy, i.e., preventing

an adversary from inferring what she learned. I formalized the notions of accuracy and

privacy using probably approximately correct style notions and provided lower/upper bounds

characterizations of the query complexity for this secure learning problem.

1.3 Human Behavior Modeling via Behavioral Experi-

ments

In addition to working with standard human behavioral models, I have also conducted

behavioral experiments to better understand human behavior in the context of AI-assisted

decision making and communication in crowdsourcing tasks

Human Behavior Modeling – Bayesian Rationality in Information Design. Modern

AI technologies have increasingly enabled many machine-assisted decision making. To give a

few examples, online recommendation systems encompass a class of techniques and (machine

learning) algorithms which are able to suggest “relevant” items to users. Users then make

their decision on which video to watch, which news article to read, which product/service

to buy, and so on. In healthcare, the automatic analysis provided by AI produces rapid

recommendations that can be presented to both the clinician and the patient. It largely

simplifies the process so that together the clinician and patient can review the analysis to

make the best decision. The above examples manifest an important theme in human-centered

computation, that is, the AI-assisted decision making. In words, AI usually has access to

unlimited computational power backed by the availability of a large amount of data so that is
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capable to intelligently abstract out useful information. Human then review the information

output by the AI and make the final call on what decisions to take.

One natural question in the above framework is: How does humans respond to the information

presented by AI? In [47], I follow the standard assumption that humans are Bayesian rational

and studies the competition of multiple information providers. However, since this Bayesian

rational assumption might not hold in real world, especially in low-stake context. To make

more sense of human behavior in real world, I conducted online behavioral experiments where

I recruited 400 human subjects (i.e., workers) from Amazon Mechanical Turk to examine given

prior beliefs, how workers update their beliefs and take actions [174]. The experimental results

demonstrate that worker behavior has significantly deviated from the model of Bayesian

rationality. We also show that an alternative human model (discrete choice model coupled

with probability weighting) better aligns with workers’ real behavior.

Human Behavior Modeling – Learning from Peer Communication. In addition to

study the human behavior in information design problem, I also investigated the relaxation

of independency assumption among workers in crowdsourcing tasks. In particular, I explored

peer communication, in which a pair of crowd workers directly communicate when producing

the data. Crowdsourcing has become a popular tool for large-scale data collection where

it is often assumed that crowd workers complete the work independently. I relaxed such

independence property and explore the usage of peer communication – a kind of direct

interaction between workers – in crowdsourcing [179]. Experimental results conducted on three

types of tasks consistently suggest that work quality is significantly improved in tasks with peer

communication compared to tasks where workers complete the work independently. I further

explored how to utilize peer communication to optimize the requester’s utility while taking into

account higher data correlation and higher cost introduced by peer communication. I modeled

the requester’s online decision problem of whether and when to use peer communication in

7



crowdsourcing as a constrained Markov decision process which maximizes the requester’s

total utility under budget constraints. Our proposed approach is empirically shown to bring

higher total utility compared to baseline approaches.

1.4 Overview of this Dissertation

This dissertation studies the human-centered machine learning both from the perspective of

algorithm design and the human behavior. In Chapter 2, we explore the problem of human

impacts on algorithm design. We consider a setting where a user-generated content platform

has to rely on user feedback (e.g., number of likes, upvotes, etc) to learn the content qualities

so that to select the best content to display to users. The platform’s goal is to design an

efficient learning algorithm with sublinear regret guarantee. This chapter is based on joint

work with Chien-Ju Ho [173]. In Chapter 3, we then explore the problem of algorithm impacts

on human welfare. We study the long-term impact of actions informed by the consequential

decisions in a sequential decision-making environment. This chapter is based on joint work

with Chien-Ju Ho and Yang Liu [175]. To better align the theory and practice, in Chapter 4

and Chapter 5, we run online behavior experiments to study what is the real human behavior

in practice. In particular, on Amazon Mechanical Turk, we run behavioral experiments to

understand how human respond to information presented to them under the scenario that AI

can provide assistive information to humans to help them make the decision. Based on the

empirical observations, we develop a more realistic human behavior model in this AI-assisted

decision-making environment. This is based on joint work with Chien-Ju Ho [174]. We also

run behavioral experiments to understand how human learn from the their communications

with the peers. We then also develop an algorithmic framework to utilize peer communication

to optimize the requester’s utility while taking into account higher data correlation and

8



higher cost introduced by peer communication. This part of work is based on joint work with

Chien-Ju Ho and Ming Yin [179].
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Chapter 2

Algorithm Design: Accounting for

Human Behavior

In a multi-armed bandit problem, a learner sequentially selects from a set of arms. Each arm

is associated with some unknown reward distribution. After selecting an arm, the learner

observes the realized reward for the selected arm. The goal of the learner is to maximize

the total rewards obtained from selected arms over time. The performance of the bandit

algorithm is often measured in terms of regret, defined as the difference between the algorithm

performance and the performance of an oracle which can select the best arm in hindsight. The

multi-armed bandit formulation provides a theoretical framework for resolving the classical

exploration-exploitation tradeoffs in online decision problems under uncertainty. Therefore,

multi-armed bandits have been studied in a wide range of applications in various domains,

such as medical trials, online auctions, or web advertisements.

We explore the applications of bandits settings to human-in-the-loop systems. For example,

consider user-generated content platforms, such as Youtube, Quora, or Stack Exchange. On
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these platforms, content qualities vary across a wide spectrum. Ideally, the platform would

like to select the best content to display to users to optimize users’ experience. However,

the content qualities are often not known in advance, and the platform needs to learn the

content qualities through user feedback (e.g., number of likes, upvotes, etc). This naturally

leads to a bandit problem, in which the platform needs to balance exploration (display

content with fewer feedback instances to users to acquire more information) and exploitation

(display content with higher empirical ratings to optimize users’ happiness), as studied in the

literature [65, 119].

Many challenges arise when humans are involved in the bandit learning process. In recent

years, researchers have addressed various strategic issues brought up by humans involved

in bandit learning [65, 119, 125, 142]. However, in these works, it is assumed that users’

feedback is unbiased in representing the reward of selecting an arm (e.g., in user-generated

content platforms, users’ average ratings are used as the estimates for content qualities).

On the other hand, as the empirical studies suggest [134, 154, 160], user feedback is often

biased by other users’ feedback. For example, users have the tendency to provide feedback

that agrees with the majority opinion even if their experience disagrees (i.e., the herding

effect). These empirical evidences suggest a different stochastic model in that each observed

feedback instance might be biased by the feedback history. Moreover, this biased user feedback

introduces additional challenges. Since user feedback only represents biased reports of the

realized rewards, suppose the goal of the platform is to maximize the total rewards over time

(which may be interpreted as the overall user experience), can a platform achieve sublinear

regret from only observing biased feedback?

In this paper, we study a variant of the multi-armed bandit problem with human biased

feedback. In our setting, the learner/platform only observes human-generated feedback

instead of the realized reward when selecting an arm. The human feedback depends on both

11



the realized reward and other users’ feedback for the selected arm. The goal of the learner

is to maximize the total realized rewards for the selected arms while only having access to

biased human-generated feedback.

To address the issues of user biased feedback, we explore two natural user feedback models

and study their impacts to the design of bandit algorithms. The first model, avg-herding

feedback model, assumes that user feedback for an arm depends on the realized reward and

the average feedback (i.e., the ratio of positive feedback) of the arm so far. We show that,

under this model, the dynamics of user feedback over time is mathematically connected to

asymptotic approximation [151]. In particular, the average feedback changes over time as if

users are performing online gradient descent on a latent function with a decreasing step size.

With this mathematical connection, we characterize the convergence and convergence rates

for the average feedback of an arm under some mild conditions. These convergence results

enable us to design a bandit algorithm based on UCB (Upper Confidence Bound) algorithm

and achieve sublinear regret.

While the results on the first model are promising, our results on another natural model,

beta-herding feedback model, paint a very different picture. In this model, user feedback

is biased by not only the average feedback in the past, but also the number of feedback

instances the arm has received so far. This model captures a natural scenario that users

might be biased more heavily if there exists more feedback instances in the history. We show

that, under this model, the average feedback of an arm converges to a random variable with

non-zero variance. This implies that, even with an infinitely number of feedback instances for

the arm, the learner is not able to infer the expected reward of the arm through observing

the average user feedback. We further show that, using arguments from information theory,

there exist no bandit algorithms that can achieve sublinear regret when user feedback follows

beta-herding feedback model.
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We next present a toy example to demonstrate that it is possible to get around the above

impossible result by modifying the information structure to break the assumption that users

follow beta-herding feedback model. In particular, if the learner is allowed to hide the

historical information from a small portion of the users, under some styled user models on

how users respond to information structures, it is possible to design an algorithm achieving

sublinear regret. This result opens up a potentially interesting line of future research: Can

the learner adaptively design the information structures to improve the overall utility?

Our results demonstrate the importance of understanding human behavior when learning

from human generated feedback. A small deviation on the user behavior model and/or the

design of the information structure could have significant impacts on the overall system

outcome. Therefore, platforms and decision makers should carefully take these into account

when designing learning algorithms in systems with humans in the loop.

2.1 Related Work

In this section, we review the relevant literature in multi-armed bandit problems, recent

studies on human-in-the-loop bandit learning, and the literature on social influences and

social learning that share similar motivations of this work.

Multi-armed bandit problems. Our work is a variant of the well-studied multi-armed

bandit problem [111]. Bandit problems traditionally assume the rewards generated by each

arm at each round are directly observable, and the research focus has been divided into

settings in which rewards are either independent and identically distributed (i.i.d.) [8] or

adversarial [7, 9]. There exist other works that assume rewards are neither i.i.d. drawn nor

adversarial. For example, bandits with Markovian rewards [136, 141] assume the state of each

arm evolves according to a Markov process. Other non-stationary bandit problems [21, 61]
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consider the setting in which the rewards distribution might change over time, independent of

previous actions. More recently, researchers have addressed the setting in which the rewards

are strategic choices of humans and could be influenced by how the bandit algorithm is

designed [65, 119]. Our work differs from the above works in that, in our setting, the “state”

(history information) of each arm is correlated with learner’s actions and there might be

infinitely many states. Moreover, in our setting, the algorithm cannot observe realized rewards

but only has access to biased feedback while previous work assume the realized rewards are

observable.

Human-in-the-loop bandit learning. Recently, there have been works exploring bandit

learning with humans in the loop [56, 109, 125, 142]. In the setting of these works, the learner

cannot directly choose which arms to play. Instead, at each time step, a myopic agent, who

only aims to maximize her own reward at the single time step she is involved in, chooses

which arm to play. Since the agent only cares about her instant payoff, she does not have

incentives to explore and tends to always exploit, and this collective arm playing will lead to

the convergence to the suboptimal arm. Researchers have been attempting to address this

problem by considering different ways of persuading agents to perform exploration, including

offering agents payments to perform exploration [56] or utilizing information asymmetry

to lead agents to explore by designing what information to show to each agent [109, 125,

142]. The idea of utilizing information asymmetry to persuade agents is similar to Bayesian

Persuasion [96] in economics. The above line of work has focused on settings in which humans

are involved in arm selection, i.e., which arm is played in each round. In this work, we

focus on a parallel aspect of human involvements, in which humans are involved in feedback

generation.
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Social influences and social learning. Our feedback models are motivated by the

empirical evidences that users’ decisions are influenced by not only their own experience

but also other users’ decisions [134, 154, 160]. For example, [134] empirically show that, a

post on a forum is more likely to receive positive feedback (i.e., upvotes) if the platform

insert an upvote right after the post is made. Similar discussion also appears in the social

learning literature in economics [13, 23, 164]. They discuss the setting in which users’

decisions might be influenced by other users’ decisions. Therefore, under certain conditions,

users might collectively make the bad decision since they might follow what other users do

regardless of what they privately know. In prior work, there is not much discussion on either

the convergence rate of users’ aggregate behavior or the impacts on the system designer’s

perspective. In this work, we focus on deriving the dynamics of user feedback over time and

explore the impacts on the design of bandit algorithms.

2.2 Model

Let K be the number of arms. Each arm k ∈ [K] = {1, ..., K} is associated with an unknown

quality θk ∈ [0, 1]. Let I∗ = argmaxk θk and θ∗ = θI∗ be the index of the best arm and

the associated highest expected quality. At each round t, a user randomly drawn from the

population arrives, the learner selects an arm It ∈ {1, ..., K} for the arriving user. The user

then gets a binary reward Zt (positive or negative experience) with mean θIt .

Zt ∼ Bernoulli[θIt ]

The reward is not observable to the learner. However, after receiving the reward, each user

provides a binary feedback Xt ∈ {0, 1} about this arm. The goal of the learner is to maximize

the total rewards users receive while observing only the (potentially biased) feedback. Note
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that when the feedback is the same as the realized reward, i.e., Xt = Zt for all t, this problem

reduces to standard bandit setting. Below we describe the user feedback models, i.e., how Xt

is generated.

User feedback models. Users’ feedback depends on both the realized rewards and the

feedback history of the arms. The feedback history of arm k up to time t can be summarized

by nk,t and ρk,t, which represent the number of feedback instances and the ratio of positive

feedback for arm k up to round t. We assume nk,0 = ρk,0 = 0 to simplify the presentation,

however, our results can be easily extended to settings with non-zero nk,0 and ρk,0, which can

be used to represent the users’ prior of the arm quality. Again, if users provide unbiased

feedback, we should have Xt = Zt for all t.

In this paper, we model the feedback generation as a stochastic process. We define a

feedback function to model the probability of obtaining positive feedback for an arm from

a user randomly drawn from the population. Note that a feedback function describes the

characteristics of the user population the platform is interacting with instead of a single specific

user. In particular, we introduce Feedback(θ, ρ, n) to model the probability of obtaining

positive feedback from a user given that the arm quality is θ and the history information of

the arm is summarized by its average feedback ρ and the number of feedback instances n.

As a special case, when Feedback(θ, ρ, n) = θ, user feedback represents unbiased samples of

the arm quality.

In this paper, we explore two natural feedback models.

• Avg-herding feedback model:
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In this feedback model, user feedback is biased by the average feedback of the arm. In

particular, the feedback function has the form

Feedback(θ, ρ, n) = F (θ, ρ).

In Section 2.3, we study the stochastic process of user feedback specified by a general

set of feedback functions F . We then discuss the impacts of this stochastic feedback

generation on the design of bandit algorithms.

• Beta-herding feedback model:

In this feedback model, user feedback is biased by the average feedback and the number

of feedback instances. In particular, we consider a natural setting and assume users

update their beliefs about the arm quality in a Bayesian manner. Users treat the

historical ratings as the prior signals of the arm quality and update the posterior based

on their own experience. They then provide feedback according to their posterior.

We introduce a factor m ≥ 0,which can be interpreted as the weights users put on their

own experience. When the arm quality is θ and the arm history is (n, ρ), the expected

number of positive signals the user will obtain is mθ + nρ, where the first term is the

expected positive signals the users receive from their own experience (i.e., arm quality

multiplied by the weight) and the second term is the number of positive signals from

other users. The total number of signals is m+ n.

Therefore, the probability of obtaining positive feedback for arm k at round t can be

written as

Feedback(θ, ρ, n) =
mθ + nρ

m+ n
. (2.1)
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Note that when m→∞, user feedback provides unbiased samples of the arm quality.

Regret notions. The goal of the learner is to maximize the sum of rewards users receive

over time. Let A be the algorithm the learner deploys and {It} are the arms selected by A.

We define the regret as RA(T ).

E[RA(T )] = Tθ∗ − EA

[ T∑
t=1

θIt

]
,

where the expectation is taken over the randomness of the reward realization and the algorithm.

In particular, we are interested in the region of T →∞ and aim to understand under what

conditions we can achieve asymptotic sublinear regret, i.e., E[R(T )] = o(T ), when user

feedback is biased by historical feedback.

2.3 Bandits with Avg-Herding Feedback Model

In this section, we explore the bandit learning problem when user feedback follows avg-herding

feedback model. We first derive the stochastic process of the feedback generation for a single

arm and characterize the convergence and convergence rate of users’ average feedback over

time. We then discuss how this user feedback model impacts the design and analysis of

bandit algorithms.

2.3.1 Stochastic process of feedback generation

In the following discussion, we explore the feedback dynamics of a single arm, i.e., the

stochastic process of feedback generation. We omit the arm’s index k in the subscript when it

is clear from the context. Also, since user feedback is biased by the history of only the selected
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arm, to simplify the presentation, we consider the case that the same arm is repeatedly

selected and therefore nt ≡ t when studying the stochastic process for a single arm.

Connection to stochastic approximation

Recall that in avg-herding feedback model, when the quality of the arm is θ and the average

feedback of the arm is ρ, the probability for a user to provide a positive feedback is F (θ, ρ).

The stochastic process of the feedback dynamics can be expressed as follows: at the (t+1)−th

round, the feedback Xt+1 provided by the user is drawn randomly from a Bernoulli distribution:

Bernoulli[F (θ, ρt)]. The history information of the arm (nt+1, ρt+1) are updated based on

the realized feedback.

As mentioned, we simplify the presentation by setting nt ≡ t. Therefore, we focus on how ρt

evolves over time. By simple weighted averaging, we have

ρt+1 =
t

t+ 1
ρt +

1

t+ 1
Xt+1 = ρt −

1

t+ 1
(ρt −Xt+1) .

Define the noise term ξt = E[Xt|Ft−1]−Xt = F (θ, ρt−1)−Xt, where Ft = σ({Xt}t≥1) is the

filtration of the stochastic process. It is easy to see that E[ξt|Ft−1] = 0. Also let ηt = 1/t be

the step size (learning rate). We can rewrite the above recursive definition as an update rule

in stochastic approximation [58, 151].

ρt+1 = ρt − ηt+1(ρt − F (θ, ρt) + ξt+1) (2.2)

In particular, suppose there exists a latent function G(θ, ρ), such that ∂G/∂ρ = ρ− F (θ, ρ),

then Equation (2.2) is equivalent to the update rule for stochastic gradient descent with step
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size ηt+1:

ρt+1 = ρt − ηt+1(∇ρG(θ, ρt) + ξt+1)

With this observation, the stochastic process of the average feedback updates is equivalent

to users collectively performing stochastic gradient descent for a latent function G with a

decreasing step size. Below we utilize this mathematical connection and discuss conditions

on the convergence and convergence rates of the average feedback ρ. We then discuss the

impacts of this stochastic process on the design and analysis of bandit algorithms.

On the convergence and convergence rate of limt→∞ ρt.

We first specify the assumptions needed to establish the asymptotic behavior of the limit of

average feedback.

A1. F (θ, ρ) is strictly increasing in θ and non-decreasing in ρ;

A2. F (θ, ρ) is differentiable and Lρ
F−Lipschitz continuous with respect to ρ.

A1 implies that, conditional on the same quality (average feedback), an arm with better

average feedback (quality) receives more positive feedback in expectation. A2 assumes the

improvement is smooth with respect to ρ. While the differentiable property of F can be

satisfied if the population is large and smooth, we note that the differentiable property is only

for analytical convenience. Our results still hold even if F is only continuously differentiable

in some local neighbourhood of equilibrium points.

We would also like to note that these two assumptions are relatively mild. As an example,

below we give a general set of feedback functions F that satisfy the above assumptions.

Example 2.3.1. Consider the following set of feedback functions: F (θ, ρ) = w1θ + w2ρ,

for any w1, w2 ≥ 0 and w1 + w2 = 1. This set of feedback functions satisfies both of the
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assumptions. It also has very natural interpretations. In particular, it specifies that, the

probability of receiving a positive feedback from a random user (drawn from the population)

F (θ, ρ) is the weighted average of the arm quality θ and other users’ average feedback ρ.

Armed with the above assumptions, we can formally characterize the convergence of ρt.

Lemma 2.3.1. Let Sθ := {ρ : ρ− F (θ, ρ) = 0}. We have P(limt→∞ ρt ∈ Sθ) = 1.

The above lemma demonstrates that ρt converges to one of the points in a set Sθ and

characterizes the points in Sθ. Recall that the latent function G(θ, ρ) satisfies ∂G/∂ρ =

ρ−F (θ, ρ). Therefore, the lemma illustrates that the average feedback will converge to one of

the points in Sθ, the set of the local optimal points for the latent function G. This intuition

suggests that, when the latent function G is strongly convex, since there exists only one local

optimal point (which is the global optimal), we should be able to show that ρt will almost

surely converge to the global optimal.

Moreover, the convexity of G is correlated with the value of the Lipschitz constant Lρ
F .

In particular, when Lρ
F < 1, by definition, we have ∇ρF (θ, ρ) < 1 for all θ and ρ. Since

∇2
ρG(θ, ρ) = 1 − ∇ρF (θ, ρ), when Lρ

F < 1, ∇2
ρG(θ, ρ) > 0 for all θ and ρ. Therefore, G is

strongly convex when Lρ
F < 1. Below we formally characterize the convergence of ρt when G

is strongly convex.

Corollary 2.3.2. Given Lρ
F < 1, i.e., G is strongly convex, there exists a unique ρ∗ that

satisfies ρ∗ − F (θ, ρ∗) = 0, such that P(limt→∞ ρt = ρ∗) = 1.

Next we provide the results on the convergence rate of ρt and focus on the case when G is

strongly convex. In particular, we introduce λ̄ > 0, such that ∇2
ρG ≥ λ̄ > 0.
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Theorem 2.3.3. Given Lρ
F < 1, i.e., G is strongly convex. ∀ϵ > 0, we have,

P(|ρt − ρ∗| ≥ ϵ) ≤ exp

(
− (ϵ− ϵt)

2

2
∑t

i=1 Li

)
,

where Li = η2i (
∏t−1

j=i(η
2
j+1(L

ρ
F − 1)2)− 2λ̄ηj+1 + 1),

ϵt = exp(−λ̄St)|ρ0 − ρ∗|+
√∑t−1

i=0 η
2
i+1 exp(−2λ̄(St − Si+1)),

and St =
∑t

i=1 ηi.

Remark 2.3.2. We would like to offer a few observations to help interpret the convergence

bound1. In particular,

• when t→∞, ϵt → 0,

• when λ̄ ∈ (0, 1/2),
∑t

i=1 Li = O(t−2λ̄), and

• when λ̄ ∈ [1/2,∞),
∑t

i=1 Li = O(1/t).

So we can characterize the bound in two regions based on whether λ̄ ≥ 1/2. As a special case,

when user feedback is unbiased, i.e., F (θ, ρ) = θ, we have λ̄ = 1, and the bound reduces to

P(|ρt − ρ∗|) ≥ ϵ) ≤ O(e−ϵ2t), the same as the standard Chernoff bound. Moreover, in our

setting, since F (θ, ρ) is non-decreasing in ρ, i.e., ∇ρF ≥ 0. We have ∇2
ρG = 1−∇ρF ≤ 1.

Therefore, while our bound holds for the region λ̄ ∈ (0,∞), in our setting, we focus on the

region λ̄ ∈ (0, 1].

Note that in this theorem, the convergence rate is a function of λ̄, which is the property of

the function G (hence the property of the feedback model F ). As an intuitive interpretation,

recall that ∇2
ρG ≥ λ̄ and ∇ρG = ρ− F (θ, ρ). Therefore, small λ̄ implies large ∂F/∂ρ, which

means user’ feedback is influenced more by the other users’ feedback and relatively less by
1The detailed derivations are included in the appendix of the full paper.
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the arm quality. When users’ feedback depends less on the arm quality, it requires more

feedback to infer the arm quality, and therefore the convergence is slower. This intuition

aligns with the theorem, in which smaller λ̄ leads to a slower convergence rate.

2.3.2 Designing bandit algorithms

Given the convergence bound in Theorem 2.3.3, we can design a UCB-like algorithm that

achieves sublinear regret. We assume the learner has knowledge of the feedback model F .

Note that since F models the behavior of feedback generation for the user population the

platform is interacting with, this assumption only requires the platform to have knowledge of

the population instead of any particular users2.

In each round of our algorithm, the learner maintains an estimator θ̂k,t of arm k’s quality from

the observation of average feedback ρk,t. From Lemma 2.3.1, an asymptotically unbiased and

consistent estimator of arm’s quality θ̂k,t can be obtained by solving the following equation.

θ̂k,t = max{min({θ̂k,t : F (θ̂k,t, ρk,t) = ρk,t}, 1), 0} (2.3)

Intuitively, the solutions of the above equation represent the set of local optimal points of G.

Moreover, we can show that the estimator θ̂k,t is unique for every ρk,t if A1 is satisfied.

Lemma 2.3.4. Suppose A1 is satisfied, for any ρk,t, there exists a unique θ̂k,t that satisfies

Equation (2.3).

Given the convergence bounds and the estimator θ̂k,t, we are ready to describe our proposed

UCB-like algorithm Avg-UCB, as specified in Algorithm 1. The key differences to the standard
2In practice, this assumption can be approximately satisfied through market research or behavioral

experiments, which study the connection between users’ real experience (i.e., Zt) and reported feedback (i.e.,
Xt). Moreover, our results are robust to small estimation noises of F .
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UCB algorithms are that: First, we maintain a quality estimate θ̂k,t for each arm k at each

time t by solving Equation (2.3) instead of using empirical average feedback. Second, the

confidence interval in the UCB index is derived from the convergence rates as specified in

Theorem 2.3.3. Our algorithm takes as input parameters β and λ̄. β plays a similar role

as the constant in UCB confidence radius to balance exploration and exploitation. λ̄ is the

parameter of the problem instance. Note that our algorithm only requires to find some λ̄

such that ∇2
ρG ≥ λ̄.

Algorithm 1 Avg-UCB for Avg-Herding Feedback Model

1: Input: β, λ̄ , K.
2: Initializations: first K rounds, play each arm once
3: for t = K + 1, ..., T do
4: for each k ∈ {1, ..., K} do
5: Compute θ̂k,t−1 from (2.3).

6: UCBk,t = θ̂k,t−1 +
√

β ln(t−1)

n
min{1,2λ̄}
k,t−1

.

7: Choose arm It ∈ argmaxk=1,...,K UCBk,t.
8: (Ties are broken in some consistent way)
9: Receive feedback Xt.

10: ρIt,t ← (ρIt,t−1 × nIt,t−1 +Xt)/(nIt,t−1 + 1)
11: ρk,t = ρk,t−1, ∀k ̸= It.
12: nIt,t ← nIt,t−1 + 1
13: nk,t ← nk,t−1, ∀k ̸= It.

The following theorem gives the regret bound for the algorithm Avg-UCB.

Theorem 2.3.5. Suppose A1 and A2 are satisfied and Lρ
F < 1. Let λ̄′ = max{1, 1/(2λ̄)},

∆k = θ∗ − θk. With appropriately chosen β 3 the expected regret for Avg-UCB is bounded by:

E[R(T )] ≤
∑
k ̸=I∗

∆k(4 lnT/(C∆2
k))

λ̄′
+Kπ2/6,

3The choice of β depends on the parameters of F (θ, ρ). The detailed derivation is tied with the proof and
is included in the appendix of the full paper.
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where C is a constant that is dependent on the properties of feedback function F .

We introduce an additional notion λ̄′ = max{1, 1/(2λ̄)} to simplify the presentation due to

the different convergence rates on whether λ̄ < 1/2 as discussed in Remark 2.3.2. Similar

to the discussion on the convergence rate, the dependency of the above upper regret bound

on λ̄′ implies that it is harder to learn the quality of an arm if users are biased more by the

historical information rather than the arm quality.

The above regret bound is a gap-dependent bound. In particular, let ∆min = mink:k ̸=I∗ ∆k. The

regret bound can be written as: E[R(T )] = O
(

(lnT )λ̄
′

∆2λ̄′−1
min

)
. Observe that limT→∞ E[R(T )]/T →

0 for any λ̄′ > 0. Therefore, the algorithm achieves sublinear regret as long as G is strongly

convex (i.e., λ̄′ > 0).

Moreover,we can derive gap-independent bounds from the above bound. When λ̄ ≥ 1/2 (which

includes the unbiased feedback setting with λ̄ = 1), we can show that E[R(T )] = O(
√
T lnT ),

which matches the standard regret bound without biased feedback.

What if G is not convex. Our algorithm relies on the assumption that the latent function

G is convex, i.e., Lρ
F < 1. This assumption implies that users’ feedback is not influenced too

heavily by the change of feedback history. While this assumption seems mild, it is natural to

wonder whether we can obtain similar results when G is not convex.

We would like to note that even in settings when G is non-convex, the statements of

Lemma 2.3.1 and 2.3.4 still hold. This means the average user feedback for each arm still

converges to some point, and we can infer the arm quality from the converged average feedback.

The main obstacle to overcome is to derive the convergence rate as in Theorem 2.3.3. This

problem is challenging as it is equivalent to deriving the convergence rate of optimization for

non-convex functions. There have been recent works focusing on deriving the convergence
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rates in non-convex optimization in different settings [3, 62]. As long as one could characterize

the convergence rate of ρt for non-convex function G, our bandit strategy can be adapted to

generate a sublinear regret strategy (by changing the “confidence interval” in the UCB index

based on the derived convergence rate).

2.4 Bandits with Beta-Herding Feedback Model

In the previous section, we explore avg-herding feedback model, in which user feedback is

biased only by the average feedback of the selected arm. We show that, under some mild

conditions, the average feedback for an arm almost surely converges to some value, and we

can infer the arm quality from the average feedback, and therefore we can design a UCB-like

algorithm for achieving sublinear regret.

However, in some scenarios, user feedback may be biased by not only the average feedback but

also the number of feedback instances of the arm. In this section, we explore another natural

feedback model, beta-herding feedback model, and prove impossibility results. In particular,

we assume users give feedback in a Bayesian manner. They treat the feedback history as

the prior, i.e., for an arm with history (n, ρ), there are nρ positive signals and n(1 − ρ)

negative signals for the arm. After they experience the binary reward (drawn according to

the arm’s quality distribution), they update their posterior by treating their experience as m

signals and then provide feedback according to the posterior. Therefore, in expectation, the

probability for them to provide positive feedback for an arm with quality θ and history (n, ρ)

is Feedback(θ, ρ, n) = (mθ + nρ)/(m+ n).
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2.4.1 Stochastic process of feedback generation

The first natural attempt is to replace F (θ, ρt) with Feedback(θ, ρ, n) in Equation (2.2) and

apply similar analysis using stochastic approximation. However, when Feedback(θ, ρ, n)

follows beta-herding feedback model, one can not directly apply this approach. Briefly

speaking, the update rule in Equation (2.2) aims to find the equilibrium points of the feedback

function. However, in beta-herding feedback model, the feedback function is changing over

time, and it is not trivial whether the converged points satisfy the set of properties as derived

with avg-herding feedback model.

Instead, we make the observation that the stochastic process of beta-herding feedback model

is similar to the urn process [75]. We utilize the property of exchangeability for the feedback

history to give the characterization of ρt process. Below we formally characterize the stochastic

process of ρt with beta-herding feedback model.

Lemma 2.4.1. Consider the stochastic process in Equation (2.2) with the feedback model

described in Equation (2.1), limt→∞ ρt converges almost surely to a random variable specified

by a beta distribution. In particular,

lim
t→∞

ρt ∼ Beta(mθ,m(1− θ)).

Note that when the feedback is unbiased, i.e., when m→∞, the beta distribution will shrink

to a Dirac delta function which has the point mass exactly in θ.
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2.4.2 The impossibility result

In this section, we show that there exist no bandit algorithms that achieve sublinear regret if

user feedback follows beta-herding feedback model.

Lemma 2.4.1 implies that, even if we obtain an infinite number of feedback instances for an

arm, we cannot accurately infer the arm quality with high probability from the empirical

average feedback ρ∞. A natural next question to ask is, if we take into account all the

feedback generated in the process, whether it is possible to infer the true arm quality. Below

we use the notion of Fisher information to answer the question. In short, Fisher information

provides a way to quantify the amount of information about the latent parameter θ we

can obtain for observing each sample of a random variable Xi. Since Fisher information is

additive, we can show that,

Lemma 2.4.2. Consider the stochastic process in Equation (2.2) with the feedback model

described in Equation (2.1). Let It(θ) denote the Fisher information of θ for observing t−th

sample. We have

lim
t→∞

t∑
i=1

Ii(θ) = O(1).

Using this fact, by the general Cramér-Rao bound, we know that, for any estimator θ̂t, the

variance of θ̂t must follow:

Var(θ̂t) ≥ Θ

(
1∑t

i=1 Ii(θ)

)
Since limt→∞

∑t
i=1 Ii(θ) is bounded, the variance of any estimator will not shrink to zero

even with infinitely many observations. Therefore, the learner cannot accurately infer the

arm quality with high probability in the beta-herding feedback model and therefore cannot

guarantee to identify the best arms even with infinitely many feedback instances. Since the

learner only observes the feedback, we can conclude the following.
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Theorem 2.4.3. If users’ feedback follows beta-herding feedback model, there exists no bandit

algorithm that can achieve sublinear regrets in our setting.

We note that the technique used in the proof can be extended to a more general feedback

model for impossibility results. The intuition is to use Fisher information to quantify how

informative a given data is with respect to a set of parameters and the influence of the data

itself on the estimate. For different models, if the amount information for each feedback can

be quantified, the same techniques can be applied.

2.4.3 An alternative approach: Designing information structures

Theorem 2.4.3 presents a strong impossibility result: if all feedback instances are generated

according to beta-herding feedback model, we cannot design any bandit algorithms to achieve

sublinear regret. A natural approach to get over this impossibility results is to break the

assumption by taking interventions. Inspired by Bayesian persuasion [96], which designs

the information structure to persuade agents to take certain actions, we explore whether we

could design information structures to induce certain types of “feedback”. For example, in the

extreme case, if we do not show any historical information to users, and assume users provide

unbiased feedback when no information is presented, then the problem reduces to standard

bandit settings. However, in practice, we might not want to dramatically change the whole

platform and might want to take as few interventions as possible. This leads to an interesting

research question on whether we can minimally intervene the existing design of information

structure, such that it is possible to design bandit algorithms with sublinear regrets.

In this section, we present a simple algorithm as a toy example to demonstrate the idea. A

full study along this direction requires a careful and thorough modeling and is out of the

scope of this paper. We consider the constrained setting in which the platform can only
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choose among two information design in each round, either showing all history information

to users (and assuming users’ feedback follow beta-herding feedback model) or showing no

history information (and assuming users provide unbiased feedback). Our goal is to minimize

the number of rounds that show no information to users while achieving sublinear regret.

In particular, we propose a two-stage policy , as described in Algorithm 2, which shows no

historical information for the first ⌊Tα⌋ rounds and resumes to standard design afterwards.

The regret bound of Algorithm 2 is given as follows.

Algorithm 2 two-stage policy
1: Input: learning rounds parameter α ∈ (0, 1), exploration parameter β > 0, number of

arms K.
2: Initializations: first K rounds, play each arm once
3: for t = K + 1, ..., ⌊Tα⌋ do
4: for each k ∈ {1, ..., K} do

5: UCBk,t = θ̂′k,t−1 +
√

β ln(t−1)
nk,t−1

, where θ̂′k,t−1 =
∑nk,t−1

s=1 1{Is=k}Xt−1

nk,t−1
.

6: Choose arm It ∈ argmaxk=1,...,K UCBk,t.
7: Present arm It without showing its history information to the user, and get feedback

Xt.
8: ρIt,t ← (ρIt,t−1 × nIt,t−1 +Xt)/(nIt,t−1 + 1).
9: ρk,t = ρk,t−1 for k ̸= It.

10: nIt,t ← nIt,t−1 + 1.
11: nk,t ← nk,t−1 for k ̸= It.
12: Let Iτ ∈ argmaxk=1,...,K nk,⌊Tα⌋.
13: Present arm Iτ with associated history information to the user in the remaining rounds.
14: (all ties broken in some consistent way)

Theorem 2.4.4. Let Θ = {θ1, ..., θK} be a bandit instance, and α ≥ ln(K(K + 2))/ lnT ,

then the expected regret of two-stage policy, where β > 1, is bounded from above by:
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E[R(T )] ≤
∑
k ̸=I∗

(
4αβ lnT

∆k

+ 8β∆k

)
+ (T − Tα)

(√
4Kαβ lnT

Tα −K
+

K

β − 1

(
Tα −K

K

)2−2β
)

where the second term is in an order of O
(
(T − Tα)

√
Kβα lnT

Tα

)
.

To interpret the bound, when α ≥ 1/2, the above regret bound is in the order ofO(
√
αTα lnT ),

while when α < 1/2, the above regret bound is in the order of O(
√
αT 1−α lnT ).

Algorithm 2 presents an example that we can achieve sublinear regrets by modifying the

information structures presented to users. In particular, we only need to hide the historical

information from Tα users, with α < 1, out of T users to achieve subliner regrets. Note that

we only consider a naive approach in a styled model, i.e., showing no information at all in

some rounds, and assume simple user feedback models. We hope our results will encourage

research that considers more fine-tuned information design and more thorough models of user

feedback and platform utility.

2.5 Discussion on the Applications

In this section, we provide discussion on the applications of our setting. As the motivating

example of this paper, we consider user-generated content platforms that need to learn content

qualities through user feedback. Our analysis and results naturally extend to platforms that

rely on user reviews to provide recommendations (such as Yelp or Amazon). However, to

formulate the recommendation problem as a bandit learning problem, we need to make a

simplifying assumption, as made in prior work [65, 119], that users are going to follow the

recommendations. While this assumption seems strong, in practice, it approximates users’
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behavior to a certain degree. In particular, empirical studies demonstrate that the probability

for a users to view an item drops significantly when the position of the item decreases [39,

91, 149]. These empirical observations suggest that a significant amount of users are indeed

following recommendations (since recommended items are ranked higher). Moreover, there

have been recent studies on incentivizing exploration using information asymmetry [109,

125, 142] which demonstrate it is possible to make recommendations that users will choose

to follow. The techniques in this paper can be applied in that line of work to explore the

dynamics of feedback generation.

In addition to the above example, our setting applies to scenarios when the platform cannot

observe the true objective but can only use (potentially biased) estimates as the proxy for

the objective. Consider the following illustrating scenario: the police station needs to decide

which area to send police officers to patrol at each time step. Each area i has an intrinsic,

unknown crime rate pi. When sending police officers to an area i, the police station obtains

an unobserved reward u(pi), representing the value of increased safety for the area. Assume

u(pi) is increasing in pi. After the patrol, police officers need to report the amount of criminal

activities during their patrol. However, these reports might be biased by the history of

reported crime rate of the area. For example, if there are more reports of illegal activities in

the area in the history, they might stop more people for inspection. This creates biases in the

reports. If the goal is to maximize the sum of u(pi), this problem can be formulated using

our setting, since the objective is a function of true crime rates, while the decision maker

only has access to reported crime rates. Now assume the feedback model follows beta-herding

feedback model. According to our results, without additional interventions, the police station

might make unfair decisions in where to patrol using only the biased feedback, since it is

impossible for them to infer the true crime rate from the reports. This example further
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emphasizes the importance of understanding human behavior in learning problems, especially

when the corresponding actions have significant impacts on humans.
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Chapter 3

Algorithm Design: Aligning with Human

Values

Algorithms have been increasingly involved in high-stakes decision making. Examples include

approving/rejecting loan applications [59, 104], deciding on employment and compensation [14,

38], and recidivism and bail decisions [4]. Automating these high-stakes decisions has raised

ethical concerns on whether it amplifies the discriminative bias against protected classes [33,

140]. There have also been growing efforts towards studying algorithmic approaches to

mitigate these concerns. Most of the above efforts have focused on static settings: a utility-

maximizing decision maker needs to ensure her actions satisfy some fairness criteria at the

decision time, without considering the long-term impacts of actions. However, in practice,

these decisions may often introduce long-term impacts to the rewards and well-beings for the

human agents involved. For example,

• A regional financial institute may decide on the fraction of loan applications from different

social groups to approve. These decisions could affect the development of these groups:
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The capability of applicants from a group to pay back a loan might depend on the group’s

socio-economic status, which is influenced by how frequently applications from this group

have been approved [15, 37].

• The police department may decide on the amount of patrol time or the probability of

patrol in a neighborhood (primarily populated with a demographic group). The likelihood

to catch a crime in a neighborhood might depend on how frequent the police decides to

patrol this area [64, 67].

These observations raise the following concerns. If being insensitive with the long-term impact

of actions, the decision maker risks treating a historically disadvantaged group unfairly.

Making things even worse, these unfair and oblivious decisions might reinforce existing biases

and make it harder to observe the true potential for a disadvantaged group. While being a

relatively under-explored (but important) topic, several recent works have looked into this

problem of delayed impact of actions in algorithm design. However, these studies have so

far focused on understanding the impact in a one-step delay of actions [74, 98, 116], or a

sequential decision making setting without uncertainty [41, 86, 117, 118, 133, 186, 187].

Our work departs from the above line of efforts by studying the long-term impact of actions in

sequential decision making under uncertainty. We generalize the multi-armed bandit setting

by introducing the impact functions that encode the dependency of the “bias” due to the

action history of the learning to the arm rewards. Our goal is to learn to maximize the

rewards obtained over time, in which the rewards’ evolution could depend on the past actions.

The history-dependency reward structure makes our problem substantially more challenging.

In particular, we first show that applying standard bandit algorithms leads to linear regret,

i.e., existing approaches will obtain low rewards with a biased learning process. To address

this challenge, under relatively mild conditions for the dependency dynamics, we present
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an algorithm, based on a phased-learning template which smoothes out the historical bias

during learning, that achieves a regret of Õ(KT 2/3). Moreover, we show a matching lower

regret bound of Ω(KT 2/3) that demonstrates that our algorithm is order-optimal. Finally,

we conduct a series of simulations showing that our algorithms compare favorably to other

state-of-the-art methods proposed in other application domains. From a policy maker’s point

of view, our paper explores solutions to learn the optimal sequential intervention when the

actions taken in the past impact the learning environment in an unknown and long-term

manner. We believe our work nicely complements the existing literature that focuses more

on the “understanding” of the dynamics [86, 116, 186, 187].

3.1 Related work

Our work contributes to algorithmic fairness studied in sequential settings. Prior works

either study fairness in sequential learning settings without considering long-term impact

of actions [16, 66, 72, 92, 120, 143] or explore the delayed impacts of actions with focus

on addressing the one-step delayed impacts or sequential learning with full information [15,

37, 41, 74, 86, 116, 133]. Our work differs from the above and studies delayed impacts of

actions in sequential decision making under uncertainty. Our formulation bears similarity

to reinforcement learning since our impact function encodes memory (and is in fact Marko-

vian [141, 167]), although we focus on studying the exploration-exploitation tradeoff in bandit

formulation. Our learning formulation builds on the rich bandit learning literature [8, 111]

and is related to non-stationary bandits [20, 21, 107, 113, 162]. Our techniques share similar

insights with Lipschitz bandits [108, 161] and combinatorial bandits [29] in that we also

assume the Lipschitz reward structure and consider combinatorial action space. There are

also recent works that have formulated delayed action impact in bandit learning [107, 144],
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but in all of these works, the setting and the formulation are different from the ones we

consider in the present work.

3.2 Model

We formulate the setting in which an institution sequentially determines how to allocate

resource to different groups. For example, a regional financial institute may decide on the

fraction or overall frequency of loan applications to approve from different social groups.The

police department may decide on the amount of patrol time or the patrol probability allocated

to different regions.

The institution is assumed to be a utility maximizer, aiming to maximize the expected reward

associated with the allocation policy over time. If we assume the reward4 for allocating a unit

of resource to a group is i.i.d. drawn from some unknown distribution, this problem can be

reduced to a standard bandit problem, with each group representing an arm. The goal of the

institution is then to learn a sequence of arm selections to maximize its cumulative rewards.

In this work, we extend the bandit setting and consider the delayed impact of actions. Below

we formalize our setup which introduces impact functions to bandit framework.

Action space. There are K base arms, indexed from k = 1 to K, with each base arm

representing a group. At each discrete time t, the institution chooses an action, called a meta

arm, which is a probability distribution over base arms. Let P = ∆([K]) be the (K − 1)-

dimensional probability simplex. We denote the meta arm as p(t) = {p1(t), . . . , pK(t)} ∈ P ,

where pk(t) represents the probability of choosing a base arm k (pk(t) can be equivalently

interpreted as the probability of allocating a unit resource to group k or the portion of the
4The reward could be whether a crime has been stopped or whether the lender pays the monthly payment

on time. For applications that require longer time periods to assess the rewards, the duration of a time step,
i.e., the frequency to update the policy, would also need to be adjusted accordingly.
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resources allocated to group k). The institution only observes the reward from the arm it

ends up with selecting.

Remark 3.2.1. Note that interpreting the meta-arm as a probability distribution or a

proportional allocation could impact the way the rewards are generated (i.e., does the institution

observe only the reward of the realized based arm, or the rewards of all base arms with non-zero

allocations.) Our analysis utilizes the idea of importance weighting and could deal with both

cases in the same framework. To simplify the presentation, we focus on the harder case

of interpreting the meta-arm as probability distributions, though our results apply to both

interpretations.

Delayed impacts of actions. We consider the scenario in which the rewards of actions are

unknown a priori and are influenced by the action history. Formally, let H(t) = {p(s)}s∈[t]
be the action history at time t. We define the impact function f(t) = F (H(t)) to summarize

the impact of the learner’s actions to the reward generated in each groups, where F (·) is the

function mapping the action history to its current impact on arms’ rewards. In the following

discussion, we make F (·) implicit and use the vector f(t) = {f1(t), . . . , fK(t)} to denote the

impact to each group, where fk(t) captures the impact of action history to arm k.

Rewards and regret. The reward for allocating resources to group k at time t depends on

both pk(t) and the historical impact fk(t). In particular, when the institution allocates a unit

of resource to group k, she obtains a reward (the instaneous reward is bounded within [0, 1])

drawn i.i.d. from a distribution with mean rk (fk(t)) ∈ [0, 1]. rk(·) is unknown a priori but is

Lipschitz continuous (with known Lipschitz constant Lk ∈ (0, 1]) with respect to its input,

i.e., a small deviation of the institution’s actions has small impacts on the unit reward from
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each group. When action p(t) is taken at time t, the institution obtains an expected reward

Ut(p(t)) =
K∑
k=1

pk(t) · rk (fk(t)) . (3.1)

As for the impact function, we focus on the setting in which f(t) is a time-discounted average,

with each component fk(t) defined as

fk(t) =

∑t
s=1 pk(s)γ

t−s∑t
s=1 γ

t−s
, (3.2)

where γ ∈ [0, 1) is the time-discounting factor. 5 Intuitively, fk(t) is a weighted average with

more weights on recent actions. We would like to highlight that our results extend to a more

general family of impact functions and do not require the exact knowledge of impact functions

(see discussion in Section 3.5.2). We also note that when δ = 0, our setting reduces to

a special case where the impact function only depends on the current action pk(t) (action

dependent), instead of the entire history of actions (discounted by 0 right away). We study

this special case of interest in Section 3.4.

Let A be the algorithm the institution deploys. The goal of A is to choose a sequence of

actions {p(t)} that maximizes the total utility. The performance of A is characterized by

regret, defined as

Reg(T ) = sup
p∈P

T∑
t=1

Ut(p)− E
[ T∑

t=1

Ut(p(t))

]
, (3.3)

where the expectation is taken on the randomness of algorithm A and the utility realization6.
5Here we follow the tradition to define 00 = 1 when γ = 0.
6In this paper, we adopt the standard regret definition and compare against the optimal fixed policy.

Another possible regret definition is to compare against the optimal dynamic policy that could change based
on the history. However, calculating the optimal dynamic policy in our setting is nontrivial as it requires to
solve an MDP with continuous states.
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3.2.1 Exemplary Application of Our Setup

We provide an illustrative example to instantiate our model. Consider a police department

who needs to dispatch a number of police officers to K different districts. Each district has a

different crime distribution, and the goal (absent additional fairness constraints) might be to

maximize the number of crimes caught [53]. 7 The effects of police patrol resource allocated

to each district may aggregate over time and then impact the crime rate of that district. In

other words, the crime rate in each district depends on how frequently the police officers

been dispatched historically in this district.

To simplify the discussion, we normalize the police resource to be one unit. Each district k

has a default average crime rate rk ∈ (0, 1) at the beginning of the learning process. This

crime rate can (at most) be decreased to rk ∈ (0, rk). All of these are unknown to the police

department. The police department makes a resource allocation decision at each time step.

We use rk(t) ∈ (0, 1) to denote the crime rate in district k at time t, taking into account the

impact of historical decisions. Assume pk(t) is the amount of police resource dispatched to

district k at time t (
∑

k pk(t) = 1 for all t), the expected number of crimes caught at district

k at time t would be pk(t)rk(t). Note that here pk(t) can be interpreted as the probability of

allocating police resource (randomly sending the patrol team to one of the K districts) or

the fraction of allocated police resource.

Below we provide one natural example of the interaction between the impact function and

the reward. At time step t+ 1, let Hk(t) := {pk(1), . . . , pk(t)} denote the historical decisions

of the police department for district k. Now given Hk(t + 1) = {Hk(t) ∪ pk(t + 1)} where

pk(t+ 1) is the current decision for district k, assume that the crime rate at time t+ 1 in
7As discussed by [53], there might be other goals besides simply catching criminals, including preventing

crime, fostering community relations, and promoting public safety. We use the same goal they adopted for
the illustrative purpose.
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district k is in the following form:

rk(t+ 1) = rk − fk(Hk(t+ 1))× (rk − rk), (3.4)

where fk(·) : [0, 1]t → [0, 1] is the impact function that summarizes how historical actions

would impact the current crime rate. One possible example is fk(Hk(t)) =
∑t

s=1 pk(s)γ
t−s∑t

s=1 γ
t−s as

we defined in Equation (3.2). This impact function has two natural properties:

• When fk(Hk(t)) = 1 (e.g., pk(s) = 1,∀s ≤ t), the police department keeps dispatching the

police officers to district k with probability 1, then district k will reach its lowest crime

rate.

• When fk(Hk(t))→ 0 (e.g., pk(s)→ 0,∀s ≤ t), the police department rarely dispatch police

officers to district k, The crime rate in district k will reach its highest level.

In this example, treating each district as an arm and directly applying standard bandit

algorithms might reach suboptimal solutions since the reward dynamic is not considered.

In this paper, we develop algorithms that can take into account this history-dependent

reward dynamic and achieve no-regret learning. Our results hold for a general class of impact

functions (under mild conditions) and do not need to assume the exact knowledge of the

impact function.

3.3 Overview of Main Results

We summarize our main results in this section. First, we present an important, though

perhaps not surprising, negative result: if the institution is not aware of the delayed impact

of actions, applying existing standard bandit algorithms in our setting leads to linear regrets.
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This negative result highlights the importance of designing new algorithms when delayed

impact of actions are present.

Lemma 3.3.1 (Informal). If the institution is unaware of the delayed impact of actions,

applying standard bandit algorithms (including UCB, Thompson Sampling) leads to linear

regrets.

The negative result points out the need to design new algorithms for settings with delayed

impact of actions. The key challenge introduced by our setting is in estimating the arm

rewards: when pulling the same meta arm at different time steps, the institution does not

guarantee to obtain rewards drawn from the targeted distribution according to the chosen

meta arm, as the arm reward depends on the impact function f(t). To address this challenge,

we note that if the institution keeps pulling the same meta-arm repeatedly, the impact

function (and thus the arm reward associated with the meta-arm) would converge to some

value. This observation leads to our approaches. We first develop a bandit algorithm that

works with impacts that converge “immediately" (or equivalently only depend on “immediate”

actions, echoing the case with δ = 0 in Equation (3.2)). We then propose a phased-learning

reduction template that reduces our general setting to the above one and achieves a sublinear

regret.

Theorem 3.3.2 (Informal). There is an algorithm that achieves an optimal regret bound

Õ(KT 2/3) for the bandit problem with the impact function defined in Equation (3.2). In

addition, there is a matching lower bound of Ω(KT 2/3).

To provide an overview of our approaches, we start with action-dependent bandits (Section 3.4),

where the impact at time t depends only on the action at t, i.e., f(t) = p(t), namely γ = 0

in Equation (3.2). This setting not only captures the one-step impact but also offers a

backbone for the phase-learning template for the general history-dependent scenario. In this
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setting, when a meta-arm p = {p1, . . . , pK} is selected, one of the base arms k is realized

with probability pk, and the institution receives the realized reward for base arm k. However,

since we also know the probability pk for selecting each base arm, we may apply importance

weighting to simulate the case as if the learner is selecting K probabilities and obtain K

signals at each time step. This interpretation transforms our problem structure to a setting

similar to combinatorial bandits. Furthermore, since both rk(·) are Lipschitz continuous, we

adopt the idea from Lipschitz bandits to discretize the continuous space of each pk. With these

ideas combined, we design a UCB-like algorithm that achieves a regret of O(KT 2/3(lnT )1/3).

With the solution of action-dependent bandits, we explore the general history-dependent

bandits with impact functions following Equation (3.2) (Section 3.5) The main idea is to

divide total time rounds into phases, and then selecting the same actions in each phase to

smooth out impacts of historically made actions, which will then help reduce the problem

to an action-dependent one. One challenge is to construct appropriate confidence bound

and adjust the length of each phase to account for the historical action bias. With a careful

combination with our results for action-dependent bandits, we present an algorithm which

can also achieve a regret of the order Õ(KT 2/3). We further proceed to show that this bound

is tight and provide numerical experiments.

3.4 Action-Dependent Bandits

In this section, we study action-dependent bandits, in which the impact function f(t) = p(t),

corresponding to γ = 0 in Equation (3.2). Our algorithm starts with a discretization over

the space P. Formally, we uniformly discretize [0, 1] for each base arm into intervals of

a fixed length ϵ, with carefully chosen ϵ such that 1/ϵ is an positive integer.8 Let Pϵ be

the space of discretized meta arms, i.e., for each p = {p1, . . . , pK} ∈ Pϵ,
∑K

k=1 pk = 1 and
8Smarter discretization generally does not lead to better regret bounds [108].
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pk ∈ {ϵ, 2ϵ, . . . , 1} for all k. Let p∗
ϵ := supp∈Pϵ

∑K
k=1 pk · rk(pk) denote the optimal strategy

in discretized space Pϵ. After a meta arm p(t) = {p1(t), . . . , pK(t)} ∈ Pϵ is selected, a base

arm at ∈ [K] drawn according to the distribution p(t) will be realized. From now, we use r̃t

to denote the realization of corresponding reward. The learner observes the realization of

at and receives the instantaneous reward r̃t(pat(t), at), but does not observe the rewards of

other base arms. In the following discussion, we omit the second parameter and use r̃t(pat(t))

to denote r̃t(pat(t), at) when it is clear from the context. We use importance weighting to

construct the unbiased realized reward for each of the K elements in p:

r̂t(pk(t)) =


r̃t(pk(t))/pk(t), at = k and pk(t) ̸= 0

0. at ̸= k or pk(t) = 0

(3.5)

Since the probability of at = k is pk(t), it is easy to see that E[r̂t(pk(t))] = E[r̃t(pk(t))].

Given the importance-weighted rewards {r̂t(pk(t))}, we re-frame our problem as choosing a

K-dimensional probability measure (one value for each base arm). In particular, for each

base arm k, pk will take the value from {ϵ, 2ϵ, . . . , 1}, and we refer to pk as the discretized

arm.

Remark 3.4.1. The above importance-weighting technique enables us to “observe” samples

of rk(pk) for all base arms k when selecting p = {p1, . . . , pK}. This technique helps to bridge

the gap between the interpretation of whether p is a probability distribution or an allocation

over base arms. Our following techniques can be applied in either interpretation.

By doing so, our problem is now similar to combinatorial bandits, in which we are choosing

K discretized arms and observe the corresponding rewards. Below we describe our UCB-

like algorithm based on the reward estimation of discretized arms. We define the set

Tt(pk) = {s ∈ [t] : pk ∈ p(s)} to record all the time steps such that the deployed meta arm

p(s) contains the discretized arm pk. We can maintain the empirical estimates of the mean
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Algorithm 3 Action-Dependent UCB
1: Input: K, ϵ
2: Initialization: For each discretized arm, play an arbitrary meta arm such that this

discretized arm is included (if the selection of the arm is not realized, then simply initialize
its reward to 0; otherwise initialize it to the observed reward divided/reweighted by the
selection probability).

3: for t = ⌈K/ϵ⌉+ 1, ..., T do
4: Select p(t) = argmaxp∈Pϵ

UCBt(p) where UCBt(p) is defined as in (3.6).
5: Draw an arm at ∼ p(t) and observe its realized reward r̃t(pat(t)).
6: Update the importance-weighted rewards {r̂t(pk(t))} as in (3.5) and update the

empirical mean {r̄t(pk(t))} for each base arm as in (3.6).

reward for each discretized arm and compute the UCB index for each meta arm p ∈ Pϵ:

r̄t(pk) =

∑
s∈Tt(pk) r̂s(pk)

nt(pk)
, UCBt(p) =

√
K2 ln

√
Kt

minpk∈p nt(pk)
+
∑
pk∈p

pk · r̄t(pk), (3.6)

where nt(pk) is the cardinality of set Tt(pk). With the UCB index in place, we are now ready to

state our algorithm in Algorithm 3. The next theorem provides the regret bound of Algorithm

3.

Theorem 3.4.1. Let ϵ = Θ((K ln(
√
KT )/T )1/3). The regret of Algorithm 3 (with re-

spect to the optimal arm in non-discretized P) is upper bounded as follows: Reg(T ) =

O
(
K4/3T 2/3(ln(

√
KT ))1/3

)
.

Discussions. Our techniques have close connections to Lipschitz bandits [36, 123] and

combinatorial bandits [28, 29]. Given the Lipschitz property of rk(·), we are able to utilize

the idea of Lipschitz bandits to discretize the strategy space and achieve sublinear regret

with respect to the optimal strategy in the non-discretized strategy space. Moreover, we

achieve a significantly improved regret bound by utilizing the connection between our problem

setting and combinatorial bandits. In combinatorial bandits, the learner selects K actions

out of action space M at each time step, where |M| = Θ(K/ϵ) in our setting. Directly
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applying state-of-the-art combinatorial bandit algorithms [29] in our setting would achieve

an instance-independent regret bound of O
(
K3/4T 3/4(lnT )1/4

)
, while we achieve a lower

regret of O
(
KT 2/3(lnT )1/3

)
. The reason for our improvement is that, for each base arm,

regardless of which probability it was chosen, we can update the reward of the base arm,

which provides information for all meta arms that select this arm with a different probability.

This reduces the exploration and helps achieving the improvement. In addition to the above

improvement, we would like to highlight that another of our main contributions is to extend

the action-dependent bandits to the problem of history-dependent bandits, as discussed in

Section 3.5.

Another natural attempt to tackle our problem is to apply EXP3 [10], which achieves sublinear

regret even when the arm reward is generated adversarially. However, we would like to note

that the optimal policy in our setting could be a mixed strategy, while the “sublinear” regret

of EXP3 is with respect to a fixed strategy, and therefore it implies a linear regret in our

setting.

3.5 History-Dependent Bandits

We now describe how to utilize our results for action-dependent bandits to solve the history-

dependent bandit learning problem, with the impact function specified in Equation (3.2).

The crux of our analysis is the observation that, in history-dependent bandits, if the learner

keeps selecting the same strategy p for a long enough period of time, the expected one-shot

utility will be approaching the utility of selecting p in the action-dependent bandits. More

specifically, suppose after time t, the current action impact for all arms is f(t) = p(γ)(t) =

{p(γ)1 (t), . . . , p
(γ)
K (t)}. Assume that the learner is interested in learning about the utility of

selecting p = {p1, . . . , pK} next. Since the rewards are influenced by f(t), selecting p at
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time t+ 1 does not necessarily give us the utility samples at U(p). Instead, the learner can

keep pulling this meta arm for a non-negligible s consecutive rounds to ensure that f(t+ s)

approaches p. Following this idea, we decompose the total number of time rounds T into

⌊T/L⌋ phases which each phase is associated with L rounds. We denote m ∈ [1, . . . , ⌊T/L⌋]

as the phase index and p(m) as the selected meta-arm in the m-th phase. To summarize the

above phased-learning template:

• In each phase m, we start with an approaching stage: the first sa rounds of the phase. This

stage is used to “move" f(t+ s) with 1 ≤ s ≤ sa towards to p.

• In the second stage, namely, estimation stage, of each phase: the remaining L− sa rounds.

This stage is used for collecting the realized rewards and estimating the true reward mean

on action p.

• Finally, we leverage our tools in action-dependent bandits to decide what meta arm to

select in each phase.
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Fair Bandit Learning with Delayed Impact of Actions

Anonymous Authors1

Time t

· · · · · ·

Phase 1 Phase 2 Phase m

Approaching Stage: sa; Estimation Stage: L� sa

p(m) = p

Figure 1. A graphical illustration. We deploy p for all rounds in
m-th phases, therefore, we use p(m) = p to represent p(t) = p
for simplicity.

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Figure 3.1: We deploy p for all rounds in m-th phases, therefore, we use p(m) = p to
represent p(t) = p for simplicity.

Note that even if we keep pulling the arm k with the constant probability pk in the approaching

stage, the action impact in the estimation stage is not exactly the same as meta arm we want

to learn, i.e., f(t+ s) ̸= p for s ∈ (sa, L], due to the finite length of the stage. However, we
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Algorithm 4 Reduction Template
1: Input: K,T ; γ, ϵ, ρ ∈ (0, 1), sa.
2: Input: A bandit algorithm A: History-Dependent UCB (Algorithm 5).
3: Split all rounds into consecutive phases of L = sa/(1− ρ) rounds each.
4: for m = 1, . . . do
5: Query algorithm A for its meta arm selection p(m) = p.
6: Each phase is separated into two stages:
7: 1). Approaching stage: t = L(m− 1) + 1, . . . , L(m− 1) + sa;
8: 2). Estimation stage: t = L(m− 1) + sa + 1, . . . , Lm.
9: for t = L(m− 1) + 1, . . . , L(m− 1) + sa do

10: Deploy the meta arm p.
11: for t = L(m− 1) + sa + 1, . . . , Lm do
12: Deploy the meta arm p;
13: Collect the realized rewards r̃t to estimate the mean reward as in (3.7).
14: Update U

est
t (p) as in (3.7).

can guarantee all f(t+ s) for s ∈ (sa, L] is close enough to p by bounding its approximation

error w.r.t p. The above idea enables a more general reduction algorithm that is compatible

with any bandit algorithm that solves the action-dependent case. Let ρ = (L− sa)/L be the

ratio of number of rounds in estimation stage of each phase. We present this reduction in

Algorithm 4 and a graphical illustration in Figure 3.1.

3.5.1 History-Dependent UCB

In this section, we show how to utilize the reduction template to achieve a Õ(KT 2/3) regret

bound for history-dependent bandits. We first introduce some notations. For each discretized

arm pk, similar to action-dependent case, we define Γm(pk) := {s : s ∈ ((i− 1)L+ sa, iL]

where pk ∈ p(i),∀i ∈ [m]} as the set of all time indexes till the end of phase m in estimation

stages such that arm k is pulled with probability pk. We define the following empirical r̄estm (pk)
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computed from our observations and the empirical utility U
est
m (p): 9

r̄estm (pk) =
1

nest
m (pk)

∑
s∈Γm(pk)

r̂s(p
(γ)
k (s)), U

est
m (p) =

∑
pk∈p

pk · r̄estm (pk), (3.7)

where nest
m (pk) := |Γm(pk)| is the total number of rounds pulling arm k with probability pk in

all estimation stages, and r̂s(p
(γ)
k (s)) is defined similarly as in Equation (3.5). We use the

smoothed-out frequency {p(γ)k (s)}s∈Γm(pk) in the estimation stage as an approximation for the

discounted frequency right after the approaching stage.

We compute our UCB for each meta arm at the end of each phase. We define and compute

err := Kγsa(L∗ + 1), the approximation error incurred after our attempt to smooth out the

historical action impact. With these preparations, we present the phased history-dependent

UCB algorithm (in companion with Algorithm 4) in Algorithm 5. The main result of this

section is given as follows:

Algorithm 5 History-Dependent UCB
1: Construct UCB for each meta arm p ∈ Pϵ at the end of each phase m = 1, 2, . . . , as

follows:

UCBm(p) = U
est
m (p) + err+ 3

√√√√ K2 ln
(√

KLρ
)

minpk∈p n
est
m (pk)

.

2: Select p(m+ 1) = argmaxp UCBm(p) with ties breaking equally.

Theorem 3.5.1. For any constant ratio ρ ∈ (0, 1) and γ ∈ (0, 1), let ϵ = Θ((K ln(
√
KTρ)/(Tρ))1/3)

and sa = Θ(ln(ϵ1/3/K)/ ln γ). The regret of Algorithm 4 with Algorithm 5 as input bounds as

follows: Reg(T ) = O
(
K4/3T 2/3

(
(ln(
√
KTρ))/ρ

)1/3 )
.

9est in superscript stands for esttimation stage.
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For a constant ratio ρ, we match the optimal regret order for action-dependent bandits. When

γ is smaller, the impact function “forgets" the impact of past-taken actions faster, therefore

less rounds in approaching stage would be needed (see sa’s dependence in γ) and this leads

to larger ρ.

Remark 3.5.1. The dependence of our regret on the phase length L is encoded in ρ. When

implementing our algorithm,we calculate L via sa given the ratio ρ. We also run simulations

of our algorithm on different ratios ρ, the results show that the performance of our algorithm

are not sensitive w.r.t. specifying ρs - in practice, we do not require the exact knowledge of ρ,

instead we can afford to use a rough estimation of its upper bound to compute L.

3.5.2 Extension to General Impact Functions

So far, we discuss settings when the impact function is specified as in Equation (3.2). However,

the same technique we presented earlier can be applied for a more general family of impact

functions. In particular, as long as the impact function converges after the learner keeps

selecting the same action, our result holds. To be more precise, we only require f(t) to satisfy

the condition |fk(t+ s)− g(pk)| ≤ γs, γ ∈ (0, 1) when the learner keeps pulling arm k with

probability pk for s round. The function g(·) can be an arbitrary monotone function as long

as it is continuous and differentiable, for example: g(x) = x. In fact, the property of f(t) is

only used when we estimate how close f is to g(p) after the approaching stage with repeatedly

selecting p. For a different f(t), we define new reward mean functions r′k(·) = rk(g(·)), and

tune parameters ϵ and sa accordingly to bound the approximation error for
∣∣U(p)−U

est
m (p)

∣∣
(change the Lipschitz constant). This way we can follow the same algorithmic template to

achieve a similar regret.

Moreover, we do not require exact knowledge of the impact function f(t). We only require the

impact functions to satisfy the above conditions for our algorithms/analysis to hold. With
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the same arguments, while we assume the reward function rk(·) is fed with the same impact

function f , our formulation generalizes to different impact functions for rk(·), as long as these

impact functions are able to stabilize given a consecutive adoption of the desired action.

3.6 Matching Lower Bounds

For both action- and history-dependent bandit learning problems, we have proposed algorithms

that achieve a regret bound of Õ(KT 2/3). We now show the above bounds are order-optimal

with respect to K and T , i.e., the lower bounds of our action- and history-dependent

bandits are both Ω(KT 2/3), as summarized below.

Theorem 3.6.1. Let T > 2K and K ≥ 4, there exist problem instances that for our

action- and history-dependent bandits, respectively, the regret for any algorithm A follows:

infAReg(T ) ≥ Ω(KT 2/3).

3.7 Conclusion and Future Work

We explore a multi-armed bandit problem in which actions have delayed impacts to the

arm rewards. We propose algorithms that achieve a regret of Õ(KT 2/3) and provide a

matching lower regret bound of Ω(KT 2/3). Our results complement the bandit literature by

exploring the action history dependent biases in bandits. While our model have its limitations,

it captures an important but relatively under-explored angle in algorithmic fairness, the

long-term impact of actions in sequential learning settings. We hope our study will open

more discussions along this direction.
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Chapter 4

Human Behavior Modeling – Bayesian

Rationality in Information Design

We study the problem of information design in human-in-the-loop systems, in which an

informed sender (i.e., the system) aims to influence a receiver (i.e., humans in the system)

in making decisions through designing information disclosure strategies. This problem is

ubiquitous in our daily life. For example, online retailers might highlight a subset of product

features to influence the buyers to make the purchases. Recommendation systems might

selectively display other users’ ratings to persuade users to take the recommendation. Public

health officials might decide how to present vaccine information to encourage the general

public to take vaccines to curb the pandemic. There have been various research efforts

devoted to this problem from both economics [63, 68, 128, 147] and computer science [51,

54]. Among the growing literature on the study of information design, the model of Bayesian

persuasion proposed by [97] is one of the most prominent ones and has inspired a body of

studies. In this work, we also build on top of the framework of Bayesian persuasion and aim

to relax the restrictive assumptions in their model.
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In Bayesian persuasion, there are two players, a sender and a receiver.10 The state of nature

is randomly drawn from a distribution, with the prior known to both players. The sender

has access to the realization of the state while the receiver does not. The sender can utilize

the information advantage and selectively disclose information to the receiver to influence

the receiver. Based on the prior information of the state and the information revealed by the

sender, the receiver can take an action to maximize her own payoff, which depends on both

the action and the realized state. The sender’s objective also depends on the receiver’s action,

and the goal of the sender is to choose an information disclosure policy – which is determined

before the state realization and is known to the receiver – to maximize his objective.

As an illustrative example, consider the scenario in which an online retailer (the sender)

would like to persuade a buyer (the receiver) to make the purchase. The retailer’s products

are directly coming from the factory, and the product quality (the state of nature) is drawn

from a distribution with known prior. The buyer’s utility depends on both her purchase

decision and the realized product quality, and the retailer’s utility depends on the buyer’s

purchase decision. In order to persuade the buyers to purchase, the retailer can commit to

perform (noisy) product inspections to reveal some information of the product quality (e.g.,

the inspection might signal the product quality is satisfactory with 80% chance if the quality

of the product is indeed satisfactory and signal the product quality is unsatisfactory with

90% chance if the quality is indeed unsatisfactory). The retailer’s goal is to find the optimal

inspection policy to maximize the probability of selling the product to the buyer.

While Bayesian persuasion provides an elegant framework to address the above information

design problem, it has made some restrictive assumptions. In particular, the receiver is

assumed to be Bayesian rational, i.e., the receiver is able to form a posterior by incorporating
10In this paper, we use “he” to denote the sender and “she” to denote the receiver. Moreover, this work

is motivated by scenarios of designing information for a population of users. Therefore, we use the term
“receiver” to refer to a population of users, and sometimes we explicitly use the term “receivers”.
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the prior information and the signals revealed by the sender in a Bayesian manner, and then

choose the action that maximizes her expected utility. However, as consistently observed in

empirical studies [11, 121, 131, 166], humans often systematically deviate from being Bayesian

or being rational.

In this work, we explore the problem of information design with non-Bayesian-rational receiver.

We develop an alternative framework to Bayesian persuasion that incorporates discrete choice

model [130, 163, 169] and probability weighting [145, 150, 181] to model non-Bayesian-rational

receiver. We formulate the problem of solving the optimal information disclosure policy under

our model and characterize the properties of the optimal information disclosure policy. To

showcase the difference of the two frameworks, we investigate the information policies derived

from both frameworks in a simple baseline setting. We then conduct behavioral experiments

on Amazon Mechanical Turk with 400 workers to examine the two frameworks. Our results

demonstrate that our framework better aligns with the behavior with real-world humans and

lead to a better information disclosure policy.

4.1 Related Work

Our work builds on top of the seminal work of Bayesian persuasion [97], which initiated a

rich theoretical literature on communication game in which a sender can design information

to persuade a receiver to take certain actions. Their work has inspired an active line of

research in information design. [e.g., see the recent surveys by 17, 95]. In this work, we

extend this line of research on information design and focus on relaxing the assumption

that the receiver is Bayesian rational through both developing an alternative framework and

empirically examining human behavior.
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Human models for decision making. In the problem of information design, the receiver

needs to incorporate the information provided by the sender and make decisions accordingly.

We can decompose this decision making process into two stages: 1) belief updating: how the

receiver processes the information and updates her beliefs, and 2) decision making under

uncertainty: how the receiver makes decisions with the updated belief. Since we are interested

in settings in which receivers are human beings, in the following, we discuss existing human

models for decision making in the above two stages.

For belief updating, Bayesian models have been the prominent model in algorithmic works [27,

70, 168]. However, it has also been consistently and widely observed in empirical studies that

humans often deviate from being Bayesian [11, 93, 121, 131, 166, 171]. While there have

been some alternative models in how humans process information to form their beliefs [124,

132, 145, 150, 157, 181], they are not widely adopted in algorithmic frameworks.

For decision-making under uncertainty, the commonly-used assumption is expected utility

theory [137] which assumes humans take actions to maximize their expected utility. There

is again a substantial body of work in behavioral economics in studying the systematic

deviations of human behavior from expected utility theory. One important theory that

summarizes these systematic biases is the prospect theory by [94]. Another commonly used

theory, that accounts for the inherent randomness of human decision making by incorporating

noises in the utility, is the discrete choice model [130, 163, 169].

In this work, to account for the receiver’s deviation from being Bayesian rational, we adopt

probability weighting function [145, 150, 181] for belief updating and discrete choice model [130,

163, 169] for decision making in our framework. We also examine whether our framework aligns

with real-world human behavior through behavioral experiments. In addition, there have been

some recent works that aim to incorporate human behavioral models in the computational
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framework. For example, [105] and [106] study the planning for time-consistent agents in

an environment characterized by a graphical model. [184] investigate the design of decision

making environment for agents with decision biases. [1] explore soliciting data from strategic

agents whose data is correlated with the cost for releasing their data. Our work aligns with

this line of research that incorporates realistic human behavioral models in computation.

Behavioral experiments in information design. While there is a rich line of research

on Bayesian persuasion, the amount of works on empirically investigating human behavior in

information design is limited [5, 6, 57]. Among these works, [6] incorporate reciprocity into

the standard persuasion setting and conduct a laboratory experiment to validate their model

on reciprocity. [5] propose a unified framework to investigate the theoretical parallelism

between information and mechanism design. [57] empirically examine different information

design methods, including communications via cheap-talk, disclosure of verifiable information,

and Bayesian persuasion. Our work departs from the above literature as we investigate the

fundamental assumption of Bayesian rationality in human behavior. We create a decision-

making scenario where the receiver is required to make a decision after seeing a signal realized

according to some information disclosure policy to empirically measure how humans update

their beliefs and make decisions.

Another closely-related work to ours is the one by [34] who also relax the Bayesian assumption

of receiver’s behavior in persuasion. They theoretically study how receiver’s mistakes in

probabilistic inference impact optimal persuasion and characterize a large class of belief

updating rules that the concavification method developed by [97] can still be applied. However,

their work focuses on theoretical characterization and the receiver is still assumed to be an

expected utility maximizer. While in our model, we further relax this assumption by using a

discrete choice model and empirically examine our models.
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4.2 Model

In this section, we formalize the frameworks for the information design problem. We first

describe the standard Bayesian persuasion framework that assumes Bayesian rational receiver.

We then introduce our framework that relaxes the Bayesian rational assumption. In the later

section, we compare the two frameworks on a simple baseline setting with two states and

binary actions to showcase the differences of the frameworks. This simple baseline setting also

motivates the design of our real-world behavioral experiments described in our experiment

section.

4.2.1 Standard Framework: Bayesian Persuasion

We first describe the standard setting of Bayesian persuasion [97]. In this setting, there are

two players: a sender and a receiver. The goal of the sender is to design an information

disclosure policy to persuade the receiver in taking actions to maximize the sender’s objective.

Let the (payoff-relevant) state of the world be θ, which is drawn from a finite set Θ according

to a prior distribution µ0 ∈ ∆(Θ). The prior is common knowledge to all players. The

receiver’s utility is characterized by the function uR(a, θ) which depends on the action she

takes a ∈ A from a compact action set A and the state θ. The sender’s utility is characterized

by the function uS(a, θ) that also depends on the receiver’s action and the state.

Before observing the realization of the state, the sender can choose an information disclosure

policy (π,Σ), which consists of a finite signal space Σ and a family of conditional distributions

{π(·|θ)}θ∈Θ over σ ∈ Σ. This information disclosure policy is known to the receiver and

specifies how the sender discloses information to the receiver. In particular, when a state

θ ∈ Θ is realized, the sender can observe the state but the receiver cannot. To influence the
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receiver’s decision, the sender sends a signal σ, drawing from the conditional distribution

π(·|θ) specified in the information disclosure policy, to the receiver. The receiver forms her

beliefs on the state of the world based on the prior and the signal provided by the sender.

She then takes an action to maximize her own payoff.

In the Bayesian persuasion setting, it is assumed that the receiver is Bayesian rational, i.e.,

she updates her beliefs in a Bayesian manner and is an expected utility maximizer. Formally,

upon seeing the signal realization σ from the sender, the receiver updates her belief, denoted

by µ ∈ ∆(Θ), by applying Bayes’ rule:

µ(θ|σ) = π(σ|θ)µ0(θ)∑
θ′∈Θ π(σ|θ′)µ0(θ′)

. (4.1)

Given the posterior belief µ, the receiver then chooses an action a∗ = a∗(µ) that maximizes

her expected payoff: a∗ ∈ argmaxa∈A
∑

θ∈Θ uR(a, θ)µ(θ).11 As a key insight by [97], the

above two assumptions on the receiver’s behavior allow the sender to reduce the problem of

designing information disclosure policy to choosing a distribution of posterior beliefs that

respects Bayes rule. Furthermore, a distribution τ ∈ ∆(∆(Θ)) of posteriors can arise if and

only if it is Bayes-plausible, i.e.,

E
µ∼τ

[µ] = µ0. (4.2)

Therefore, it is without loss of generality to assume the set of available information disclosure

policy to the sender is the set of Bayes-plausible distributions of posterior beliefs. By

formulating the sender’s direct utility uS(a, θ), a function of the receiver’s action, to an
11In the persuasion literature, most work consider sender-preferred Subgame Perfect Equilibrium, where

the receiver chooses the sender-preferred action when there are ties.
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indirect utility ûS(µ), a function of Bayesian posteriors, the standard concavification argument

can be applied to derive the optimal information design.

4.2.2 Our Framework: Persuading Non-Bayesian-Rational Receiver

In contrast to the assumptions made in Bayesian persuasion, the receiver may, in practice,

exhibit systematic biases both in probabilistic inferences and in decision making. In the

following discussion, we first incorporate the discrete choice model and probability weighting

to model non-Bayesian-rational receiver. We then formulate the optimal information design

problem under this receiver model.

Modeling non-Bayesian-rational receiver. We first relax the assumption that the

receiver is an expected utility maximizer but still assume the receiver is Bayesian in updating

the belief. Specifically, we leverage the discrete choice model [131], a commonly-used

alternative of expected utility theory, to characterize the receiver’s behavior when making

her decision.

To provide informal intuitions, in expected utility theory, the receiver takes an action that

maximizes her expected utility. When there is no ties in action utility, this action choice

is deterministic. On the other hand, the discrete choice model accounts for the inherent

randomness in human decision making and models the decision as a probabilistic process.

Specifically, in the discrete choice model, for each action a ∈ A the receiver can take, we

add noise ε(a) into the receiver’s utility for taking action a. The receiver then takes an

action that maximizes this noisy version of the utility. This noise captures several realistic

aspects of human decision making, e.g., when there are additional inherent characteristics

in the receiver’s utility estimation that we cannot model, or when receiver is drawn from a

population and individual differences need to be accounted for.
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More formally, let µ ∈ ∆(Θ) denote the receiver’s posterior induced by some signal realization.

We define ûR(a|µ) as the noise-free expected utility for the receiver to choose action a ∈ A given

the posterior belief µ, which can be written as ûR(a|µ) := Eθ∼µ

[
uR(a, θ)

]
=
∑

θ∈Θ uR(a, θ) ·

µ(θ). In discrete choice model, the receiver takes actions based on the noisy version of the

utility ũR(a|µ), which can be written as

ũR(a|µ) := β · ûR(a|µ) + ε(a), (4.3)

where ϵ(a) is the added noise and β is a parameter that tunes the relative strength of

observable utility and the noises, e.g., when β →∞, the noise is negligible and the discrete

choice model reduces to the standard expected utility theory.

Different choices of distributions of ε(a) lead to different discrete choice models. In this work,

we follow the commonly used Multinomial Logit (MNL) [129] and assume that each ε(a)

is distributed independently, identically extreme value, where the CDF follows F (ε(a)) =

exp(− exp(−ε(a))).

Lemma 4.3.1 ([129]). Given posterior belief µ, the probability that receiver chooses action a

can then be derived as

Pr(a|µ) = exp
(
βûR(a|µ)

)∑
a′ exp (βû

R(a′|µ)) . (4.4)

Proof. Define vR(a|µ) = β · ûR(a|µ). By definition,

Pr(a|µ) = Pr
(
ũR(a|µ) > ũR(a′|µ), ∀a′ ̸= a

)
= Pr

(
ε(a′) < ε(a) + vR(a|µ)− vR(a′|µ), ∀a′ ̸= a

)
.
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Since the ε’s are independent, this cumulative distribution over all a′ ̸= a is the product of

the individual cumulative distributions:

Pr(a|µ, ε(a)) =
∏
a′ ̸=a

exp
(
− exp(−(ε(a) + vR(a|µ)− vR(a′|µ)))

)
.

Since ε(a) is not given, and so the choice probability is the integral of Pr(a|µ, ε(a)) over all

values of ε(a) weighted by its density

Pr(a|µ) =
∫ ∏

a′ ̸=a

e−e−(ε(a)+vR(a|µ)−vR(a′|µ))
e−ε(a)e−e−ε(a)

dε(a).

Finally, by computing the integral over ϵ(a), we can obtain the closed-form expression (4.4).

With the above lemma, we have a closed-form formulation specifying the distribution of

actions the receiver will choose given her posterior belief under discrete choice model. We

now relax the assumption that the receiver might not be Bayesian in updating her beliefs.

To account for non-Bayesian belief updating, we utilize the ideas of probability weighting and

introduce a non-decreasing prior-specific probability distortion function ω(·;µ0) : ∆(Θ)→

∆(Θ) to capture the receiver’s final belief on making her decision. This formulation helps

explain the human biases in over-weighting or under-weighting the prior when performing

beliefs updates. Now one can derive the following choice probabilities by incorporating the

distorted posterior ω(·;µ0) into (4.4):

Pr(a|ω(µ;µ0)) =
exp

(
βûR(a|ω(µ;µ0))

)∑
a′ exp (βû

R(a′|ω(µ;µ0)))
. (4.5)

61



Many parametric forms of the probability weighting function have been proposed [145, 150,

170, 181]. For example, an affine probability distortion function [52, 60, 172] specifies a

distorted posterior that falls in between a reference belief µ∗ ∈ ∆(Θ) and Bayesian posterior

µ: ω(µ|µ0) = γµ∗ + (1− γ)µ where µ∗ is allowed to vary with µ0 and γ ∈ [0, 1] is a constant.

Optimal information design. With the modeling of the receiver, we now characterize

the sender’s optimal information design. To simplify the exposition, we mainly state the

analysis when the receiver’s behavior follows the discrete choice model defined in (4.4). The

analysis for the model including probability weighting is similar. For notation simplicity, let

p(a|µ) := Pr(a|µ) denote the the probability for the receiver to choose action a ∈ A when the

posterior µ is induced. With this expression, we are now ready to characterize the sender’s

optimal information design problem:

Theorem 4.3.2. Let µ0 be the prior. Assume the receiver’s behavior follows (4.4) when µ is

the posterior. The sender’s problem is equivalent to

max
τ∈∆(∆(Θ))

E
µ∼τ

[∑
θ∈Θ

µ(θ)
∑
a∈A

p(a|µ)uS(a, θ)

]

s.t. E
µ∼τ

[µ] = µ0

(4.6)

Proof. Let ν(µ) = {p(a|µ)}a∈A ∈ ∆(A). Given a posterior µ and the corresponding ν(µ), we

can compute the sender’s indirect expected utility ûS(µ) as a function of µ:

ûS(µ) = E
θ∼µ

[
E

a∼ν(µ)

[
uS(a, θ)

]]
=
∑
θ∈Θ

µ(θ) ·
∑
a∈A

p(a|µ)uS(a, θ).

Given the prior µ0, an information disclosure policy π generates a distribution τ ∈ ∆(∆(Θ))

over Bayesian posteriors. It is known that, should the receiver be Bayesian, a distribution τ

of posteriors is feasible iff it is Bayes-plausible (4.2). Now the sender’s expected utility can
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be written as a function of the receiver’s choices and the probability measure τ , we obtain

the stated reformulation of the sender’s problem.

Note that the problem (4.6) can be further simplified when the sender’s utility is state-

independent, i.e., uS(a, θ) = uS(a),∀θ ∈ Θ, which is a common assumption in the persuasion

literature. Indeed, we have the objective Eµ∼τ

[∑
a∈A p(a|µ)uS(a)

]
in (4.6). By writing

the sender’s problem as a function of the induced Bayesian posterior, then (4.6) can be

addressed using the tools developed by [97]. In particular, for an arbitrary real-valued

function u : ∆(Θ)→ [0, 1], let ucc be the concave closure of u,

ucc(µ) = sup{z|(µ, z) ∈ co(u)}, (4.7)

where co(u) is the convex hull of the graph of u.

Proposition 4.3.3. The sender’s expected utility under an optimal policy is ûcc(µ0), where

û is defined in (4.7).

The above analysis can also be applied to deal with settings in which the receiver distorts

the probabilities through a probability weighting function. In particular, the results in

Theorem 4.3.2 still hold with the only difference being that the choice probabilities in (4.6)

will accordingly correspond to (4.5). We can simplify the sender’s problem (4.6) to the

following optimization problem with a distorted Bayes-plausibility constraint:

Proposition 4.3.4. Let µ0 be the prior, µ be the Bayesian posterior and µR be the receiver’s

non-Bayesian posterior. Assuming the receiver’s behavior follows (4.5) with the probability
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weighting function ω(·|µ0) : ∆(Θ)→ ∆(Θ). The sender’s problem is equivalent to 12

max
τ∈∆(∆(Θ)×∆(Θ))

E
(µ,µR)∼τ

[∑
θ∈Θ

µ(θ)
∑
a∈A

p
(
a|µR

)
uS(a, θ)

]

s.t. E
µR∼τR

[
ω−1

(
µR|µ0

)]
= µ0,

where τR =
∫
µ
τ(µ, ·)dµ.

Proof. Given the receiver’s belief µR, let ν(µR) = {p(a|µR)}a∈A ∈ ∆(A). Together with the

Bayesian posterior µ, we have the following sender’s indirect utility

ûS(µ, µR) = E
θ∼µ

[
E

a∼ν(µR)
[uS(a, θ)]

]
=
∑
θ∈Θ

µ(θ) ·
∑
a∈A

p(a|µR)µS(a, θ).

Recall that µR is the result of the mapping of probability weighting function ω(·|µ0) from the

Bayesian posterior µ. As the mapping ω(·|µ0) is invertible and µ satisfies Bayes-Plausibility, µR

must satisfy EµR∼τR
[
ω−1

(
µR|µ0

)]
= µ0. Thus, we can achieve the above sender’s reformulated

optimization problem.

Similarly, when the sender’s utility is state-independent, sender’s problem can be further sim-

plified as maxτ∈∆(∆(Θ)) EµR∼τR
[∑

a∈A p(a|µR)uS(a)
]

with the distorted Bayesian-plausibility

constraint.
12Including probability weighting in our model is essentially the same as distorting updated beliefs proposed

by [34]. We can show that a distorted version of Bayes-plausibility holds, and therefore the standard
concavification technique to derive optimal information design can be applied.
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4.4 A Baseline Setting with Two States and Binary Ac-

tions

In the above section, we formulate the information design problem for both the standard

framework of Bayesian persuasion and our framework of persuading non-Bayesian-rational

receiver. To instantiate the discussion and comparison, in this section, we consider a

simple setting with two states and binary actions, a variant of the leading example in [97], to

demonstrate the differences of the two frameworks. This setting also motivates our experiment

design as presented in the next section.

Consider a world with two states Θ = {X,Y}, where state X happens with probability

µ0 ∈ [0, 1] and state Y happens with probability 1− µ0. The receiver can choose from two

actions A = {aX, aY}. The utility of the sender and the receiver both depend on the receiver’s

action and the realized state and have been summarized in Table 4.1.

Payoff State X State Y

Receiver chooses aX Receiver: 1. Sender: 1 Receiver: 0. Sender: 1
Receiver chooses aY Receiver: 0. Sender: 0 Receiver: 1. Sender: 0

Table 4.1: Payoff structure.

In this payoff structure, the receiver aims to select the action that matches the state (i.e.,

select action aX/aY for state X/Y), while the sender wishes to persuade the receiver to select

action aX.

Optimal information design with Bayesian-rational receiver. In the following

discussion, we use µ to denote the posterior probability of state X. If the receiver is Bayesian
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rational, whenever the receiver sees a signal that induces a posterior µ ≥ 0.5, the receiver’s

best response is to choose action aX. In other words, the receiver’s response is a simple step

function in posterior beliefs (the receiver chooses action aX when µ ≥ 0.5 and action aY when

µ < 0.5). Given the receiver’s behavior, the optimal information disclosure policy can be

achieved with only 2 signals, represented using {R,B}, and the policy can be specified as

below. 13

Proposition 4.4.1 (Optimal policy assuming Bayesian rational receiver [97]). When the

prior µ0 < 0.5, an optimal information disclosure policy exists and satisfies:

• when state X is realized, always sends signal R;

• when state Y is realized, with prob. µ0

1−µ0
sends signal R, and with prob. 1 − µ0

1−µ0
sends

signal B.

When µ0 ≥ 0.5, an uninformative information disclosure policy is the optimal policy.

Below is the intuition of the optimal policy. When µ0 ≥ 0.5, when deploying an uninformative

information policy, the receiver’s posterior is the same as prior, and she will always choose

action aX, and therefore an uninformative information policy is the optimal policy. When

µ0 < 0.5, recall that the goal of the sender is to persuade the receiver to choose aX when the

prior of state Y is larger than half. In the optimal information policy, when the state is X, the

sender wants to reveal the true information to encourage the receiver to choose aX. When the

state is Y, the sender wants to make the receiver have indifferent beliefs between the state

to maximize the chance the receiver chooses aX. The above policy generates two possible

posteriors: µ = 0.5 with probability 2µ0 on seeing signal R, and µ = 0 with probability

1− 2µ0 on seeing signal B.
13We choose {R,B} as signal notations mainly for the consistency of our experiment presentation in our

experiment section.
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Optimal information design with non-Bayesian-rational receiver. When the receiver

is not Bayesian rational, the receiver’s probability of choose aX is not a step-function of

posterior µ as in Proposition 4.4.1. Instead, as described in our framework, it is a smoothed

continuous function as below:

p(a = aX|µ) =
exp(βµ)

exp(β(1− µ)) + exp(βµ)
. (4.8)

We can also derive the sender’s optimal information design when the receiver follows the

model (4.8). In particular, since the sender obtains zero utility when the receiver chooses

action aY, the sender’s indirect utility ûS(µ) as a function of posterior µ is simply ûS(µ) =

p(a = aX|µ). A concavification argument allows us to characterize the following optimal

information disclosure policy:

Proposition 4.4.2 (Optimal policy assuming non-Bayesian-rational receiver). Let p(µ) :=

p(a = aX|µ) and let µ̄ be the unique solution of µ̄p′(µ̄) = p(µ̄)− p(0). Given prior µ0 ≤ µ̄, an

optimal information disclosure policy exists and satisfies

• when state X is realized, always sends signal R;

• when state Y is realized, with prob. µ0(1−µ̄)
(1−µ0)µ̄

sends signal R, and with other prob. sends

signal B.

When µ0 > µ̄, an uninformative information disclosure policy is the optimal policy.

The optimal information policy shares a similar structure as the one when the receiver is

Bayesian rational (Proposition 4.4.1). However, the threshold µ̄, that characterizes when

an uninformative policy is not optimal, and the probability for sending signal B when the

realized state is Y are different and are influenced by the receiver model. Furthermore, as β

in the receiver model (4.8) increases, the shape of p(µ), the probability for the receiver to
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choose action aX given posterior µ, is more towards a step function with breaking point at 0.5

and thus µ̄ is smaller. Intuitively, larger β implies that the impact of unobserved component

ε(a) is smaller on the receiver’s utility, and thus the receiver is more towards an expected

utility maximizer. The above discussion is graphically illustrated in Figure 4.1. The analysis

when including the probability weighting is similar.

β 2
β 3.5
β 3.5 w.p. weighting
β 5
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(b)

Figure 4.1: Left: Various shapes of ûS(µ) (or p(µ)) and ûS(ω(µ)) (or p(ω(µ))) with an affine
distorting function ω where γ = 0.3, µ∗ = 0.5. Right: Red line is the concavification ûcc(µ)
for ûS(µ).

4.5 Real-World Experiment

Our discussion in the previous sections demonstrates the different predictions on the receiver’s

behavior and the optimal information disclosure policy when we consider different receiver

models. In this section, we describe the setup and results of our real-world behavioral

experiments to examine these predictions. The experiment has been approved by IRB at

Washington University.

In our experiment, we recruit online workers to answer a series of questions. In each question,

workers are asked to perform a probabilistic-inference and decision-making task. We design
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the questions in a way that we can control the prior and the information structure and then

observe workers’ corresponding actions. Moreover, given a prior and a realized signal from

the information policy, we are able to derive the corresponding induced Bayesian posterior

(calculated using Bayes rule). We are interested in examining the following two questions:

• Q1: Are workers Bayesian?

To examine whether workers are Bayesian, we can design two scenarios that lead to the

same induced posterior but have different priors and information policies. If workers are

Bayesian, their decisions should depend only on the posterior, and we should observe the

same worker behavior on the two scenarios.

• Q2: Are workers rational?

To examine whether workers are rational, we can create scenarios that lead to different

posteriors. If workers are rational, we should observe workers’ behavior follows a step

function over the induced posteriors.

4.5.1 Experiment Setup

We recruited 400 unique workers from MTurk, where each worker is required to complete 20

questions. We offer a $0.5 base payment, and each worker may also receive a bonus payment

of up to $0.6 (the bonus rule will be explained shortly). The bonus amount is chosen to be

large enough so workers are motivated to perform well. The average hourly rate is around

$12.15.

Task. Our goal is to evaluate the receiver’s behavior. Therefore, we play the role of the

sender and have all recruited workers play as the receiver. Each worker needs to complete 20

questions as described below.
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Figure 4.2: The task interface.

In each question, as shown in Figure 4.2, workers are informed that there are two urns, Urn

X and Urn Y. At the beginning of the question, an urn is randomly drawn according to the

prior distribution that is known to the workers. Each urn contains certain fraction of red

balls and blue balls. The ball composition of each urn is also shown to workers. After an urn

is realized, we choose a ball uniformly at random from this realized urn. The color of the

drawn ball is then disclosed to the worker. Upon seeing the color, the worker is required to

make guess on which urn is realized.

This experiment setup is designed to capture human decision-making process. The two urns

represent the world state. The ball composition is the information disclosure policy. When

seeing the realized ball, the workers update their prior beliefs (the prior of urn drawing)
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with additional information (realized ball drawn according to the commonly known ball

compositions in urns) and make decisions (guessing which is the realized urn).

Bonus rule. For each correct guess (i.e., worker’s guess matches the realized urn), worker

receives a bonus of $0.03, thus each subject will receive at most $0.6 in the game. The bonus

for correct guess on Urn X and Urn Y is the same to match the setting in section about our

baseline setting.

Treatment design. To answer our research questions, we conducted a randomized be-

havioral experiment. The experiment consists of two treatments, which differ in the prior

distribution of the state. In the high prior treatment, we fixed the prior to be (0.4, 0.6),

while in the low prior treatment, the prior is fixed as (0.2, 0.8). We then design eight ball

compositions in urns (corresponding to information disclosure policies) such that, conditional

on the realization of a red ball draw, the Bayesian posterior would be (0.2, 0.3, . . . , 0.9) for

both treatments. The detailed setup of our ball composition is included in Table 4.2. For

each arriving worker, she is randomly assigned to one of the treatments and needs to answer

20 questions. Each question corresponds to a ball composition. Each ball composition is

repeated 2 to 3 times and the order of the question and the options are all randomized to

alleviate any potential position bias.

This treatment design enables us to answer both research questions Q1 and Q2. Since we

control the ball compositions so that both treatments lead to the same set of Bayesian

posteriors (conditional on red ball draw), by comparing the worker behavior between the two

treatments, we can answer Q1. Since the prior is fixed in each treatment, by examining the

behavior with different induced posterior in the same treatment, we can answer Q2.
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ball composition prior (0.2, 0.8) prior (0.4, 0.6)

posterior (0.2, 0.8) (100%, 0%, 100%, 0%) (37%, 63%, 100%, 0%)
posterior (0.3, 0.7) (100%, 0%, 58%, 42%) (64%, 36%, 100%, 0%)
posterior (0.4, 0.6) (100%, 0%, 37%, 63%) (100%, 0%, 100%, 0%)
posterior (0.5, 0.5) (100%, 0%, 25%, 75%) (100%, 0%, 67%, 33%)
posterior (0.6, 0.4) (100%, 0%, 17%, 83%) (100%, 0%, 44%, 56%)
posterior (0.7, 0.3) (100%, 0%, 11%, 89%) (100%, 0%, 29%, 71%)
posterior (0.8, 0.2) (100%, 0%, 6%, 94%) (100%, 0%, 17%, 83%)
posterior (0.9, 0.1) (100%, 0%, 3%, 97%) (100%, 0%, 7%, 93%)

Table 4.2: Ball compositions for different prior and different posterior on seeing red ball. In
each cell, the first two numbers correspond to the fraction of red balls and blue balls in Urn X,
and the last two numbers correspond to the fraction of red balls and blue balls in Urn Y.

4.5.2 Experiment Results

Among the 400 recruited workers, 199 workers were randomly assigned to the high prior

(0.4, 0.6) treatment and 201 workers were randomly assigned to the low prior (0.2, 0.8)

treatment. For the self-reported population demographic for the participants, there are 41.5%

female, 71.25% under 40 years old, and over 90% of the participants reported to have at least

college degrees.

Receiver’s behavior. We first report the receiver’s behavior on both treatments. Note

that if workers are Bayesian rational, we should expect to see workers taking the same actions

for any fixed posterior no matter which treatment they are in. In addition, workers’ behavior

should follows a step function within each treatment, with workers choosing urn X when the

posterior is larger than 0.5 and choosing urn Y otherwise.

The results, as shown in Figure 4.3, show that worker behavior has significantly deviated from

the model of Bayesian rationality. In particular, the differences between the two treatments
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Figure 4.3: The solid lines represent the percentage of workers that choose Urn X conditional
on a red ball realization. Shaded regions correspond to the regions of plus/minus one standard
error. Dashed lines correspond to fitted models in our framework.

demonstrate that workers are not updating their beliefs in a Bayesian manner. The sigmoid-

shape curve in workers’ behavior demonstrates that worker behavior aligns better with the

discrete choice model instead of the expected utility theory (which leads to a step function).

Fitting receiver behavior to our framework. Next we examine how well our framework

explains the empirical worker behavior by fitting the empirical observations to our model as

described in Equation (4.5). For the probability weighting function ω, we choose a simple

but an intuitive affine probability weighting function. In addition, since the data quality by

online workers have known to be inconsistent [87, 89], when fitting the data to models, we

consider the case that there is a (1− α) fraction of workers who might always be random

guessing (choosing urn X with 0.5 chance).

The fitted curves are also included in Figure 4.3. Compared with the step function as

predicted with the Bayesian rationality assumption, our model aligns better with real-world

human behavior.
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Figure 4.4: Comparisons between the empirical sender’s utility collected in data, sender’s
utility predicted by our model, and the sender’s utility predicted by assuming workers are
Bayesian rational.

Details on the model evaluation. Recall that our model, after including an affine

probability distorting function ω(·|µ0) and α-fraction random workers, is defined as follows

p(a = aX|ω(µ|µ0))

=
α exp(βω(µ|µ0))

exp(β(1− ω(µ|µ0))) + exp(βω(µ|µ0))
+ (1− α)0.5,

where ω(µ|µ0) = γµ∗ + (1 − γ)µ, α, γ ∈ [0, 1], β > 0 and µ∗ is a reference belief that may

depend on the prior information. Using non-linear least squares, we jointly optimize the

parameters of function p(a = aX|ω(µ|µ0)), while ensuring parameters (α, β, γ) to be the

same for both treatments and allowing µ∗ ∈ [0, 1] to vary with the prior, to be fitted to the

data of both treatments. To assure for fair comparisons, we also include the prediction if

we assume α fraction of workers are Bayesian rational (see gray dashed line in Figure 4.3).

Recall that in Proposition 4.4.1, the response of Bayesian rational workers is a step function

p(a = aX|µ) = 1{µ ≥ 0.5}. Thus, with (1 − α) fraction random workers, the prediction

should be characterized by p(a = aX|µ) = α1{µ ≥ 0.5}+ (1− α)0.5.
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To evaluate how well each model fits the data, we use 5-fold cross-validation to estimate

the out-of-sample prediction error of the model. In particular, we split the available data

randomly into 5 equally-sized disjoint subsets. In each iteration, we choose one subset as

the test data and the remaining subsets as training data to find out the model parameters.

The out-of-sample performance is then evaluated on the chosen test data. After iterating all

subsets, we compute the average out-of-sample error across 5 test sets.

The evaluation errors, computed via the sum of squared residuals, together with the errors if

we assume workers are Bayesian rational, are shown in Table 4.3. The results demonstrate

that our framework explains the real human behavior better than Bayesian persuasion does.

error using
our model

error assuming
Bayesian rational

prior (0.2, 0.8) 0.0506 0.1230
prior (0.4, 0.6) 0.0417 0.1231

Table 4.3: 5-fold cross validation error (computed via the sum of squared residuals) for the
models in Figure 4.3.

Implication to information design. Finally, we discuss the impacts of receiver models

to the information design problem. In particular, note that each of the ball composition of

urns corresponds to an information disclosure policy. For each policy, we can compute the

expected utility for each receiver model by assuming the receiver takes action follows the

model prediction. In addition, given the data collected by our experiments, we can compute

the empirical average utility achieved by each policy (i.e., multiply the empirical ratio of

workers choosing Urn X by the probability of red ball realization) and use it as the ground

truth for comparison.
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The results, as shown in Figure 4.4, demonstrate that our model (fitted with data) makes a

much more accurate prediction (red dashed line) on the empirical average utility (orange line)

of different information disclosure policies than the one predicted by Bayesian persuasion

(gray dashed line). For example, for the high prior treatment, different from the peak at

(0.5, 0.5) when assuming workers are Bayesian rational, the empirical data shows that the

empirical optimal information disclosure policy is generating a posterior between (0.6, 0.4)

and (0.7, 0.3) when seeing a red ball, and this is also reflected in our model prediction. Similar

results can also be found for the low prior treatment.

4.6 Discussions and Future Work

In this section, we discuss the limitations of our current results and potential future directions.

Generalizability of our framework and experimental results. While our work has

been one of the few empirical studies in examining human behavior in the persuasion literature,

similar to prior work, our experiment is constructed on a more abstract setup (i.e., utilizing the

urn and ball drawing problem). Developing a more realistic experimental setup that depicts

real-world scenarios (e.g., how a seller selectively discloses product information to persuade

the buyer to make the purchase decision) and/or conducting more extensive experiments (e.g.,

including more priors and posteriors, recruiting more workers) would help better understand

and model real human behavior.

In addition, our current experiments has limited to a simple form of information presentation.

It is therefore not trivial to claim that our findings hold for different presentations of

information structure. In particular, in our experiment design, for each combination of prior

and target posterior, we identify an information disclosure policy (i.e., a particular set of

ball compositions in urns) that induces the target posterior from the prior when receiver

76



sees a red ball. In our design, almost all ball compositions have 100% red balls in Urn

X except two compositions in the upper right of Table 4.2. There are several benefits for

this style of composition. First, it aligns with the optimal information design as derived in

Proposition 4.4.1, i.e., the sender always sends a signal R when Urn X is realized. For the

two compositions that it is not feasible to have 100% red balls in Urn X, we choose to make

Urn Y to contain 100% red balls to ensure that our ball compositions are consistent among

different tasks, i.e., at least one urn has 100% red balls. Second, we believe the simplicity of

these compositions also helps to alleviate human’s cognitive burden when processing signal

information. However, despite the above mentioned benefits, it limits the generalizability of

our findings outside of this particular form of information presentation. Note that there are

essentially infinite number of different ball compositions that we can use to induce the same

target posterior. For example, in Figure 4.2, given the prior (0.4, 0.6), any ball composition

(x, 1 − x, y, 1 − y) that satisfies 0.4x
0.4x+0.6y

= 0.6, x, y ∈ [0, 1] can induce a posterior (0.6, 0.4)

whenever a worker sees a red ball. Understanding the impacts of different signal presentations

has practical importance and would be an important future research direction.

We have considered a particular set of behavioral models, i.e., discrete choice model and

probability weighting, to relax the Bayesian rational assumption. While these models have

been well-examined in the literature, there have also been other models of human decision

making to relax the assumption of Bayesian rationality. Empirically understanding whether

and when other models are suitable and how different models impact the information design

problem requires more future studies from both theoretical and experimental investigations.

Algorithmic solutions for information design. In Section 4.2, we develop an alternative

framework to model the receiver’s behavior and formulate the sender’s optimization problem.

In the section about our baseline setting, we then demonstrate that in a simple baseline

setup with two states and binary actions, we can obtain a closed form of optimal information
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structure. The natural next question to ask is that whether we can develop an algorithmic

procedure to obtain the optimal information design for general settings in these frameworks.

Note that if the receiver is Bayesian rational, for a general information design problem, there

have been earlier works [51] showing that it is #P-hard to exactly compute the expected

sender utility for the optimal information structure. One interesting future direction is to

explore whether the earlier computational complexity results still hold in our framework. More

specifically, can we identify a polynomial-time algorithm to derive the optimal information

disclosure policy, as defined in (4.6).

Potential negative societal impacts. Lastly, we would like to highlight the potential

negative societal impacts of the usage of information design. When the sender’s objective is

to maximize the social welfare or to improve the quality of the receiver’s action, the impacts

of information design could be positive to the receiver and beneficial to the society. However,

in our work and in almost the entire literature on Bayesian persuasion, we have often focused

on how to identify an optimal information disclosure policy that maximizes the sender’s

payoff. Since the sender often represents the advantageous party (e.g., the government, the

company, the platform, etc) that has access to more information, when the interests of the

sender do not align with the interests of the receiver, optimizing the sender’s utility could

lead to potential negative social impacts to the receivers, who are often the general public.

In other words, with ill-specified objective in information design, the sender could utilize the

information advantage and create significant negative impacts. It is therefore also important

to consider the impacts and the potential regulations on information design.
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Chapter 5

Human Behavior Modeling – Learning

from Peer Communication

Crowdsourcing has gained increasing popularity recently as a scalable data collection tool for

various purposes, such as obtaining labeled data for training machine learning algorithms

and getting high-quality yet cheap transcriptions for audio files. On a typical crowdsourcing

platform like Amazon Mechanical Turk (MTurk), task requesters can post small jobs (e.g.,

image labeling or audio transcription tasks) as “microtasks” along with the specified payment

for completing each task. Workers then can browse all available tasks on the platform

and decide which ones to work on. Crowd workers are often assumed to complete tasks

independently, and a substantial amount of crowdsourcing research has been focused on how

to make better use of the independent workers. For example, a rich body of research has

explored how to aggregate independent contributions from multiple workers by inferring task

difficulties, worker skills, and correct answers simultaneously [32, 146, 180, 188]. Moreover,

given a limited budget, researchers have further examined how to intelligently decide the

number of independent workers needed for each task at the first place [30, 73, 114].
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However, the validity and value of this independence assumption in crowdsourcing has been

challenged recently. Through a combination of ethnographic and experimental methodologies,

researchers have found that crowd workers, in fact, communicate and collaborate with each

other through both online forums (like TurkerNation14 and MTurkCrowd15) and one-on-one

channels [69, 71, 88, 126, 153, 183]. Different from such collaboration which is organically

arisen within the crowd and mostly about exchanging meta-level information related to

crowd work (e.g., how to find well-paid tasks), an increasing number of studies in the human-

computer interaction community have started to design certain level of interactions between

workers in their actual work, which is shown to improve crowdsourcing outcomes in many

cases. For example, various workflows are developed to coordinate workers to work on different

subtasks and interact with each other through the pre-defined input-output handoffs [18, 31,

102, 103, 110, 115, 139, 148], which enable the crowd to jointly complete complex tasks.

More recently, worker interactions are further introduced between workers of the same task: [48]

and [26] showed that in image/text labeling tasks, workers can improve their labeling accuracy

when indirect interactions—in the form of showing each worker the alternative answer and

associated justification produced by another worker who works on the same task—are enabled,

and [155] observed that in text classification tasks, worker performance increases when they

can debate their answers through direct, real-time deliberation with one another. While these

research show the promise of an alternative way to structure crowd work that leads to higher

performance, they also raise a number of open questions.

First, on the “micro” level, it is important to empirically examine whether adding interactions

between workers working on the same task leads to an increase in work quality for individual

tasks of different types, especially for those tasks with a large number of possible answers
14http://turkernation.com/
15https://www.mturkcrowd.com/
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(rather than just a few options as in image labeling and text classification tasks). Indeed,

when the number of possible answers in a task becomes large, workers may hardly agree

with each other so it is unclear whether interactions between them would be meaningful and

effective. It is also impractical for workers to argue against all alternative answers during

their interactions, which may imply the need for new formats of interactions beyond providing

justification and argumentation.

Furthermore, from a more “macro” point of view, requesters typically have a large batch of

tasks at hand and need to solicit answers from multiple workers for each task. Their goal

is to optimize their overall utility such as maximizing the quality obtained across all the

tasks under a fixed budget. Yet, compared to independent work, allowing worker interactions

in a task can bring up not only work quality improvement in that task, but also higher

cost and higher correlation in workers’ answers. Thus, for requesters to make better use of

worker interactions, a critical problem to address is that given a limited budget, whether and

when should worker interactions be used in each task, such that after combining the possibly

correlated answers together for each task, the work quality for the entire batch of tasks is

maximized when the budget is exhausted.

In this paper, we attempt to answer these two questions. In particular, inspired by the

concept of peer instruction in education [40], we focus on studying a specific format of

worker interactions that we refer to as peer communication—a pair of workers working on

the same task are asked to first provide an independent answer each, then freely discuss

the task with each other, and finally provide an updated answer, again independently, after

the discussion. Compared to worker interaction formats used in the early research (e.g.,

justification and argumentation), we consider peer communication as a kind of direct and

synchronous interaction that can be generalized to different types of tasks more easily. Our

goal is to better understand not only whether and how peer communication would affect the
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outcome of crowd work for various types of tasks, but also how requesters can use algorithmic

approaches to better utilize the potential benefits brought up by peer communication.

To understand the effects of peer communication on crowd work, we design and conduct

randomized experiments with three different types of tasks: image labeling, optical character

recognition, and audio transcription. For all types of tasks in our experiments, regardless

of how large the number of possible answers in the task is, we have consistently observed

an increase in work quality when workers can talk with their peers in the task compared to

workers who work independently. Yet, we do not observe any spillover effects of such quality

improvement when workers who have engaged in peer communication work on similar tasks

again independently.

Moreover, to examine how peer communication can be better utilized, we propose an

algorithmic framework to help requesters make online decisions on whether and when to use

peer communication for each task in their batch, with the goal of maximizing the overall

work quality produced in all tasks given a budget constraint. One of the key challenges here

is how to infer the correct answer for a task given multiple answers solicited from workers,

where some of them may be produced following the peer communication procedure and thus

may be correlated. To this end, we introduce the notions of meta-workers and meta-labels to

describe a pair of workers who have engaged in a task with peer communication and the pair

of answers produced by them. Such notions enable us to characterize the possible correlation

in data, which further allow us to solve the requester’s online decision-making problem by

modeling it as a constrained Markov decision process.

We evaluate the effectiveness of the proposed algorithmic approach on real data collected

through our experimental study. Results show that using our approach to decide the usage

of peer communication in tasks, the requester can achieve higher overall quality across all
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her tasks when the budget is exhausted, compared to when baseline approaches are adopted

where peer communication is always used in all tasks or never used in any of the tasks,

or when correlation in data is not explicitly considered. In addition, through two sets of

simulated experiments, we further examine how the proposed algorithmic approach performs

in various scenarios when the differences in work quality and cost between hiring pairs of

communicating workers and hiring independent workers vary, and when answers produced by

pairs of communicating workers are correlated to different extent.

In summary, we make the following contributions:

• We introduce peer communication, a general mechanism adapted from the concept of peer

instruction in education for including worker interactions in crowd work.

• We empirically show that on different types of tasks, compared to independent work, peer

communication consistently leads to a 32%–47% improvement in work quality for individual

tasks.

• We propose an algorithmic framework to help requesters dynamically decide whether and

when to use peer communication for each task in their batch, so as to maximize the overall

quality obtained across all tasks given a budget constraint.

• Through evaluations on both real data from crowd workers and synthetic data, we demon-

strate that compared to baseline approaches, using our proposed algorithm to determine

the deployment of peer communication leads to higher requester utility.

5.1 Related Work

Our work joins a long line of research on improving the quality of crowd work. In traditional

settings where it is assumed that workers independently complete tasks, various methods
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have been proposed to address this problem, including post-hoc aggregation of workers’

answers [32, 43, 44, 77, 78, 90, 146, 180, 188], designing effective incentives [76, 79, 80, 83, 84,

85, 112, 127, 152, 159, 182], designing interventions during tasks [50], appropriate assignment

of tasks to workers [78, 81, 99, 100], etc.

We explore how to improve the quality of crowd work from a different angle, that is, by

adding interactions between workers. Researchers have previously designed workflows for

complex tasks to allow workers to work on different subtasks while indirectly interacting with

one another through the pre-defined input-output handoffs [18, 31, 102, 103, 110, 115, 139,

148]. Different from these workflow-based approaches, we consider the addition of interactions

between workers of the same task. A few previous and follow-up studies [26, 48, 49, 82, 155]

have showed that enabling interactions between workers working on the same task, in the

form of asking workers to provide justification for their answers, can lead to improvement

in work quality, but these studies only test this idea on classification tasks. We aim to

extend this idea to a wider range of tasks, especially for tasks with a large number of possible

answers.

In this paper, we study a specific format of interactions, peer communication, which is adapted

from “peer instruction” [40] and “think-pair-share” strategies [122] in the educational settings.

There is a rich literature in the collaborative learning community suggesting that asking

students to discuss conceptual questions with other students after they independently answer

the questions leads to higher levels of understanding and post-test performance [35, 45, 165].

We thus design the peer communication procedure as first asking a pair of workers to provide

an independent answer each, then allowing them to freely discuss the task with each other,

and finally independently update their answers. While evidence in the collaborative learning

community and results for adding argumentation in classification tasks seem to indicate peer

communication would lead to higher work quality, other studies showed that allowing workers
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to chat during work doesn’t change work quality [185]. Thus, it is necessary to re-examine

the impact of peer communication on the quality of crowd work, if any. In addition, as prior

research on inter-task effects [2, 25, 138] suggests that when working on a sequence of tasks,

workers’ responses for later tasks could be influenced by the earlier tasks, we further examine

whether peer communication brings any “spillover” effect on work quality. That is, whether

workers produce higher independent work quality after engaging in similar tasks with peer

communication.

Besides empirically showing the benefits of peer communication on work quality, we further

provide an algorithmic framework for helping requesters better utilize such benefits. Early

work has explored how indirect interactions between workers of different tasks that are

embedded in certain workflows can be algorithmically controlled in order to maximize

requester utility [42]. In contrast, the purpose of our algorithmic framework is to dynamically

decide whether and when to deploy peer communication between workers of the same task

for each task in requesters’ batch to maximize their utility. Our framework is built on

top of the work by [30], in which they used a Markov decision process to sequentially

decide which task in requesters’ batch needs an additional worker to work on given a budget

constraint. However, our framework has a few key differences: First, in addition to choose

which task needs further work, we also decide on how to design that piece of work—hiring one

independent worker or two communicating workers? Second, when making inference for each

task, we need to consider the possible correlation in the answers for this task. Finally, since

peer communication and independent work incurs different cost, this decision-making problem

does not degenerate into a finite-horizon Markov decision process. Thus, we explicitly model

the problem as a constrained Markov decision process.
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5.2 Examining Peer Communication via Real-World Ex-

periments

In this section, we first present our experimental study, in which we carefully examine the

effects of introducing peer communication between pairs of workers on the quality produced in

individual tasks through a set of randomized experiments conducted on Amazon’s Mechanical

Turk (MTurk). In particular, we ask:

• Question 1 (Q1): Do workers produce higher work quality in tasks with peer communi-

cation compared to that in tasks where workers work independently?

Previous studies on the effects of adding worker interactions in image and text classification

tasks [26, 48, 155] seem to imply a positive answer for Q1. Compared to these studies, our

study has two key differences that warrant a re-examination of Q1: (1) the main format

of interaction in peer communication is a synchronous, free-form chat rather than required

justification and argumentation; (2) we consider different types of tasks beyond classification,

especially tasks with a large number of possible answers so workers can hardly agree with each

other or argue against all alternative answers. Moreover, we are also interested in examining

whether there is any “spillover” effects of the impact of peer communication on work quality.

Specifically:

• Question 2 (Q2): Do workers produce higher independent work quality after engaging in

similar tasks with peer communication, compared to workers who always complete tasks

on their own?

Both positive and negative answers might be possible for Q2: On the one hand, if communi-

cation between workers in tasks allow them to resolve misconception about the tasks or learn
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useful problem-solving strategies from each other, we might expect a positive answer; on the

other hand, if the benefits of peer communication are mostly due to workers being able to

exchange their confidence levels on a task and eventually converge to the more confident

answer [12], the answer for Q2 would likely be negative.

5.2.1 Independent Tasks vs. Discussion Tasks

In our experiments, we considered two ways to structure the tasks:

• Independent tasks (tasks without peer communication). In an independent task, workers

are instructed to complete the task on their own.

• Discussion tasks (tasks with peer communication). In discussion tasks, we designed a

procedure which guides workers to communicate with each other and complete the task

together. Specifically, each worker is paired with another “co-worker” on a discussion

task. Both workers in the pair are first asked to work on the task and submit their

answers independently. Then, the pair enters a chat room, where they can see each other’s

independent answer. Workers are instructed to freely discuss the task with their co-workers

for two minutes; for example, they can explain to each other why they believe their answers

are correct. After the discussion, both workers get the opportunity to independently update

and submit their final answers.

5.2.2 Experimental Treatments

The most straight-forward experimental design would include two treatments, where workers

in one treatment are asked to work on a sequence of independent tasks while workers in the

other treatment complete a sequence of discussion tasks. However, if we adopt such a design,

the different nature of independent and discussion tasks (e.g., discussion tasks require more
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Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Session 1: Examine Peer Communication Session 2: Examine Spillover Effects Session 3: Balance Task Types

Figure 5.1: The two experimental treatments. This design enables us to examine whether
peer communication improves the quality of crowd work (by comparing work quality in
Session 1) and if so, does the improvement spill over to the following independent tasks (by
comparing work quality in Session 2), while not creating significant differences between the
two treatments (by adding Session 3 to make the two treatments containing equal number of
independent and discussion tasks).

time and effort from workers but can be more interesting to workers) implies the possibility

of observing severe self-selection biases in the experiments (i.e., workers may self-select into

the treatment that they can complete tasks faster or find more enjoyable).

To overcome the drawback of this simple design, we design our experiments in a way that

each treatment consists of the same number of independent tasks and discussion tasks, so

neither treatment appears to be obviously more time-consuming or enjoyable. Figure 5.1

illustrates the two treatments used in our experiments. In particular, we bundle 6 tasks in

each HIT (i.e., Human Intelligence Task on MTurk). When a worker accepted our HIT, she

was told that there are 4 independent tasks and 2 discussion tasks in the HIT. There are two

treatments in our experiments:

• Treatment 1: Workers are asked to complete 4 independent tasks followed by 2 discussion

tasks.

• Treatment 2: Workers are asked to complete 2 discussion tasks followed by 4 independent

tasks.
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Importantly, we did not tell workers the ordering of the 6 tasks, which helps us to minimize

the self-selection biases as the two treatments look the same to workers. We refer to the first,

middle, and last two tasks in the sequence as Session 1, 2, 3 of the HIT, respectively. Thus,

we can answer Q1 by comparing the work quality produced in Session 1 between the two

treatments, while a comparison of work quality in Session 2 between the two treatments would

allow us to answer Q2. Finally, Session 3 is used for balancing the number of independent

and discussion tasks in each HIT.

5.2.3 Experimental Tasks

We conducted our experiments on three types of tasks:

• Image labeling. In each task, the worker is asked to identify whether the dog shown in

an image is a Siberian Husky or a Malamute. Dog images we use are collected from the

Stanford Dogs dataset [101].

• Optical character recognition (OCR). In each task, the worker is asked to transcribe

a vehicle’s license plate numbers from photos. The photos are taken from the dataset

provided by [158].

• Audio transcription. In each task, the worker is asked to transcribe an audio clip which

contains about 5 seconds of speech. The audio clips are collected from VoxForge16.

We decided to conduct our experiments on these three types of tasks for two main reasons:

First, these tasks are all very common types of tasks on crowdsourcing platforms [46], so

experimenting with them would allow us to better understand the effects of peer communica-

tion on typical kind of crowd work. Second, in terms of the number of possible answers, these

tasks span a wide spectrum from two (image labeling) to infinitely many (audio transcription),
16http://www.voxforge.org
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enabling us to both confirm the effects of peer communication in tasks with just a few possible

answers and explore its effects in tasks with many possible answers. As a final note, tasks we

bundled in the same HIT had a certain degree of similarity17, hence a spillover effect of peer

communication on work quality is not impossible as knowledge/strategy that workers may

learn in one task can potentially be transferred to another task.

5.2.4 Experimental Procedure

Enabling synchronous work among crowd workers is quite challenging, as discussed in previous

research on real-time crowdsourcing [19, 22]. We address this challenge by dynamically

matching pairs of workers and sending them to simultaneously start working on the same

sequence of tasks. In particular, when each worker arrived at our HIT, we first checked

whether there was another worker in our HIT who didn’t have a co-worker yet—if yes, she

would be matched to that worker and assigned to the same treatment and task sequence as

that worker, and the pair then started working on their sequence of tasks together. Otherwise,

the worker would be randomly assigned to one of the two treatments as well as a random

sequence of tasks, and she would be asked to wait for another co-worker to join the HIT for

a maximum of 3 minutes. In the case where no other workers arrived at our HIT within 3

minutes, we asked the worker to decide whether she was willing to complete all tasks in the

HIT on her own (and we dropped the data for the analysis but still paid her accordingly) or

get a 5-cent bonus to keep waiting for another 3 minutes.

We provided a base payment of 60 cents for all our HITs. In addition to the base payments,

workers were provided with the opportunity to earn performance-based bonuses, that is,

workers can earn a bonus of 10 cents in a task if the final answer they submit for that task
17For example, image labeling tasks are all about the key concept of distinguishing Siberian Husky from

Malamute, OCR tasks have similar image quality, and audio transcription tasks contain similar accents.

90



is correct. Our experiment HITs were open to U.S. workers only, and each worker was only

allowed to take one HIT for each type of tasks.

5.2.5 Experimental Results

In total, we have 388, 382, and 250 workers who successfully formed pairs and completed

the image labeling, OCR, and audio transcription tasks in our experiments, respectively. We

then answer Questions 1 and 2 separately for each type of task by analyzing experimental

data from Session 1 and 2 in the HIT, respectively.18

Work Quality Metrics

For all three types of tasks, we evaluate the work quality using the notion of error. In the

image labeling task, we define error as the binary classification error—the error is 0 for correct

labels and 1 for incorrect labels. For OCR and audio transcription tasks, we define error as

the edit distance between the worker’s answer and the correct answer, divided by the number

of characters in the correct answer. Naturally, for all tasks, a lower rate of error implies

higher work quality.

Q1: Peer Communication Improves Work Quality

In Figure 5.2, We plot the average error rate for workers’ final answers in the first two tasks

(i.e., Session 1) of Treatment 1 and 2 using white and black bars, respectively. Visually, it
18On a side note, analyzing the data collected in Session 3 leads to conclusions that are consistent with

our findings reported below, and including such data only strengthens our results. However, since we have
decided not to use it in the experiment design phase, we do not include the data in the analysis. The reason
of the decision is that workers’ conditions in Session 3 of the two treatments differ to each other both in terms
of whether they have communicated with other workers about the work in previous tasks and whether they
can communicate with other workers in the current tasks, making it difficult to draw any causal conclusions
on the effect of peer communication.
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is clear that for all three types of tasks, the work quality is higher in discussion tasks (i.e.,

Session 1 of Treatment 2 HITs) when workers are able to communicate with others about

the work, compared to that in independent tasks (i.e., Session 1 of Treatment 1 HITs) where

workers need to complete the work on their own. Indeed, we observe a substantial 37%, 32%,

and 47% deduction in the average error rate for image labeling, OCR, and audio transcription

tasks when peer communication is enabled. We further conduct two-sample t-tests to check

whether these changes are statistically significant, and p-values are 2.42× 10−4, 5.02× 10−3,

and 1.95× 10−11 respectively, suggesting that introducing peer communication in crowd work

can significantly improve the work quality produced for various types of tasks.

We then look into the chat logs to gain some insights on how and what workers have

communicated with each other during the discussion. On average, the length of the discussions

in image labeling, OCR and audio transcription tasks are 4.2, 5.1 and 5.4 turns19, yet the

amount of discussion is not correlated to the quality of worker’s final answers after discussion.

Furthermore, by looking into the content of discussions, we find several types of information

workers are exchanging during their communication:

• Providing Justification: e.g., “triangle ears that stand erect are traits of a Siberian Husky”

(image labeling)

• Communicating Confidence: e.g., “I’m pretty sure about UR to start, but not very sure

after that” (OCR); “I had no idea what the last word was” (audio transcription)

• Exchanging Strategy: e.g., “If you can zoom in on it you will see what I mean” (OCR); “He

pronounces ‘was’ with a v-sound instead of the w-sound” (audio transcription)

• Expressing Agreement: e.g., “I agree”; “Listening to it again, I think you are right” (audio

transcription)
19We count each chunk of sentences a worker entered in the chat room as a “turn.”
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Figure 5.2: Comparisons of work quality produced in tasks with or without peer communica-
tion. Error bars indicate the mean ± one standard error.

• Collaborative Work: the pair of workers work together to solve the task, e.g., guessing a

digit on the car plate for the OCR task that neither worker can recognize independently

Interestingly, as an anecdotal observation, we notice that in image labeling tasks the majority

of workers tend to provide justifications for their answers. In OCR and audio transcription

tasks, instead of “defending” their own answers, many more workers choose to team up with

their co-workers to solve the task together.

Q2: There are no spillover effects

We now move on to Q2: Compared to workers who always complete tasks independently,

do workers who have participated in tasks with peer communication continue to produce

work of higher quality in future tasks of the same type, even if they need to complete those

tasks on their own? To answer this question, we compare the work quality produced in

Session 2 (i.e., the middle two independent tasks) of the two treatments for all three types of

tasks. For image labeling, OCR, and audio transcription tasks, the average error rates for

Session 2 in Treatment 1 (workers never engage in peer communication) are 0.324, 0.175, and

0.209 respectively, while the average error rates for Session 2 in Treatment 2 (workers have

previously engaged in peer communication) are 0.334, 0.168, and 0.244. Thus, we do not
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observe any spillover for the effects of peer communication on work quality, that is, the quality

improvement brought up by peer communication does not carry on to future independent

work.

Discussions

Results of our experimental study suggest that peer communication improves the quality of

crowd work for various types of tasks, even when the number of possible answers in the task

is very large, yet such effect does not spill over to later independent work. Cautions should be

used when generalizing these results to substantially different contexts, such as when workers

can interact with each other for an extended period of time rather than just 2 minutes, when

the tasks are significantly more complex or more subjective, or when workers engage in peer

communication for a longer sequence of tasks. It is, thus, an important future direction to

obtain an thorough understanding on how tuning various parameters of the design space

(e.g., length of interactions, complexity/subjectivity of tasks) would change the effects of peer

communication.

5.3 An Algorithmic Framework for Utilizing Peer Com-

munication

Our experimental study focuses on understanding the impact of peer communication on

individual tasks. Now, we turn to our next question, that is, for a requester who has a large

batch of tasks, how can he better utilize peer communication to improve the overall utility that

he can obtain across all the tasks? In particular, we address the following research question:

Given a budget and a batch of tasks to complete, whether and when should a requester deploy

peer communication in each task to maximize his total utility?
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To answer this question, there are two main challenges. First, when peer communication is

deployed, workers communicate with each other before submitting their answers. Therefore,

their answers might be correlated. Yet, existing aggregation methods all assume each worker

complete the work independently, making it necessary for us to develop new ways to address

the data correlation issue. Second, deploying peer communication incurs higher cost, since it

requires us to hire workers in pairs to work for longer period of time and may need additional

effort for worker synchronizations. Therefore, even though peer communication produces

higher work quality for individual tasks, it is not clear deploying peer communication is

always beneficial for the overall utility.

In this section, we focus on the setting in which a requester aims to collect labels for a batch

of binary classification tasks with a fixed budget, and the “utility” to maximize is the average

accuracy the requester obtains across all classification tasks20. In the following, we first

discuss how to deal with the data correlation issue, that is, how to infer the correct label for a

task given multiple labels solicited from workers, where some of the labels may be correlated.

We then describe our algorithmic framework, a constrained Markov decision process, which

adaptively decides whether and when peer communication should be deployed in each task

under the budget constraint while taking into account data correlation and differing cost in

deploying peer communication.

5.3.1 Dealing with Data Correlation

When peer communication is used in a task, a pair of workers directly interact with each

other. Naturally, their contributions (e.g., labels in image labeling tasks) might be correlated.
20Our discussion can be extended to classification tasks with any finite number of labels. Extending our

results to general types of tasks (such as transcription tasks) requires a well-defined utility notion that can
quantify the total utility for any given set of worker contributions. It is an interesting and important future
direction.
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For categorical tasks with a finite number of labels, we could use the covariance notion

to measure the correlation of workers’ contributions. Formally, let X, Y be the random

variables representing the answers generated by a pair of workers for the same task. The

correlation of workers’ answers can be formulated using covariance cov(X, Y ), defined as

cov(X, Y ) = E[XY ]−E[X]E[Y ]. By definition, when a pair of answers X, Y are independent,

the covariance should be 0.

Measuring Data Correlation

To see whether the answers from a pair of workers are correlated when they work together on

a task with peer communication, we examine workers’ answers in Session 1 of both treatments

in our experiments on image labeling tasks. For each of the 20 images in the experiments (with

labels in {0, 1}), we calculate the covariance between pairs of labels generated in independent

tasks (Session 1 of Treatment 1) and discussion tasks (Session 1 of Treatment 2)21, in which

we use the empirical average to replace the expectation in the definition. The results are

shown in Figure 5.3. Perhaps not surprisingly, data collected in independent tasks is mostly

independent (with covariance close to 0), while data collected in discussion tasks is correlated

to various degrees.

We also calculate the covariance of workers’ answers in Session 2 of both treatments to see

if the data correlation caused by peer communication has any spillover effect. We find the

covariance is close to 0 for both treatments, indicating the correlation in data caused by peer

communication does not carry on to later independent work.
21Recall that in our experiment, we always send a pair of workers to work on the same sequence of tasks.

Thus, an independent task is also completed by a pair of workers except that they don’t communicate with
each other. This allows us to directly calculate the covariance for labels generated in independent tasks.
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Figure 5.3: Covariance for data collected in independent tasks and discussion tasks in Session
1 in the image labeling HITs.

Meta-Workers and Meta-Labels

The above observations confirm that workers’ answers are indeed correlated when peer

communication is deployed. To deal with data correlation, we introduce the notions of

meta-workers and meta-labels. In particular, we denote a pair of workers who talk with each

other through the peer communication procedure as a meta-worker, and the pair of labels

they generate as a meta-label. As no communication happens between different pairs of

workers, we assume each meta-label is drawn independently.

Formally, for a binary classification task, let the true label z ∈ {0, 1}. When peer communi-

cation is deployed in a task, we obtain a pair of labels, which can be {1, 1}, {0, 1}, or {0, 0},

and we use the meta-label s11, s01, and s00 to denote them, respectively. Moreover, denote s1

and s0 as the label 1 and 0 obtained from a single worker who works independently.

To simplify the discussion, we assume workers are homogeneous. We propose a model

to characterize the correlation in data produced in tasks with peer communication as
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follows: Denote p as the probability of independent workers providing correct labels, i.e.,

p = P (s1|z = 1) = P (s0|z = 0). Additionally, we denote p+, p0, p− as the probability for

workers in tasks with peer communication to contribute two correct labels, one correct and

one incorrect label, and two incorrect labels22:

p+ = P (s11|z = 1) = P (s00|z = 0)

p− = P (s00|z = 1) = P (s11|z = 0)

p0 = P (s01|z = 1) = P (s01|z = 0)

This model provides a principled way to capture different levels of correlation. For example,

when the pair of labels are independent, and the probability for each worker in the pair to

submit a correct label is still p, we should have p+ = p2, p− = (1− p)2, and p0 = 2p(1− p).

When the correlation between a pair of labels is 1 (i.e., the two labels are always the same),

we have p0 = 0.

Utilizing Meta-labels

The idea of introducing meta-workers and meta-labels are intuitive but powerful. Below

we use maximum likelihood aggregation as an example to demonstrate how the concepts of

meta-workers and meta-labels can be incorporated in standard aggregation methods, which

provides us with key insights on how to utilize these concepts in our algorithmic framework

(we will detail this in Section 4.2).
22This is the extension to the standard one-coin model in crowdsourcing literatures. Extending the

discussion to model the confusion matrix (e.g., using two different probability values for P (s11|z = 1) and
P (s00|z = 0)) is straightforward. We do not include the discussion here due to space constraints.
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For a task with unknown true label z ∈ {0, 1}, given a set of N labels (or meta-labels)

L = {l1, ..., lN}, where li ∈ {s11, s1, s01, s0, s00}, the maximum likelihood estimator for the

value of z is defined as:

Definition 5.3.1. Let the ground truth of the task be z. Given a set of labels L = {l1, . . . , lN}.

ẑ is a maximum likelihood estimator if

ẑ =


1 if P (L|z = 1) ≥ P (L|z = 0),

0 otherwise.

We assume p, p+, p0, and p− are all known. Note that in our algorithmic framework as

explained in Section 4.2, we adopt a Bayesian setting to learn how to aggregate the data

over time without prior knowledge on values of these parameters. However, when such prior

knowledge is available, a weighted majority voting rule can lead to maximum likelihood

estimation:

Lemma 5.3.1. Given a set of labels L. Let n11, n1, n01, n0, n00 denote the number of labels

s11, s1, s01, s0, s00 in L. Consider the following weighted majority voting rule that generates

an aggregation ẑ

ẑ =


1 if w11n11 + w1n1 ≥ w00n00 + w0n0

0 if w11n11 + w1n1 < w00n00 + w0n0

This weighted majority voting rule leads to maximum likelihood estimation when the weights

are set as: w11 = w00 = ln p+
p−

, and w1 = w0 = ln p
1−p

.
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Proof. We can write the probabilities on both sides as follows:

P (L|z = 1) = pn11
+ pn1pn01

0 (1− p)n0pn00
−

P (L|z = 0) = pn11
− (1− p)n1pn01

0 pn0pn00
+

Therefore, we have

P (L|z = 1)

P (L|z = 0)
=

(
p+
p−

)n11
(

p

1− p

)n1
(
1− p

p

)n0
(
p−
p+

)n00

Note that, in maximum likelihood estimator, ẑ = 1 if P (L|z = 1)/P (L|z = 0) ≥ 1. Therefore,

ẑ = 1 if (
p+
p−

)n11
(

p

1− p

)n1

≥
(

p

1− p

)n0
(
p+
p−

)n00

The proof is completed by taking logarithm on both sides.

As a sanity check, we can see that when a pair of labels are independent (i.e., p+ = p2 and

p− = (1− p)2), we have w11 = w00 = 2w1 = 2w0, implying that the weight of {1, 1} label is

twice as the weight of {1} label, and this is essentially a simple majority voting.

Note that in the maximum likelihood aggregation, the number of meta-label s01 does not

play a role in the aggregation process. In other words, we may interpret the generation of

meta-labels as follows: with probability p+ (or p−), a meta-worker generates a correct label

s11 (or incorrect label s00), while with probability p0 she generates no label at all. The above

weighted majority voting rule then simply indicates that different weights need to be used for

labels generated by independent workers or meta-workers. Following a similar idea, in the

following algorithmic framework, we only take the meta-label s00 and s11 into consideration

and discard the meta-label s01 when inferring the correct labels of a task from a collection of

labels and meta-labels.
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5.3.2 Our Algorithmic Framework

With the notions of meta-workers and meta-labels in place, we have a principled way to

deal with correlated data in peer communication. However, we still need to address the

second challenge of balancing the quality and cost. In particular, while introducing peer

communication leads to a significant improvement in work quality for individual microtasks,

such improvement comes with extra cost, such as the financial payment incurred to recruit

more workers (e.g., at least two workers are needed for peer communication to happen),

the compensation for longer task completion time due to discussions, and the additional

administrative costs for synchronizing the work pace of worker pairs. As a result, a requester

needs to face the quality-cost tradeoff when deploying peer communication.

We now describe our algorithmic framework, built on the constrained Markov decision process

(CMDP), that adaptively decides for a requester with a limited budget, whether and when

peer communication should be deployed in each of his tasks with the goal of maximizing his

total utility (i.e., the average accuracy for all classification tasks), while taking into account

data correlation and differing costs for deploying peer communication.

Problem Setup.

Our problem setup is inspired by the method by [30] to optimally allocate budget among task

instances in crowdsourcing data collection. Our setup differs from theirs in two fundamental

ways due to the presence of peer communication strategy. First, they don’t and don’t need to

consider the issue of data correlation. Second, in their setting, the cost for acquiring labels is

fixed, while we need to deal with the differing costs when peer communication is deployed in

a task. Therefore, instead of modeling the decision-making problem as a Markov decision
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process framework (as in [30]), we adopt a constrained Markov decision process framework

and include the meta-label concept in our formulation.

Formally, suppose a requester gets a budget of B and a batch of K binary classification tasks,

and he needs to estimate the label for each of these tasks. The goal of the requester is to

maximize the average accuracy of the estimated labels across all tasks through spending

the budget to solicit labels from crowd workers and then aggregating the collected labels.

We describe the setting in which workers are homogeneous (however, their performance

might be different when working independently or when working with peer communication).

Extensions to settings with heterogeneous workers are straightforward as described by [30].

Assume the K tasks are independent from each other, and Zk ∈ {0, 1} represents the true

label for task k (1 ≤ k ≤ K). We use the notations θk ∈ [0, 1], αs ∈ [0, 1], and αp ∈ [0, 1]

to model the label generation process, where θk characterizes the difficulty of task k, αs

and αp characterize workers’ performance when working independently and working with

peer communication. In particular, we denote pk,s,1 (or pk,s,0) as the probability for a

single worker (who works independently) to provide label 1 (or 0) for task k. We define

pk,s,1 = αsθk + (1− αs)(1− θk) and pk,s,0 = 1− pk,s,1. To obtain intuition for the parameters

of the model, assume αs = 1, we can see that θk captures the difficulty of task k: When

θk is close to 0.5, workers are effectively making random guess (hence the task is difficult),

and when θk is close to 0 or 1, independent workers can consistently provide the same label

(hence the task is easy). Similarly, αs can then be interpreted as the worker skill and a larger

αs implies a higher skill. We assume θk is consistent with the label Zk, which means Zk = 1

if and only if θk ≥ 0.5.

Recall that we denote a meta-worker as a pair of workers in tasks with peer communication.

We use αp to denote the skill of meta-workers, and the probability for a meta-worker
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to generate a meta-label s01 for task k is denoted as qk. Conditioned on a meta-worker

contributing a meta-label other than s01, αp is similarly defined as αs. That is, when pk,p,1

and pk,p,0 is the probability for a meta-worker to generate meta-labels s11 and s00, we have

pk,p,1 = (1− qk)(αpθk + (1− αp)(1− θk)) and pk,p,0 = 1− pk,p,1 − qk.

After describing the data generation model, we formulate the online decision problem faced

by the requester. The requester recruits workers to label his tasks in a sequential manner.

Specifically, at each time step t, the requester decides on a task kt to work on, and he can

solicit label(s) from crowd workers on this task using one of the two strategies (the strategy

is denoted as xt): first, the requester can recruit a single worker to work on the task (xt = 0),

and thus obtain a label for that task; second, the requester may recruit a meta-worker (i.e., a

pair of workers following the peer communication procedure) to work on the task (xt = 1),

and thus obtain a meta-label for the task. We denote cs as the cost for recruiting a single

worker and cp (cp > cs) as the cost of recruiting a meta-worker through peer communication

strategy.

Naturally, the requester’s activity in each time step can be summarized through the tuple

(kt, xt). We also denote yt as the label (or meta-label) obtained by the requester at time t

for task kt. By the time tB that the requester exhausts his budget, his activity history is

HB = {(k0, x0, y0), ..., (ktB , xtB , ytB)}. The requester then aggregates the data he has collected

and infers the true labels for each of the K tasks such that the expected accuracy across all

K tasks, conditioned on the activity history HB, is maximized.

A Constrained Markov Decision Process Formulation.

We now formally model the requester’s decision-making problem as a constrained Markov

decision process:
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• States: the state st is a K × 4 matrix, where st(k, ·) is a 1 × 4 vector with each entry

representing before time t, the number of label (or meta-labels) s0, s1, s00, s11 obtained for

task k. Note that following the idea that we have discussed in Section 4.1.3, we consider

the meta-label s01 to contributes zero utility to the requester and thus we do not include

the count of it in the state.

• Actions: at = (kt, xt), where kt is the task to work on at time t, and xt ∈ {0, 1} represents

the worker recruiting strategy, with 0 being recruiting a single worker working independently

and 1 being recruiting a pair of workers to follow the peer communication procedure.

• Transition probabilities: When at = (kt, xt = 0),

Pr(st+1|st, at) =


pkt,s,1 if st+1 = st + (0, ekt ,0,0)

pkt,s,0 if st+1 = st + (ekt ,0,0,0)

0 otherwise

where ekt is a K × 1 vector with value 1 at the kt-th entry and 0 at all other entries. On

the other hand, when at = (kt, xt = 1),

Pr(st+1|st, at) =



pkt,p,1 if st+1 = st + (0,0,0, ekt)

1− pkt,p,1 − qkt if st+1 = st + (0,0, ekt ,0)

qkt st+1 = st

0 otherwise

• Rewards: We adopt the same reward function as that used by [30]. Specifically, we assume

the parameters θk, αs, αp are sampled from three separate Beta prior distributions, and

we update the posteriors of these distributions through variational approximation where

hyper-parameters are decided by moment matching. Doing so, we can then define the
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reward as R(st, at) = E(h(P t+1
kt

)− h(P t
kt
)), where P t

k is the probability of the parameter θk

taking on a value of at least 0.5 given the posterior of θk at time t, h(x) = max(x, 1− x),

and the expectation is taken over all possible label yt observed after action at.

• Constraint: Different from the setting in the work by [30], as different actions imply

different costs, we need to explicitly characterize the budget constraint for our problem.

Formally, the requester needs to ensure the budget constraint is satisfied.
∑tB

t=0 cs1(xt =

0) + cp1(xt = 1) ≤ B, where 1(.) is the indicator function.

Proposed Algorithm

We adopt the method of Lagrangian multipliers to solve the above constrained optimization

problem, which converts the problem of maximizing the total reward (i.e.,
∑tB

t=0R(st, at))

under the budget constraint into a simpler problem of maximizing the auxiliary function∑tB
t=0 R(st, at) − λ

∑tB
t=0(cs1(xt = 0) + cp1(xt = 1)). Notice this optimization problem is

equivalent to solve a (unconstrained) Markov decision process where reward in each step

is redefined as R
′
(st, at) = R(st, at)− λ(cs1(xt = 0) + cp1(xt = 1)). We use the optimistic

knowledge gradient technique introduced by [30] to solve the optimal policy of this MDP,

which produces a single-step look-ahead policy that maximizes the highest reward at each

step. Note that in theory, we can compute the optimal value of λ by solving the dual of the

constrained MDP. In practice, we have experimented with multiple different λ values and find

that the choice of λ has limited influence on the performance of our algorithmic approach.

5.3.3 Evaluations

We evaluate the effectiveness of our algorithmic approach using both real-world data and

synthetic data.
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Experiments on Real Data

Using the real data that we collected in image labeling tasks of our experimental study,

we compare the performance of our algorithm with a couple of baseline algorithms. In

our evaluation, we set the cost of recruiting a single worker as cs = 1.0 and the cost of

recruiting a pair of workers to work on a task with peer communication (i.e., a meta-worker)

cp = 2.5. Note that we have examined a range of different values of cp from 1.5 to 3.5 and

the results are qualitatively similar. The prior distribution for θk is set as Beta(1, 1), where

the prior distributions for αs and αp are all set to be Beta(4, 1). For this evaluation, we only

considered the final labels that workers in our experimental study submit in the first two

tasks of the image labeling HIT23. Thus, when at = (kt, 0), we randomly sampled a label

from Treatment 1 workers who had completed task kt in their first two (independent) tasks,

and when at = (kt, 1), we randomly sampled a label from Treatment 2 workers who had

completed task kt in their first two (discussion) tasks.

The performance of our algorithmic approach is compared against the following baseline

approaches:

• Round robin: in each round, the requester decides which task to work on in a round robin

fashion, and he always recruit a single worker to work on that task independently.

• Single workers only: in each round, the requester recruits a single worker to work on a task

independently, and this task is optimally decided (effectively by considering only actions

with xt = 0 in our algorithm).

• Peer communication only: in each round, the requester recruits a pair of workers to work

on a task with peer communication, and this task is optimally decided (effectively by

considering only actions with xt = 1 in our algorithm).
23Recall that we set out to examine the effects of peer communication using the first two tasks in each HIT.
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• Our algorithm [No correlation]: in each round, the requester uses our algorithm to decide

whether to deploy peer communication and which task to work. The only difference is

that this baseline treats the two labels from peer communication as two independent labels

while our algorithm incorporates the concept of meta-labels to deal with data correlation.

We conduct this evaluation on a range of budget level from 20 to 400 with an interval of 20.

At each budget level, we implement each of the decision-making strategies for 100 times, and

we report the average level of overall accuracy the requester obtains across the 20 tasks when

she exhausts the budget in Figure 5.4.

As shown in Figure 5.4, our proposed algorithm outperforms all baseline strategies. In

particular, we make a few observations as follows. First, comparing the performance of our

algorithm and that of the “No Correlation” strategy, it is clear that incorporating meta-labels

to deal with data correlation has improved the requester’s overall utility. In fact, even for

the “peer communication only” strategy, we also implement two versions, and the version for

which the idea of meta-labels is used also outperforms the other version treating two labels

generated by pairs of workers as independent. In the following discussion, unless otherwise

specified, we adopt the meta-worker ideas in our implementation when peer communication is

used. Second, strategies involving peer communication converge to a better overall accuracy

than strategies without peer communication does. This is due to the fact that for some

tasks in our experiment, the majority of workers who work independently provide incorrect

answers while the majority of workers with peer communication provide correct answers.

Third, adaptively determining whether and when to deploy peer communication outperforms

fixed recruiting strategies, as illustrated by the superior performance of our algorithm over

both the “single workers only” and “peer communication only” strategies. Finally, adaptively

deciding which task to label next significantly improves the total utility than random task
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assignment does, e.g., through observing the significantly worse performance of the baseline

“round robin” strategy.
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Figure 5.4: Evaluating the performance of the proposed approach on real datasets.

Experiments on Synthetic Data

To the best of our knowledge, our dataset is the only dataset that deploys peer communication

for crowdsourcing data collection. Therefore, to further investigate the properties of our

proposed algorithm, we generate synthetic data to evaluate our algorithm. In particular, we

explore how the performance of our algorithm changes along the following three dimensions:

1) the level of data correlation of workers’ answers in tasks with peer communication, 2) the

performance gap between workers who work independently and workers who discuss with

others via peer communication, and 3) the cost differences of hiring a single worker and hiring

a pair of workers for peer communication. In the base setup, we set θk to be uniformly drawn

from [0.5, 1], αs drawn from a normal distribution with mean 0.7 and variance 0.01, αp drawn

from a normal distribution with mean 0.9 and variance 0.1. We also set cs = 1 and cp = 2.5.
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Figure 5.5: The performance comparison under different levels of correlation in peer commu-
nication.

We first modify the level of data correlation of workers’ answers in peer communication. This

can be done by changing the value of qk, i.e., the probability of a pair of workers in peer

communication to generate the meta-label s01. In strong correlation, we set qk = 0, which

means the two workers are entirely correlated (always generating the same label). In no

correlation, we set qk to the value such that the two labels in a meta-label are independently

generated (i.e., qk = 2
√
pk,p,1pk,p,0, which can be derived using our model discussed in

Section 5.3.1). In weak correlation, qk is uniformly drawn between the above two values. We

compare the performance between our algorithm and “our algorithm [no correlation]”, which

treats the two labels from a meta-label as independent labels. As shown in Figure 5.5, the

performance gap becomes larger as the correlation becomes stronger24. This validates the

benefits of incorporating meta-labels in our framework when there is data correlation.

We then change the cost of deploying peer communication cp to be from {1.5, 2.5, 3.5}. As

shown in Figure 5.6, our algorithm performance decreases as cp increases. However, even when

the cost of peer communication is pretty large (i.e., cp = 3.5), utilizing peer communication

is still beneficial. Next, we vary the performance gap between single workers (who work

independently) and meta-workers by fixing the mean of αp to be 0.9 and set the mean
24As a side note, the overall performance is lower in strong correlation since we fixed αp in all three plots;

two independent labels brings more information than two correlated labels. Since our goal is to measure the
gap between two algorithms, we didn’t tune the parameter to normalize the algorithm performance.
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Figure 5.6: Modify the cost of peer communication.
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Figure 5.7: Ratio of peer communication strategies deployed.

of αs to be 0.8, 0.7, and 0.6. The results are qualitatively similar to changing cp (e.g.,

larger skill gap corresponds to smaller cp). To provide more insights for our algorithm, we

demonstrate this result in a different plot. In particular, we fix the budget to be 200 and run

our algorithm 100 times. We record the worker recruiting strategy (hiring single workers or

deploying peer communication) our algorithm takes at every step, and then calculate the

ratio of peer communication strategy as a function of the budget spent so far. As shown in

Figure 5.7, our algorithm always starts by deploying peer communication. When the marginal

rewards for hiring peer communication is not high enough to justify the higher cost, our
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algorithm gradually switches to hire single workers. These two figures demonstrate that our

algorithm brings in benefits under a wide range of settings and has stronger benefits when cp

is small or when the performance gap between single workers and meta-workers (with peer

communication) are higher.
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Chapter 6

Conclusion and Future Direction

In summary, this dissertation studies human-centered machine learning from two perspectives

– understanding human behavior from empirical perspective and designing efficient and socially

responsible algorithms when humans are involved in from theoretical perspective. While this

dissertation provides several solutions to some specific problems, it has only scratched the

surface of this new emerging area. We conclude this dissertation by outlining several future

research directions to better understand human-centered machine learning.

Behavioral Experiments as A Lens of Understanding Human Behavior. Theoretical

analyses in algorithmic-based systems often assume stylized/simple human behavior models.

For example, in strategic classification, humans are assumed to be rational and aim to

maximize their payoff. However, these models often fail to explain human’s behavior in many

real-world scenarios. Future work includes conducting more extensive behavioral experiments

to understand and model human behavior in a wide range of contexts. Examining the impact

of such behavior models in various social contexts of algorithm design is also a natural next
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step. The goal is to provide insights on how to better model and incorporate real-world

human behavior in algorithm design.

Learning, Fairness and Privacy with Realistic Human Behavior. What are the

societal impacts when deploying machine learning algorithms with humans in the loop? It

is well-known that learning with human-generated data often suffer the issues of fairness

or privacy, especially when the data are representing people’s socioeconomic status or are

user-specific. On the other hand, human-generated data closely relates to how human behave

in the process. To explore how human behavior affect the design of fair or private learning

algorithms, it is important to incorporate realistic human behavior in the design of learning

algorithms and investigate the impacts of learning algorithms to humans. To this end, it is

important to develop human models that capture the most salient behavior aspects of humans

and then incorporate these human models in fair or private learning algorithm design.

Design Information in Human-Centered Machine Learning. AI-assisted decision

making can be viewed as a process of an AI system (the sender) providing information for

humans (the receiver) to make final decisions. One of our recent works [135] demonstrate

that the predictive information from AI could impact human ethical preferences. Different

ethical preferences also leads to different decisions or responses when human see information

from AI. In this line of future research, with anticipated human response, one interesting

questions is what information structure is desired for an AI system to include in interaction

with its users in order to promote desired behaviors and outcomes.

In [55], we give efficient algorithms on how to learn an optimal information policy if the AI

has no knowledge about human’s preferences and humans are responding to the information

in a Bayesian rational manner. However, in practice, humans may not be Bayesian rational,

it is thus important to consider more realistic human behavior models, especially the one
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pertinent to capture human’s cognitive strengths/limitations on processing information. With

these models at hand, one natural question is whether we can develop an efficient algorithm

to obtain the optimal information policy.

Perhaps a theoretical model can have impact only when it is deployed in the real-world.

However, there are many challenge in realizing such deployment. One particular challenge is

on characterizing desired information structure whenever humans are involved in. Since the

sender (i.e., AI) often represents the advantageous party (e.g., the government, the company,

the platform, etc) that has access to more information, when the interests of the sender

do not align with the interests of the receiver, optimizing the sender’s utility could lead

to potential negative social impacts to the receivers, who are often the general public. In

other words, with ill-specified objective in information design, the sender could utilize the

information advantage and create significant negative impacts. This question is of potential

importance as we are moving into the era of AI-assisted decision making, where human utilize

the information provided by AI algorithms to make decisions. It is therefore also important

to consider the societal impacts of and the potential regulations on information design.
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Appendix A

Additional Proofs from Chapter 2

A.1 Useful Lemmas

In this section, we list some useful lemmas in our analysis.

Lemma A.1.1. (Stirling’s approximation for gamma function quotient) Given

α > 0, β > 0 and when x→∞, we have

Γ(x+ β)

Γ(x+ α)
= xβ−α.

Proof. From Stirling’s Approximation, and let γ = β − α

Γ(x+ 1 + β)

Γ(x+ 1 + α)
=

√
2π(x+ β)(x+β

e
)x+β√

2π(x+ α)(x+α
e
)x+α

= (1 +
γ

x+ α
)x+α+1/2(1 +

β

x
)γ(

x

e
)γ.
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Since limx→∞(1 + y/x)x = ey and limx→∞(1 + y/x) = 1, we have

lim
x→∞

Γ(x+ 1 + β)

Γ(x+ 1 + α)
= xβ−α.

Lemma A.1.2. (Concentration property for bounded random variable) Given any

bounded random variable Y , and a L−Lipschitz function g(·), then for ∀λ ∈ R,

E[exp(λg(Y ))] ≤ exp(λ2L2/2).

A.2 Proofs and Simulations in Bandits with Avg-Herding

Feedback Model

A.2.1 Proof of Lemma 2.3.1

Proof. Our goal is to prove P(limt→∞ ρt ∈ Sθ) = 1 for Sθ := {ρ : ρ − F (θ, ρ) = 0}. Since

F (θ, ρ) is continuous, for all ϵ > 0, we define the following two sets:

Uϵ := {ρ : F (θ, ρ)− ρ > ϵ},

Dϵ := {ρ : F (θ, ρ)− ρ < −ϵ}.

If we can show that P(limt→∞ ρt /∈ Uϵ) = 1 and P(limt→∞ ρt /∈ Dϵ) = 1 for any arbitrarily

small ϵ, the proof is completed. We first establish the following fact: If there exists some
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t0 ≥ 0 such that ρt0 ∈ Uϵ, we must have

P( lim
t→∞

ρt /∈ Uϵ) = 1. (A.1)

To prove (A.1), consider the first exit time τ of {ρt} from Uϵ, namely, τ is the smallest

time round such that ρt /∈ Uϵ (or ∞ if {ρt} never leaves Uϵ). Let τt = min{τ, t} denote the

minimum of τ and t ≥ t0. It is easy to see that ∀k ≥ t0 + 1, the event {τt ≥ k} is Fk−1−

measurable, thus

1 ≥ E[ρτt ] ≥ E[ρτt − ρt0 ] = E[ρt0+1 − ρt0 + ρt0+2 − ρt0+1 + ...+ ρτt − ρτt−1]

= E
[ t∑

k=t0+1

(ρk − ρk−1)1{τt ≥ k}
]

≥ E
[ t∑

k=t0+1

E
[
ρk − ρk−1|Fk−1

]
1{τ =∞}

]
,

where 1{E} is the indicator function of event E . We aslo have

E[ρk − ρk−1|Fk−1] = E[ρk − ρk−1|ρk−1]

= E
[
ηk
(
F (θ, ρk−1)− ρk−1

)
|ρk−1

]
By the update rule defined in (2.2) and E[ξk|Fk−1] = 0

≥ ϵ/k. By the fact that ρk−1 ∈ Uϵ

Then for ∀t ≥ t0, ∀t0 ≥ 0,

ϵ
t∑

k=t0+1

P(τ =∞)

k
≤ 1.

Since
∑

k 1/k is divergent, then the probability that τ =∞ must be zero, i.e., P(τ =∞) = 0.

This completes the proof of (A.1).
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Similarly, we can also prove P(limt→∞ ρt /∈ Dϵ) = 1. Since ϵ is arbitrarily selected, we have

P(limt→∞ |ρt − F (θ, ρt)| ≤ ϵ) = 1, which completes the proof.

A.2.2 Proof of Corollary 2.3.2

Proof. Since G is strongly convex with respect to ρ, we have ∇2
ρG > 0, i.e., ∇ρF ≤ 1. By

Banach fixed-point theorem, we know that F (θ, ρ) has a unique fixed point ρ∗θ in (0, 1).

Define h(θ, ρ) = ρ − F (θ, ρ). We now proceed to prove that this fixed point ρ∗θ is globally

asymptotically stable for h(θ, ρ). Consider a Lyapunov function V (θ, ρ) : ρ→ 1
2
(ρ− ρ∗θ)

2 for

the ODE defined in (2.2). We have V (θ, ρ) ≥ 0 for ρ ∈ (0, 1). And V (θ, ρ) = 0 if and only if

ρ = ρ∗θ. Furthermore, we have

d

dt
V (θ, ρ) = (ρ− ρ∗θ)

d

dt
ρ = (ρ∗θ − ρ)h(θ, ρ).

By assumption, F (θ, ρ) is a contraction mapping function, it is easy to see that h(θ, ρ) is

strictly increasing in ρ, i.e., ∂h(θ, ρ)/∂ρ > 0. So we have h(θ, ρ) ≥ (≤)0 for ρ ≥ (≤)ρ∗θ, which

means dV (θ, ρ)/dt ≤ 0 for all ρ ∈ (0, 1) and dV (θ, ρ)/dt < 0 for all ρ ∈ (0, 1)\ρ∗θ. This proves

that ρ∗θ is the asymptotically stable point of h(θ, ρ).

A.2.3 Proof of Theorem 2.3.3

We can decompose zt := |ρt − ρ∗| for each t ≥ 0 into two parts. the empirical iterate error

|ρt − ρ∗| − E[|ρt − ρ∗| and the expectation error E[|ρt − ρ∗|]:

zt := |ρt − ρ∗| = (|ρt − ρ∗| − E[|ρt − ρ∗|]) + E[|ρt − ρ∗|]. (A.2)
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To derive the probabilistic tail bound for |ρt − ρ∗|, we bound the empirical iterate error and

expectation error separately. Below, we first give the high probability bound for the empirical

iterate error:

Lemma A.2.1. Given the average feedback dynamics {ρt}t≥0 (ρ0 is the prior information)

defined in (2.2), and under the assumptions of (A1 - A2), and G is strongly convex, then for

any δ > 0, we have:

P(|ρt − ρ∗| − E[|ρt − ρ∗|] ≥ δ) ≤ exp

( −δ2
2
∑t

i=1 η
2
i

(∏t−1
j=i(1− 2λ̄ηj+1 + η2j+1(L

ρ
h)

2)
)),

where Lρ
h = 1− Lρ

F .

Proof. Notice that by introducing a telescoping sum of martingale differences, we could

rewrite |ρt − ρ∗| − E[|ρt − ρ∗|] as follows

|ρt − ρ∗| − E[|ρt − ρ∗|] =
t∑

i=1

E[|zt||Fi]− E[|zt||Fi−1]

=
t∑

i=1

gi(ρi−1, ξi)− E[gi(ρi−1, ξi)|Fi−1],

where gi(ρi, ξ) = E[|ρt − ρ∗||ρi,Fi−1]. Let Lρ
h = 1− Lρ

F and Gi = gi − E[gi|Fi−1]. Recall that

Fi := σ(ξj, j ≤ i) and {Fi}i∈N denotes the natural filtration.

Let H(θ, ρ, ξ) = ρ − F (θ, ρ) + ξ. We then reduce the proof of empirical iterate error by

establishing a Lipschitz continuous property of Gi on martingale difference ξi. We also write

out the superscript of ρj as ρρ,ij to explicitly express the dependency of {ρt} on a given

initial starting time i such that ρi = ρ. Recall that h(θ, ρ) = E[H(θ, ρ, ξ)]. By introducing a

139



martingale difference ∆ρ,i
j+1 = H(θ, ρρ,ij , ξj+1)− h(θ, ρρ,ij ), we then have

|ρρ,ij+1 − ρρ
′,i

j+1|2 = |ρρ,ij − ρρ
′,i

j − ηj+1(H(θ, ρρ,ij , ξj+1)−H(θ, ρρ
′,i

j , ξj+1))|2

= (ρρ,ij − ρρ
′,i

j )2 − 2ηj+1(ρ
ρ,i
j − ρρ

′,i
j )
(
H(θ, ρρ,ij , ξj+1)−H(θ, ρρ

′,i
j , ξj+1)

)
+ η2i+1

(
H(θ, ρρ,ij , ξj+1)−H(θ, ρρ

′,i
j , ξj+1)

)2
= (ρρ,ij − ρρ

′,i
j )2 − 2ηj+1(ρ

ρ,i
j − ρρ

′,i
j )(h(θ, ρρ,ij )− h(θ, ρρ

′,i
j ))

− 2ηj+1(ρ
ρ,i
j − ρρ

′,i
j )(∆ρ,i

j+1 −∆ρ′,i
j+1) + η2j+1

(
H(θ, ρρ,ij , ξj+1)−H(θ, ρρ

′,i
j , ξj+1)

)2
.

Applying the Lipschitz continuity of H(·) w.r.t. ρ, by the strongly convex property of G(·),

the above equation gives us following

|ρρ,ij+1 − ρρ
′,i

j+1|2 ≤ (ρρ,ij − ρρ
′,i

j )2 − 2λ̄ηj+1(ρ
ρ,i
j − ρρ

′,i
j )2

− 2ηj+1(ρ
ρ,i
j − ρρ

′,i
j )(∆ρ,i

j+1 −∆ρ′,i
j+1) + η2i+1(L

ρ
h)

2(ρρ,ij − ρρ
′,i

j )2

= (ρρ,ij − ρρ
′,i

j )2(1− 2λ̄ηj+1 + η2j+1(L
ρ
h)

2)− 2ηj+1(ρ
ρ,i
j − ρρ

′,i
j )(∆ρ,i

j+1 −∆ρ′,i
j+1).

Then taking induction on j from i to t, we have

|ρρ,it − ρρ
′,i

t |2 ≤ (ρ− ρ′)2
t−1∏
j=i

(η2j+1(L
ρ
h)

2 − 2λ̄ηj+1 + 1)

− 2
t−1∏
j=i

(1− 2λ̄ηj+1 + η2j+1(L
ρ
h)

2)
t−1∑
j=1

ηj+1∏j
l=i(1− 2λ̄ηl+1 + η2l+1(L

ρ
h)

2)
(ρρ,ij − ρρ

′,i
j )(∆ρ,i

j+1 −∆ρ′,i
j+1).

Taking the expectation on both sides, applying the tower property of expectation and by the

fact that E[∆ρ,i
j ] = 0, we have

E[|ρρ,it − ρρ
′,i

t |2] ≤ (ρ− ρ′)2
t−1∏
j=i

(η2j+1(L
ρ
h)

2 − 2λ̄ηj+1 + 1).
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Back to our error decomposition, we have the following Lipschitz bound for the function gi(·),

|gi(ρ, ξ)− gi(ρ, ξ
′)| =

∣∣E[|ρρ+ηiH(θ,ρ,ξ),i
t − ρ∗|

]
− E

[
|ρρ+ηiH(θ,ρ,ξ′),i

t − ρ∗|
]∣∣

≤ E
[
|ρρ+ηiH(θ,ρ,ξ),i

t − ρ
ρ+ηiH(θ,ρ,ξ′),i
t |

]
≤ ηi

∣∣ξ − ξ′
∣∣( t−1∏

j=i

(η2j+1(L
ρ
h)

2 − 2λ̄ηj+1 + 1

)1/2

.

The above inequality shows gi(·) is a Lipschitz continuous function defined on random variable

ξ given Fi−1 with the Lipschitz constant equaling to Lgi = ηi
(∏t−1

j=i(η
2
j+1(L

ρ
h)

2−2λ̄ηj+1+1
)1/2.

Thus,

P(|ρt − ρ∗| − E[|ρt − ρ∗|] ≥ δ) = P(
t∑

i=1

Gi ≥ δ)

≤ exp(−γδ)E[exp(γ
t∑

i=1

Gi)]

= exp(−γδ)E[exp(γ
t−1∑
i=1

Gi)]E[exp(γGt)|Ft−1].

Now it shows that Gt is a Lgt-Lipschitz function conditional on Ft−1. By invoking a martingale

concentration bound in Lemma A.1.2, we have:

E[exp(γGt)|Ft−1] ≤ exp

(
γ2L2

gt

2

)
.

By induction on i, we have

P(|ρt − ρ∗| − E[|ρt − ρ∗|] ≥ δ) ≤ exp(−γδ) exp
(
γ2
∑t

i=1 L
2
gi

2

)
.
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We can then finish the proof by optimizing with respect to γ.

We now proceed to bound the expectation error E[|ρt − ρ∗|]:

Lemma A.2.2. Given the ratio dynamics {ρt}t≥0 (ρ0 is the prior information) defined in

(2.2), and under the assumptions of (A1 -A2), and G is strongly convex, then we have

E[|ρt − ρ∗|] ≤ exp(−λ̄St)|ρ0 − ρ∗|+

√√√√ t−1∑
i=0

η2i+1 exp(−2λ̄(St − Si+1)),

where St =
∑t

i=1 ηi.

Proof. We define the following

zt+1 := ρt+1 − ρ∗ = ρt − ρ∗ − ηt+1H(θ, ρt, ξt+1)

= ρt − ρ∗ − ηt+1(h(θ, ρt)−∆Yt+1),

where ∆Yt+1 = h(θ, ρt)−H(θ, ρt, ξt+1) = E[H(θ, ρt, ξt+1)|Ft]−H(θ, ρt, ξt+1). Rewriting above

equation as follows

zt+1 = ρt − ρ∗ − ηt+1(ρt − ρ∗)

∫ 1

0

(∂h(θ, ρ∗ + α(ρt − ρ∗))/∂ρ)dα + ηt+1∆Yt+1.

Let Jt =
∫ 1

0
(∂h(θ, ρ∗ + α(ρt − ρ∗))/∂ρ)dα, then we have

zt+1 = ρt − ρ∗ − ηt+1(ρt − ρ∗)Jt + ηt+1∆Yt+1

= zt(1− ηt+1Jt) + ηt+1∆Yt+1.
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Taking a square operator on both sides, expanding and then taking expectation, we can get

E[|zt+1|2] = E[|zt(1− ηt+1Jt) + ηt+1∆Yt+1|2]

= E[|zt(1− ηt+1Jt)|2] + 2E[zt(1− ηt+1Jt)ηt+1∆Yt+1] + E[|ηt+1∆Yt+1|2]

= (1− ηt+1Jt)
2E[|zt|2] + η2t+1E[|∆Yt+1|2],

where the last equality is due to the martingale difference property of ∆Yt+1. Notice that by

the property of strongly convex G, namely, there exists a global stable equilibrium point of h,

we have |1− ηt+1Jt| ≤ exp(−λ̄ηt+1). Thus,

E[|zt+1|2] ≤ exp(−2λ̄ηt+1)E[|zt|2] + η2t+1.

Finally, taking the induction from t = 1 will give us the following

E[|zt|2] ≤ z20 exp(−2λ̄St) +
t−1∑
i=0

η2i+1 exp(−2λ̄(St − Si+1)),

where St =
∑t

i=1 ηi.

Combining the above empirical iterate error and expectation error completes the proof of

Theorem 2.3.3.

Convergence Analysis Let Mt =
∏t

i=1(1−2λ̄/i+(Lρ
h)

2/i2), then
∑t

i=1 Li = Mt

∑t
i=1 η

2
i /Mi.

By 1 + x < ex, it is immediate to see that Mt ≤
∏t

i=1 exp
(
− 2λ̄/i + (Lρ

h)
2/i2

)
=

exp
(∑t

i=1(−2λ̄/i+ (Lρ
h)

2/i2)
)
= exp

(
− 2λ̄ ln t+ (Lρ

h)
2π2/6

)
= exp

(
(Lρ

h)
2π2/6

)
t−2λ̄. Thus,

• when λ̄ ∈ (0, 1/2], we have i2
∏i

j=1(1− 2λ̄/j + (Lρ
h)

2/j2) > i2(1− 2λ̄)
∏i

j=2(1− 1/j) =

i(1−2λ̄). Thus,
∑t

i=1 η
2
i /Mi is summable, and

∑t
i=1 η

2
i /Mi ≤

∑t
i=1

1
i2

∏i
j=1(1−2λ̄/j)

≤ C0,
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where C0 = limt→∞
∑t

i=1
1

i2
∏i

j=1(1−2λ̄/j)
. For simplicity, let C1 = C0 exp((L

ρ
h)

2π2/6),

then we have
∑t

i=1 Li ≤ C1t
−2λ̄ = O(t−2λ̄);

• when λ̄ ∈ (1/2,∞), it can be proved by comparisons with integrals that
∑t

i=1 η
2
i /Mi ≤

Ct(2λ̄−1), where C is a constant which is only dependent on λ̄. Thus, let C2 =

(2λ̄+1) exp((Lρ
h)

2π2/6)

4(22λ̄−1−1)
, we’ll have

∑t
i=1 Li ≤ C2t

−1 = O(t−1).

For the expectation error δt, we know that St = Θ(ln t). Thus, we have
∑t−1

i=0 η
2
i+1 exp(−2λ̄(St−

Si+1)) =
∑t

k=1(1/k
2) exp(−2λ̄∑t

i=k 1/i) ≤
∑t

k=1(1/k
2) exp(−2λ̄ ln t/k) ≤ t−2λ̄

∑t
k=1 1/k

2−2λ̄.

By comparing the sums with integrals,

• when λ̄ ∈ (0, 1/2), we have limt→∞ t−2λ̄
∑t

k=1 1/k
2−2λ̄ = O(t−λ̄);

• when λ̄ = 1/2, we have limt→∞ t−2λ̄
∑t

k=1 1/k
2−2λ̄ = Θ(t−1 ln t);

• when λ̄ ∈ (1/2,∞), we have limt→∞ t−2λ̄
∑t

k=1 1/k
2−2λ̄ = O(1/

√
t).

Hence, we have δt → 0 when t→∞.

A.2.4 Proof of Theorem 2.3.5

We first prove that a small deviation of ρk,t leads to a small deviation of the quality estimator

θ̂k,t, as summarized in the following lemma:

Lemma A.2.3. Assume there exist Dθ > 0 and Dρ ∈ (0, 1), such that for any 0 < θ2 < θ1 < 1,

Dθ(θ1 − θ2) ≤ F (θ1, ρ) − F (θ2, ρ); and for any 0 < ρ2 < ρ1 < 1, Dρ(ρ1 − ρ2) ≤ F (θ, ρ1) −

F (θ, ρ2). Let θ̂1 and θ̂2 be the quality estimates for ρ1 and ρ2, as specified in Equation (2.3).

Then the following holds

|θ̂1 − θ̂2| ≤
1−Dρ

Dθ

|ρ1 − ρ2|.
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Proof. Since the quality estimate θ̂ is chosen such that F (θ̂, ρ) = ρ, we have

F (θ̂1, ρ1)− F (θ̂2, ρ2) = ρ1 − ρ2

From Corollary 2.3.2, we know that when ρ1 = ρ2, θ̂1 = θ̂2. Therefore the lemma statement is

true. Below we discuss the case ρ1 > ρ2. We first argue that when ρ1 > ρ2, θ̂1 > θ̂2. Assume

by contradiction that θ̂1 < θ̂2. We have

F (θ̂1, ρ1)− F (θ̂2, ρ2) = F (θ̂1, ρ1)− F (θ̂2, ρ1) + F (θ̂2, ρ1)− F (θ̂2, ρ2)

≤ −Dθ(θ̂2 − θ̂1) + Lρ
F (ρ1 − ρ2),

where Lρ
F is the Lipschitz constant of F . Since F (θ̂1, ρ1)− F (θ̂2, ρ2) = ρ1 − ρ2,

θ̂2 − θ̂1 ≤
Lρ
F − 1

Dθ

(ρ1 − ρ2). (A.3)

Since F (θ, ρ) is contraction mapping w.r.t. ρ, i.e., Lρ
F < 1. The above inequality leads to

contradiction.

Now we focus on the case when θ̂1 > θ̂2, we can get

F (θ̂1, ρ1)− F (θ̂2, ρ2) = F (θ̂1, ρ1)− F (θ̂2, ρ1) + F (θ̂2, ρ1)− F (θ̂2, ρ2)

≥ Dθ(θ̂1 − θ̂2) +Dρ(ρ1 − ρ2).

Again, we get

θ̂1 − θ̂2 ≤
1−Dρ

Dθ

(ρ1 − ρ2).
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Following the same argument, when ρ1 < ρ2, we must have θ̂2 > θ̂1, and moreover:

θ̂2 − θ̂1 ≤
1−Dρ

Dθ

(ρ2 − ρ1).

Combining above two cases will complete the proof.

Armed with the above small deviation result, we now proceed to prove the regret bound in

Theorem 2.3.5.

Proof. We will restrict to prove the regret bound for the case λ̄ ∈ (0, 1/2), and the proof

also holds when λ̄ ∈ [1/2,∞). By the small deviation connection between ρk,t and θ̂k,t, the

following holds

P (|ρk,t − ρ∗k| ≥ δ) ≥ P
(
|θ̂k,t − θk| ≥

1−Dρ

Dθ

δ

)
.

By the convergence analysis of ρk,t, we have the following concentration inequality for the

estimator θ̂k,t

P(|θ̂k,t − θk| ≥ δ) ≤ exp

(
− D2

θ

2C1(1−Dρ)2
δ2n2λ̄

k,t

)
,

where C1 is a constant dependent on λ̄ (defined in the above convergence analysis) and nk,t

is the number of pulls of arm k till up to round t. Therefore, for each arm k at time t, we

have the following

|θ̂k,t − θk| ≤
√

β ln t

n2λ̄
k,t

,
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with probability at least 1− t−βC′ , where C ′ =
D2

θ

2C1(1−Dρ)2
. From this, it is immediate to get

the following two useful bounds: With probability at least 1− t−βC′ , we have

UCBk,t > θk. (A.4)

Furthermore, given nk,t ≥ (4β ln t/∆2
k)

1/(2λ̄), where ∆k = θ∗ − θk, we have

θ̂k,t < θk +∆k/2. (A.5)

The above two bounds implies the optimistic property of our constructed UCB algorithm.

Particularly, (A.4) implies UCB value should be probably as large as the true arm quality.

And (A.5) implies that given enough samples (at least (4β ln t/∆2
k)

1/(2λ̄)), then the quality

estimator θ̂k,t would not exceed the true arm quality by more than ∆k/2. In words, above

two bounds can be used to get following guarantee on finding out a suboptimal arm

P(It = k|nk,t ≥ (4β ln t/∆2
k)

1/(2λ̄)) ≤ t−2βC′
. (A.6)

Above property is due to:

UCBk,t = θ̂k,t +
√

β ln t/n2λ̄
k,t ≤ θ̂k,t +∆k/2

< θk +∆k/2 + ∆k/2

= θ∗ < θ̂I∗,t +
√

β ln t/n2λ̄
I∗,t

= UCBI∗,t.

The first inequality is coming from nk,t ≥ (4β ln t/∆2
k)

1/(2λ̄) and second inequality coming

from (A.5), the third equality coming from ∆k = θ∗ − θk and the forth inequality is due to

(A.4).
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Till now, we can bound the number of pulls for suboptimal arm k

E[nk,T ] = 1 + E[
T∑

t=K

1(It+1 = k)]

= 1 + E[
T∑

t=K

1(It+1 = k, nk,t < (4β ln t/∆2
k)

1/(2λ̄))] + E[
T∑

t=K

1(It+1 = k, nk,t ≥ (4β ln t/∆2
k)

1/(2λ̄)]

≤ (4β lnT/∆2
k)

1/(2λ̄) + E[
T∑

t=K

1(It+1 = k, nk,t ≥ (4β ln t/∆2
k)

1/(2λ̄))]

= (4β lnT/∆2
k)

1/(2λ̄) +
T∑

t=K

P(It+1 = k, nk,t ≥ (4β ln t/∆2
k)

1/(2λ̄))

= (4β lnT/∆2
k)

1/(2λ̄) +
T∑

t=K

P(It+1 = k|nk,t ≥ (4β ln t/∆2
k)

1/(2λ̄))P(nk,t ≥ (4β ln t/∆2
k)

1/(2λ̄))

≤ (4β lnT/∆2
k)

1/(2λ̄) +
T∑

t=K

t−2βC′

≤ (
4 lnT

C ′∆2
k

)
1
2λ̄ + π2/6.

where the first equality is for adding 1 initial pull for every arm. For the first inequality,

suppose the indicator 1(It+1 = k, nk,t < N) takes value 1 at more than N − 1 time rounds,

where N = (4 ln t/∆2
k)

1/(2λ̄). And let t′ be the time step where 1(It+1 = k, nk,t < N) = 1 for

(N − 1)th round. Thus, including the initial pull, arm k has been pulled at least N rounds

until time t′. Then for any t > t′, nk,t > N which implies nk,t > (4 ln t/∆2
k)

1/(2λ̄). Thus, the

indication cannot be 1 for any t > t′, contradicting the assumption that the indicator takes

values 1 for more than N − 1 rounds. The second inequality is coming from the tail bound for

number of pulls for suboptimal to bound the first conditional term. The second probability is

bounded by 1. The last inequality is by choosing β = 1/C ′ = 2C1(1−Dρ)2

D2
θ

, where C1 is defined

as above in convergence analysis.
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We note that the above analysis also holds true when λ̄ ∈ [1/2,∞), and the key difference is

that concentration inequality for estimator θ̂k,t will become following

P(|θ̂k,t − θk| ≥ δ) ≤ exp

(
− D2

θ

2C2(1−Dρ)2
δ2nk,t

)
,

and β = 2C2(1−Dρ)2

D2
θ

to ensure the number pulls for suboptimal arms with a logarithmic times.

Then the expected regret is obtained by summing for all suboptimal arms: E[R(T )] ≤∑
k ̸=I∗ E[nk,t]∆k.

When λ̄ ≥ 1/2 (which includes the unbiased feedback setting with λ̄ = 1) dividing the

arms into two groups, group 1 contains "almost optimal" arms with ∆k <
√

lnT/T ,

while group 2 contains "bad" arms with ∆k ≥
√
lnT/T . Then the regret E[R(T )] ≤∑

k∈Group 1 E[nk,t]∆k+
∑

k∈Group 2 E[nk,t]∆k ≤
√
lnT/T

∑
k∈Group 1 E[nk,t]+

∑
k∈Group 2(

4 lnT
C∆k

+

π2/6)∆k ≤ T
√

lnT/T + 4
√
T lnT , which shows a regret of O(

√
T lnT ) over T rounds.

When λ̄→ 0, i.e., ∂F (θ, ρ)/∂ρ→ 1, which means the information gain on updating estimator

θ̂k,t will become negligible , thus becomes hard to differentiate the arms, which reflects

suffering regret in above result.

A.2.5 Experiments.

We conduct a simple simulation to evaluate our Algorithm Avg-UCB. For each experiment,

we perform 50 independent trials up to time T = 5000 and report the average cumulative

regret. For each independent trial, there are K = 5 arms with quality drawn uniformly at

random from the unit range (0, 1). We use the classic UCB and TS (Thompson Sampling),

the two most popular and robust bandit algorithms, as the comparison baselines. In these

baseline algorithms, the learner treats the biased feedback as the unbiased estimates of the
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Figure A.1: (a) & (b): Performance of Algorithm 1 on feedback function defined in (A.7).
(a): Performance compared with UCB and TS; (b): Performance on different wθ. (c) & (d):
Performance of Algorithm 1 on feedback function defined in (A.7). (c): k = 0.7, b = 0.4, λ̄ =
0.4535; (d): k = 0.8, b = 0.4, λ̄ = 0.5250.

true rewards. For the UCB algorithm, we set the exploration paramter β = 2 as the default

setting..

Evaluate the performance. We start with evaluating the performance of our algorithm

compared with the UCB and TS. We use the feedback function as provided in Example 2.3.1,

i.e., F (θ, ρ) = wθθ + wρρ, for any wθ, wρ ≥ 0 and wθ + wρ = 1. In this function, it is easy

to see that λ̄ = wθ. Note that when wθ ∈ [1/2, 1], our algorithm will recover the standard

UCB algorithm. Thus, we set wθ = 0.3 and compute β = 1.2 for Algorithm 1. Figure A.1a,

which shows the regret of three algorithms across time, demonstrates that our algorithm does

achieve better performance than baseline algorithms that are oblivious of biased feedback.

Evaluate the performance with different λ̄. In this experiment, we again use the

Example 2.3.1 as the user’s feedback function. As showed in our regret bound, λ̄ reflects the

learnability of the hidden parameter θ from the noise feedback, i.e., when λ̄ (recall that in

this particular feedback function, λ̄ = wθ) is larger, the learner can be more aggressive to

learn θ. Thus, in Figure A.1b, we compare the performance of our algorithm on different

wθ, i.e., we set wθ = [0.20, 0.30, 0.40, 0.50], where we set β all equal to 1.2. The result shows

that the regret get increased as the wθ increases, this confirms our derived regret bound in
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Theorem 2.3.5 of the previous section, where larger λ̄ (smaller λ̄′) leads better regrets in the

non-asymptotic regime.

Non-convex G. We further investigate how to adapt our algorithm when G is non-convex

with respect to ρ, i.e., there exists some ρ ∈ (0, 1) such that ∇2
ρG = ∇ρ

(
ρ−F (θ, ρ)

)
< 0. We

construct F (θ, ρ) from a generalized logistic function. Given the arm’s history information

ρt:

• if the user’s private experience is positive, the probability for him to provide positive

feedback is f(ρ) = 1
1+exp(−k(ρ−b))

;

• if the user’s private experience is negative, the probability for him to provide positive

feedback is f(1− ρ) = 1
1+exp(−k((1−ρ)−b))

;

Thus, the probability for a user to provide positive feedback is characterized by the following

F (θ, ρ) =
θ

1 + exp(−k(ρ− b))
+

1− θ

1 + exp(−k((1− ρ)− b))
, (A.7)

where k and b are the parameters which control the steepness of the curve and the midpoint

of f , they’re chosen to ensure the output of f(·) falls in (0, 1) for all θ ∈ (0, 1). Recall that

due to the non-convexity of G, we cannot directly apply our algorithm, since λ̄ is smaller than

0. To adapt our algorithm in non-convex setting, we use the local convexity of equilibrium

points ρ∗ of ρ− F (θ, ρ) and we compute

λ̄ = 1− sup
∀θ∈(0,1)

max
ρ∗∈Sθ

∇ρ∗F (θ, ρ).

In Figure A.1c, we set k = 0.7, b = 0.4, and compute λ̄ = 0.4535, while for Figure A.1d, we

set k = 0.8, b = 0.4, and compute λ̄ = 0.5250 in order for matching the derived two regions of
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our regret bound. By exploiting the local convexity of equilibrium point of function G, the

result demonstrates our algorithm is still robust on finding out optimal arm.

A.3 Proofs in Bandits with Beta-Herding Feedback Model

A.3.1 Proof of Lemma 2.4.1

Proof. Let St =
∑t

i=1 xi, where xi is the realization of the feedback random variable Xi. For

simplicity, let {n0ρ0, n0(1− ρ0)} = {a, b} (in our current setting, n0 = ρ0 = 0, which implies

a = b = 0, but our results hold even if they are nonzero.).

Before we characterize the asymptotic behavior of {Xt}t≥0, we observe that {Xt}t≥0 satisfies

a so-called exchangeable property. This is summarized in following definition.

Definition A.3.1. A sequence {Xt} of random variables is exchangeable if for all t ≥ 2

X1, ..., Xt
∆
= Xπ(1), ..., Xπ(t),∀π ∈ S(t).

where S(t) is the symmetric group, the group of permutations.

We have the following

Lemma A.3.1. Given the above defined learning process, the stochastic random process

{Xt}t≥0 is exchangeable.
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Proof. Suppose the principal has received a total of t feedback from the agent, then the

probability that there are l positive feedback is given by

∏l−1
i=0(mθ + a+ i)

∏t−l−1
j=0 (m(1− θ)b+ j)∏t−1

i=0(m+ a+ b+ i)
.

This shows the exchangeability of {Xt}t≥0.

Based on the exchangeable property of {Xt}t≥0, we can establish that the asymptotic positive

feedback ratio ρ∞ converges almost surely to a random variable. Suppose St = l, by the

above exchangeability property, we have

P(X1 = x1, ..., Xt = xt) =

∏l−1
i=0(mθ + a+ i) ·∏t−1−l

j=0 (m(1− θ) + b+ j)∏t−1
i=0(m+ a+ b+ i)

.

Moreover,

P(St = l) =

t

l

∏l−1
i=0(mθ + a+ i) ·∏t−1−l

j=0 (m(1− θ) + b+ j)∏t−1
i=0(m+ a+ b+ i)

=

t

l

 Γ(mθ+a+l)
Γ(mθ+a)

· Γ(m(1−θ)+b+t−l)
Γ(m(1−θ)+b)

Γ(m+a+b+t)
Γ(m+a+b)

=
Γ(m+ a+ b)

Γ(mθ + a) · Γ(m(1− θ) + b)

Γ(l + a+mθ)

Γ(l + 1)

Γ(t− l + b+m(1− θ))

Γ(t− l + 1)

Γ(t+ 1)

Γ(t+ a+ b+m)

=
1

B(mθ + a,m(1− θ) + b)

Γ(l + a+mθ)

Γ(l + 1)

Γ(t− l + b+m(1− θ))

Γ(t− l + 1)

Γ(t+ 1)

Γ(t+ a+ b+m)
.

where Γ(·) and B(·) are Gamma function and Beta function, respectively.

By Stirling’s approximation for gamma function quotient in Lemma A.1.1, we have

P(St = l) =
1

B(mθ + a,m(1− θ) + b)
· la+mθ−1 · (t− l)b+m(1−θ)−1 · t1−a−b−m. (A.8)
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Denote l = ρt for some 0 < ρ < 1. Then we have

P(
St

t
≤ ρ) = P(

St

t
= 0) + P(

St

t
=

1

t
) + ...+ P(

St

t
=
⌊tρ⌋
t

).

Therefore,

∫ ρ

0

P(
St

t
= u)du = lim

t→∞

1

t
[P(

St

t
= 0) + P(

St

t
=

1

t
) + ...+ P(

St

t
=
⌊tρ⌋
t

)]

P(
St

t
≤ ρ) = t

∫ ρ

0

P(
St

t
= u)du.

Replacing l with ρt in Equation (A.8), we have

P(
St

t
≤ ρ) =

1

B(mθ + a,m(1− θ) + b)

∫ ρ

0

ua+mθ−1(1− u)b+m(1−θ)−1du,

which completes the proof.

A.3.2 Proof of Lemma 2.4.2

Proof. Let f(x|θ) be the probability mass function of random variable X and xt be the

realization of Xt. Consider the stochastic process specified in Equation (2.1), the probability

mass function can be computed as f(xt|θ) = (mθ+St−1+a
m+a+b+t−1

)xt · (1− mθ+St−1+a
m+a+b+t−1

)1−xt , where xt = 1

or xt = 0, St =
∑t

i=1Xi. Let l(xt|θ) be the log-likelihood of f(xt|θ), namely,

l(xt|θ) = xt log

(
mθ + St−1 + a

m+ a+ b+ t− 1

)
+ (1− xt) log

(
1− mθ + St−1 + a

m+ a+ b+ t− 1

)
.
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According to the definition of Fisher information for a single observation, and by the chain

rule for multiple observations, we have

t∑
i=1

Ii(θ) =
t∑

i=1

−E[l′′(xi|θ)]

=
t∑

i=1

m2

m+ a+ b+ i− 1
(E[

1

mθ + a+ Si−1

] + E[
1

m(1− θ) + b+ i− 1− Si−1

]).

Since {Xt}t≥1 are exchangeable random variables, then

E[
1

mθ + a+ St

] =
t∑

l=0

t

l

∏l−1
i=0(mθ + a+ i) ·∏t−l−1

j=0 (m(1− θ) + b+ j)∏t−1
i=0(m+ a+ b+ i)

· 1

mθ + a+ l

=
t∑

l=0

1

B(mθ + a,m(1− θ) + b)
la+mθ−1(t− l)b+m(1−θ)−1t1−a−b−m · 1

mθ + a+ l

=
t∑

l=0

1

B(mθ + a,m(1− θ) + b)
(l/t)a+mθ−1(1− l/t)b+m(1−θ)−1t−1 · 1

mθ + a+ l

≤ 1

B(mθ + a,m(1− θ) + b)
t−1

t∑
l=0

(l/t)a+mθ−1(1− l/t)b+m(1−θ)−1

= O(t−1).

Similarly, we also have

E[
1

m(1− θ) + b+ t− 1− St−1

] = O(t−1).
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Thus,

lim
t→∞

t∑
i=1

Ii(θ) = lim
t→∞

t∑
i=1

m2

m+ a+ b+ i− 1
O(i−1)

≤ m2 lim
t→∞

t∑
i=1

1

i
O(i−1)

= O(1),

where O(1) is a constant. This completes the proof.

A.3.3 Proof of Theorem 2.4.3

Proof. We prove this by contradiction. Consider a bandit model which has two arms. Without

loss of generality, assume arm 1 is optimal and arm 2 is suboptimal, i.e., θ1 > θ2, and suppose

there exists an algorithm A which can achieve sublinear regret, i.e., E(RA(T )) = o(T ). Let

kt denote the arm chosen by algorithm A at time t. One must have limt→∞ P(kt = 1) = 1.

Let θ̂t1, θ̂t2 be the algorithm’s estimators on θ1, θ2 given the history information accumulated

till time round t. The ability to almost surely choose arm 1 by algorithm A when t → ∞

indicates that we are able to differentiate the two arms, i.e.,

lim
t→∞

P(θ̂t1 > θ̂t2) = 1

However, as shown in Lemma 2.4.2, since the fisher information on the estimator are always

bounded even when given infinitely many observations. It implies the estimators are not

consistent, and that limt→∞ P(θ̂t1 < θ̂t2) > 0. This leads to the contradiction and completes

the proof.
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A.3.4 Proof of Theorem 2.4.4

Proof. We prove the upper regret bound by separately bounding the regret of two phases. The

proof in the first learning phase is similar to the proof of upper regret bound in avg-herding

feedback model. We include the proof here for completeness. By Chernoff Inequality, we have

|θ̂′k,t−1 − θ′k| <
√

β ln t

nk,t

,

with probability at least 1− 2β/t2. This means, with probability at most 2β/t2,

Uk,t < θ′k. (A.9)

Given that ni,t ≥ 4β ln t/∆2
k, with probability at least 1− 2β/t2,

θ̂′k,t < θ′k +∆k/2. (A.10)

The above inequality means, the quality estimator would not exceed the true quality by more

than ∆k/2 with high probability. Thus, given a suboptimal arm k which has been pulled for

nk,t > 4β ln t/∆2
k times, with probability at most 4β/t2, we have UI∗,t < Uk,t, i.e.,

P(It+1 = k|nk,t ≥ 4β/∆2
k) ≤ 4β/t2.

The above high probability bound is coming from Uk,t = θ̂′k,t−1+
√
β ln t/nk,t ≤ θ̂′k,t−1+∆k/2 <

θ′k +∆k = θ∗′ ≤ θ̂∗
′
+
√

β ln t/nk∗,t = Uk∗,t given both (A.9) and (A.10) hold true. Then, one
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can bound the expected number of pulls of arm k up to round Tα:

E[nk,Tα ] = 1 + E[
Tα∑
t=K

1(It+1 = k)]

= 1 + E[
Tα∑
t=K

1(It+1 = k, nk,t < 4β ln t/∆2
k)] + E[

Tα∑
t=K

1(It+1 = k, nk,t ≥ 4β ln t/∆2
k)]

≤ 4β lnTα/∆2
k +

Tα∑
t=K

P(It+1 = k, nk,t ≥ 4β ln t/∆2
k)

= 4αβ lnT/∆2
k +

Tα∑
t=K

P(It+1 = k|nk,t ≥ 4β ln t/∆2
k)P(nk,t ≥ 4β ln t/∆2

k)

≤ 4αβ lnT/∆2
k + 8β.

Thus, the regret in the first learning phase could be bounded as follows

E[R(Tα)] =
∑
k ̸=I∗

E[nk,Tα ]∆k ≤
∑
k ̸=I∗

4αβ lnT

∆k

+ 8β∆k. (A.11)

In the second phase, the algorithm recommends the arm Iτ for the reminder of the rounds.

Denote the regret accumulated in the second phase be recommendation regret, i.e., E[rτ ]. To

bound the recommendation regret, we note that the algorithms is essentially running UCB(β)

in the first phase and then select the most played arm (MPA) in the second phase. The regret

caused in the second phase has been derived by [24] and we rephrase it as follows.

Lemma A.3.2. If we select most played arm (MPA) in the second phase after adopting

UCB(β) in the first phase, for β > 1, and τ ≥ K(K + 2), then

E[rτ ] ≤
√

4Kβ ln τ/(τ −K) +
K

β − 1
(τ/K − 1)2−2β. (A.12)
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Combining the above two upper regret bounds and summing for all suboptimal arms and all

rounds will give us the final regret bound on two-level policy.
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Appendix B

Additional Proofs from Chapter 3

B.1 Lagrangian Formulation

While our setting follows standard bandit settings and aims to maximize the utility, it can be

extended to incorporate fairness constraints as commonly seen in the discussion of algorithmic

fairness. For example, consider the notion of group fairness, which aims to achieve approximate

parity of certain measures across groups. Let πi(fi(t)) ∈ [0, 1] be the fairness measure for

group i (which could reflect the socioeconomic status of the group). One common approach is

to impose constraints to avoid the group disparity. Let τ ∈ [0, 1] be the tolerance parameter,

the fairness constraints at t can be written as: |πi(fi(t))− πj(fj(t))| ≤ τ, ∀i, j ∈ [K]. πi(·)

is unknown a priori and is dependent on the historical impact. Incorporating the fairness

constraints would transform the goal of the institution as a constrained optimization problem:

max
p∈P

T∑
t=1

Ut(p(t)) s.t. |πi(fi(t))− πj(fj(t))| ≤ τ, ∀i, j ∈ [K],∀t ∈ [T ].
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We can then utilize the Lagrangian relaxation: impose the fairness requirement as soft

constraints and obtain an unconstrained optimization problem with a different utility function.

As long as we also observe (bandit) feedback on the fairness measures at every time step, the

techniques developed in this work can be extended to include fairness constraints.

To simplify the presentation, we fix a time t and drop the dependency on t in the notations.

Definition B.1.1. The Lagrangian L : P × Λ2 → R where Λ ⊆ R(
K
2 )

+ of our problem can be

formulated as:

L(p, λ) :=
K∑
k=1

pkrk(fk)−
(K2 )∑
c=1

λ+
c (πic(fic)− πjc(fjc)− τ)−

(K2 )∑
c=1

λ−
c (πjc(fjc)− πic(fic)− τ) ,

where λ+, λ− ∈ Λ. The notation (ic, jc) ∈ {(i, j)1≤i<j≤K} is a pair of combination and

c ∈ [K(K − 1)/2] is the index of each pair of this combination.

The problem then reduces to jointly maximize over p ∈ P and minimize over λ+, λ− ∈ Λ.

Rearranging and with a slight abuse of notations, we have the following equivalent optimization

problem:

max
p∈P

min
λ+,λ−

K∑
k=1

pk(t)rk(fk(t)) + λkπk(fk(t)) + τ

(K2 )∑
c=1

(λ+
c + λ−

c ), (B.1)

where λk := −∑c:ic=k(λ
+
c −λ−

c )+
∑

c:jc=k(λ
+
c −λ−

c ). Due to the uncertainty of reward function

rk(·) and fairness measure πk(·) (recall that our fairness criteria is defined as the parity of

socio-economic status cross different groups, which we can only observe the realization drawn

from an unknown distribution), we treat the above optimization problem as a hyperparameter

optimization: similar to choosing hyperparameters (the Lagrange multipliers: λ+ and λ−)

based on a validation set in machine learning tasks. Therefore, given a fixed set of λ+ and
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λ−, the problem in (B.1) can be reduced to the following:

max
p∈P

K∑
k=1

pk(t) · rk(fk(t)) + λk · πk(fk(t)). (B.2)

B.2 Negative Results

In this section, we show that an online algorithm which ignores its action’s impact would

suffer linear regret. We consider two general bandit algorithms: TS (Thompson Sampling)

and a mean-converging family of algorithms (which includes UCB-like algorithms). These

are the two most popular and robust bandit algorithms that can be applied to a wide range

of scenarios. We prove the negative results respectively. In particular, we construct problem

instances that could result in linear regret if the deployed algorithm ignore the action’s

impact.

Example B.2.1. Considering the following Bernoulli bandit instance with two arms, indexed

by arm 1 and arm 2, i.e., K = 2. For any ϵ ∈ [0, 1/2), define the expected reward of each

arm as follows:

• arm 1: r1(p) = p/(1− ϵ) · 1(p ≤ 1− ϵ) + (2− ϵ− p) · 1(p ≥ 1− ϵ), ∀p ∈ [0, 1]

• arm 2: r2(p) = p/(2ϵ) · 1(p ≤ ϵ) + (−1
2
p+ 1

2
(1 + ϵ)) · 1(p ≥ ϵ), ∀p ∈ [0, 1]

It is easy to see that p∗ = {1− ϵ, ϵ} is the optimal strategy for the above bandit instance.

We first prove the negative result of Thompson Sampling using the above example. The

Thompson Sampling algorithm can be summarized as below.
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Algorithm 6 Thompson Sampling
1: Si = 0, Fi = 0.
2: for t = 1, 2, . . . , do
3: For each arm i = 1, 2, sample θi(t) from the Beta(Si + 1, Fi + 1) distribution.
4: Play arm at := argmaxi θi(t) and observe reward r̃t.
5: If r̃t = 1, then Sat = Sat + 1, else Fat = Fat + 1.

Lemma B.2.1. For the reward structure defined in Example B.2.1, Thompson Sampling

would suffer linear regret if it doesn’t consider the action’s impact it deploys at every time

round, namely, it takes the sample mean as the true mean reward of each arm.

Before we proceed, we first prove the following strong law of large numbers in Beta distribution.

We note that the below two lemmas are not new results and can be found in many statistical

books.

Lemma B.2.2. Consider the Beta distribution Beta(aα + 1, bα + 1) whose pdf is defined as

f(x, α) = [xa(1−x)b]α

B(aα+1,bα+1)
, where B(·) is the beta function, then for any positive (a, b) such that

a + b = 1, when α → ∞, the limit of f(x, α) can be characterized by Dirac delta function

δ(x− a).

Lemma B.2.3. Let h : [0, 1] → R+ be any bounded measurable non-negative function

with a unique maximum at x∗, and suppose h is continuous at x∗. For λ > 0 define

hλ(x) = Cλh
λ(x) where Cλ normalizes such that

∫ 1

0
hλ(x)dx = 1. Consider any continuous

function f defined on [0, 1] and ϵ > 0, then we have limλ→∞
∫
h(x)≤h(x∗)−ϵ

hλ(x)f(x)dx = 0

and limλ→∞
∫ 1

0
hλ(x)f(x)dx = f(x∗).

We now ready to prove Lemma B.2.1.

Proof. We prove this by contradiction. Let Reg(T ) denote the expected regret incurred by TS

up to time round T , and Nt(p) =
∑t

s=1 1(p(s) = p) denote the number of rounds when the
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algorithm deploys the (mixed) strategy p ∈ ∆K . Furthermore, let Si(t)(resp. Fi(t)) denote

the received 1s(resp. 0s) of arm i up to time round t. Recall that in Thompson Sampling, we

have P(at = 1) = P
(
θ1(t) > θ2(t)

)
. By the reward function defined in Example B.2.1, it’s

immediate to see that

S1(T ) ≥ (1− ϵ)NT (p
∗); F1(T ) ≤ T −NT (p

∗); S2(T ) ≥ 0.5ϵNT (p
∗); F2(T ) ≥ 0.5ϵNT (p

∗).

Now suppose Thompson Sampling achieves sublinear regret, i.e., Reg(T ) = o(T ), which

implies following

lim
T→∞

T −NT (p
∗)

T
= 0.

Thus, by the strong law of large numbers and invoking Lemma B.2.2, the sample θ1(T +1) ∼

Beta(S1(T ), F1(T )) and θ2(T + 1) ∼ Beta(S2(T ), F2(T )) will converge as follows:

lim
T→∞

θ1(T + 1) = 1; lim
T→∞

θ2(T + 1) = 0.5.

Then it’s almost surely that limT→∞ P(aT+1 = 1) = limT→∞ P
(
θ1(T + 1) > θ2(T + 1)

)
= 1.

This leads to following holds for sure

S1(s+ 1) = S1(s) + 1,∀s > T.

Thus, consider the regret incurred from the (T + 1)−th round to (2T )−th round, the regret

will be

Reg(2T )− Reg(T ) =
2T∑

s=T+1

U(p(s)) = 0.5Tϵ,
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where the second equality follows that p(s) = (1, 0) holds almost surely from T + 1 to 2T .

This shows that limT→∞
E[Reg(2T )]

2T
= ϵ/4, which contradicts that the algorithm achieves the

sublinear regret.

We now show that a general class of algorithms, which are based on mean-converging, will

suffer linear regret if it ignores the action’s impact. This family of algorithms includes UCB

algorithm in classic MAB problems.

Definition B.2.2 (Mean-converging Algorithm [156]). Define Ik(t) = {s : as = k, s < t} as

the set of time rounds such the arm k is chosen. Let r̄k(t) = 1
|Ik(t)|

∑
s∈Ik(t) r̃s be the empirical

mean of arm k up to time t. The mean-converging algorithm A assigns sk(t) for each arm k

if following holds true:

• sk(t) is the function of {r̃s : s ∈ Ik(t)} and time t;

• P(sk(t) = r̄k(t)) = 1 if lim inft
|Ik(t)|

t
> 0.

Lemma B.2.4. For the reward structure defined in Example B.2.1, the mean-converging

Algorithm will suffer linear regret if it mistakenly take the sample mean as the true mean

reward of each arm.

Proof. We prove above lemma by contradiction. Let NA
t (p) denote the number of plays

with deploying the strategy p by algorithm A till time t. Suppose a mean-converging

Algorithm A achieves sublinear regret, then it must have limT→∞ NA
T (p∗)/T > 0 and

limT→∞
(
T −NA

T (p∗)
)
/T = o(T ). By the definition of mean-converging algorithm and

recall the reward structure defined in Example B.2.1, the score sT (1) assigned to arm 1

by the algorithm A must be converging to 1, and the score of sT (2) assigned to arm 2

must be converging to 0.5. By the strong law of large numbers, it suffices to show that
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P(p(t) = {1, 0}) = 1,∀t ≥ T + 1, which implies the algorithm A would suffer linear regret

after T time rounds and thus completes the proof.

B.3 Missing Proofs for Action-Dependent Bandits

B.3.1 The naive method that directly utilize techniques from Lips-

chitz bandits

We first give a naive approach which directly applies Lipschitz bandit technique to our

action-dependent setting. Recall that each meta arm p specifies the probability pk ∈ [0, 1] for

choosing each base arm k. We uniformly discretize each pk into intervals of a fixed length ϵ,

with carefully chosen ϵ such that 1/ϵ is an positive integer. Let Pϵ be the space of discretized

meta arms, i.e., for each p = {p1, . . . , pK} ∈ Pϵ,
∑K

k=1 pk = 1 and pk ∈ {0, ϵ, 2ϵ, . . . , 1} for all

k. We then run standard bandit algorithms on the finite set Pϵ.

There is a natural trade-off on the choice of ϵ, which controls the complexity of arm space and

the discretization error. show that, with appropriately chosen ϵ, this approach can achieve

sublinear regret (with respect to the optimal arm in the non-discretized space P).

Lemma B.3.1. Let ϵ = Θ
((

lnT
T

) 1
K+1
)
. Running a bandit algorithm which achieves optimal

regret O(
√
|Pϵ|T lnT ) on the strategy space Pϵ attains the following regret (w.r.t. the optimal

arm in non-discretized P): Reg(T ) = O
(
T

K
K+1 (lnT )

1
K+1
)
.

Proof. As mentioned, we uniformly discretize the interval [0, 1] of each arm into interval

of a fixed length ϵ. The strategy space will be reduced as Pϵ, which we use this as an

approximation for the full set P. Then the original infinite action space will be reduces

as finite Pϵ, and we run an off-the-shelf MAB algorithm A, such as UCB1 or Successive
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Elimination, that only considers these actions in Pϵ. Adding more points to Pϵ makes it a

better approximation of P , but also increases regret of A on Pϵ. Thus, Pϵ should be chosen

so as to optimize this tradeoff. Let p∗
ϵ := supp∈Pϵ

∑K
k=1 pkrk(pk) denote the best strategy in

discretized space Pϵ. At each round, the algorithm A can only hope to approach expected

reward U(p∗
ϵ), and together with additionally suffering discretization error :

DEϵ := U(p∗)− U(p∗
ϵ).

Then the expected regret of the entire algorithm is:

Reg(T ) = T · U(p∗)− Reward(A)

= T · U(p∗
ϵ)− Reward(A) + T (U(p∗)− U(p∗

ϵ))

= E[Regϵ(T )] + T · DEϵ,

where Reward(A) is the total reward of the algorithm, and Regϵ(T ) is the regret relative to

U(p∗
ϵ). If A attains optimal regret O(

√
KT lnT ) on any problem instance with time horizon

T and K arms, then,

Reg(T ) ≤ O(
√∣∣Pϵ

∣∣T lnT ) + T · DEϵ.

Thus, we need to choose ϵ to get the optimal trade-off between the size of Pϵ and its

discretization error. Recall that rk(·) is Lipschitz-continuous with the constant of Lk, thus,

we could bound the DEϵ by restricting p∗
ϵ to be nearest w.r.t p∗. Let L∗ = maxk∈[K](1 + Lk),

then it’s easy to see that

DEϵ = Ω(KL∗ϵ).
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Thus, the total regret can be bounded above from:

Reg(T ) ≤ O
(√

(1/ϵ+ 1)K−1T lnT
)
+ Ω(TKL∗ϵ).

By choosing ϵ = Θ

((
lnT

T (L∗)2

) 1
K+1

)
we obtain:

Reg(T ) ≤ O(cT K
K+1 (lnT )

1
K+1 ).

where c = Θ
(
K(L∗)

K−1
K+1

)
.

B.3.2 Missing Discussions and Proofs of Theorem 3.4.1

Step 1: Bounding the error of |U(p) − U(p)|. For any p = {p1, . . . , pK}, define

the empirical reward U t(p) =
∑K

k=1 pkr̄t(pk). The first step of our proof is to bound

P(|U t(p)− U(p)| ≤ δ) for each meta arm p = {p1, . . . , pK} with high probability.25 Using

the Hoeffding’s inequality, we obtain

P
(
|U t(p)− U(p)| ≥ δ

)
= P

(∣∣∣∣∑
k

∑
s∈Tt(pk) r̂s(pk)

nt(pk)
−
∑
k

pkr(pk)

∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− 2δ2∑

k
1

nt(pk)

)
≤ 2 exp

(
− 2δ2nt(pmin(p))

K

)
,

where pmin(p) := argminpk∈p nt(pk). By choosing δ =
√

K ln t
nt(pmin(p))

in the above inequality, for

each meta arm p at time t, we have that |U t(p) − U(p)| ≤
√

K ln t/nt(pmin(p)), with the

probability at least 1− 2/t2.

Step 2: Bounding the probability on deploying suboptimal meta arm. With the

above high probability bound we obtain in Step 1, we can construct an UCB index for each
25We use δ to denote the estimation error, as ϵ has been used as the discretization parameter.
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meta arm p ∈ Pϵ:

UCBt(p) = U t(p) +

√
K ln t

nt(pmin(p))
. (B.3)

The above constructed UCB index gives the following guarantee:

Lemma B.3.2. At any time round t, for a suboptimal meta arm p, if it satisfies nt(pmin(p)) ≥

4K ln t/∆2
p, then UCBt(p) < UCBt(p∗

ϵ) with the probability at least 1− 4/t2. Thus, for any t,

P
(
p(t) = p|nt(pmin(p)) ≥ 4K ln t/∆2

p

)
≤ 4t−2,

where ∆p denotes the badness of meta arm p.

Proof. We prove this lemma by considering two “events” which occur with high probability:

(1) the UCB index of each meta arm will concentrate on the true mean utility of p; (2) the

empirical mean utility of each meta arm p will also concentrate on the true mean utility of p.

We then show that the probability of either one of the events not holding is at most 4/t2. By

a union bound we prove above desired lemma.

UCBt(p) =
K∑
k=1

pkr̄t(pk) +

√
ln t

K

nt(pmin(p))

(a)
≤

K∑
k=1

pkr̄t(pk) + ∆p/2 <

(
K∑
k=1

pkrk(pk) + ∆p/2

)
+∆p/2 By Event 1

=
K∑
k=1

p∗k,ϵrk(p
∗
k,ϵ) <

K∑
k=1

p∗k,ϵr̄t(p
∗
k,ϵ) +

√
ln t

K

nt(pmin(p∗
ϵ))

By Event 2

= UCBt(p∗
ϵ),

where p∗
ϵ = (p∗1,ϵ, . . . , p

∗
K,ϵ). The first inequality (a) comes from that nt(pmin(p)) ≥ 4K ln t

∆2
p

and

the probability of third inequality or fifth inequality not holding is at most 4/t2.
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Intuitively, Lemma B.3.2 essentially shows that for a meta arm p, if its nt(pmin(p)) is

sufficiently sampled with respect to ∆p, that is, sampled at least 4K ln t/∆2
p times, we know

that the probability that we hit this suboptimal meta arm is very small.

Step 3: Bounding the E[nT (pmin(p))]. Ideally, we would like to bound the number of

the selections on deploying the suboptimal meta arm, i.e., NT (p), in a logarithmic order of

T . However, if we proceed to bound this by separately considering each meta arm, the final

regret bound will have an order with exponent in K since the number of meta arms grows

exponentially in K. Instead, we turn to bound E[nT (pmin(p))]. Recall that by the definitions

of nT (p) and pmin(p), the pulls of p is upper bounded by its nT (pmin(p)). This quantity will

help us to reduce the exponential K to the polynomial K. This is formalized in the following

lemma.

Lemma B.3.3. For each suboptimal meta arm p ̸= p∗
ϵ , we have that E[nT (pmin(p))] ≤

4K lnT
∆2

p
+O(1).

Proof. To simplify notations, for each discretized arm pk, we define the notion of super set

S(pk) = {p : pk ∈ p} which contains all the meta arms that include this discretized arm. For

170



suboptimal meta arm p ̸= p∗
ϵ and its pmin(p), we have

E[nT (pmin(p))]

(a)
= 1 + E

[ T∑
t=⌈K/ϵ⌉+1

1 (p(t) = p,p ∈ S(pmin(p)))

]

= 1 + E
[ T∑

t=⌈K/ϵ⌉+1

1

(
p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) <

4K ln t

∆2
p

)]

+ E
[ T∑

t=⌈K/ϵ⌉+1

1

(
p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) ≥

4K ln t

∆2
p

)]
(b)
≤ 4K lnT

∆2
p

+ E
[ T∑

t=⌈K/ϵ⌉+1

1

(
p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) ≥

4K ln t

∆2
p

)]

=
4K lnT

∆2
p

+
T∑

t=⌈K/ϵ⌉+1

P
(
p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) ≥

4K ln t

∆2
p

)

=
4K lnT

∆2
p

+
T∑

t=⌈K/ϵ⌉+1

P
(
p(t) = p,p ∈ S(pmin(p))

∣∣∣∣nt(pmin(p)) ≥
4K ln t

∆2
p

)
P
(
nt(pmin(p)) ≥

4K ln t

∆2
p

)
(c)
≤ 4K lnT

∆2
p

+
2π2

3
.

We add 1 in the first equality to account for 1 (step (a)) initial pull of every discretized

arm by the algorithm (the initialization phase). In step (b), suppose for contradiction that

the indicator 1 (p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) < S) takes value of 1 at more than

S − 1 time steps, where S = 4K lnT
∆2

p
. Let τ be the time step at which this indicator is 1

for the (S − 1)-th time. Then the number of pulls of all meta arms in S(pmin(p)) is at

least L times until time τ (including the initial pull), and for all t ≥ τ , nt(pmin(p)) ≥

S which implies nt(pmin(p)) ≥ 4K ln t
∆2

p
. Thus, the indicator cannot be 1 for any t ≥ τ ,

contradicting the assumption that the indicator takes value of 1 more than L times. This

bounds 1 + E
[∑

t≥⌈K/ϵ⌉+1 1 (p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) < S)
]

by S. In step (c),
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we apply the lemma B.3.2 to bound the first conditional probability term and use the fact

that the probabilities cannot exceed 1 to bound the second probability term.

We use this connection in the following step to reduce the computation of regret on pulling

all suboptimal meta arms so that to calculate the regret via the summation over discretized

arms.

Wrapping up: Proof of Theorem 3.4.1. We are now ready to prove Theorem 3.4.1.

We first define notations that are helpful for our analysis. To circumvent the summation

over all feasible suboptimal arms {p}, for each discretized arm pk, we define the notion of

super set S(pk) := {p : pk ∈ p} which contains all suboptimal meta arms that include this

discretized arm. With a slight abuse of notations, we also sort all meta arms in S(pk) as

p1,p2, . . . ,pI(pk)
in ascending order of their expected rewards, where I(pk) := |S(pk)| is the

cardinality of the super set S(pk). For pl ∈ S(pk), we also define ∆pk
l := ∆pl

where l ∈ [I(pk)],

and specifically ∆pk
min := minp∈S(pk) ∆p = ∆pk

I(pk)
; ∆pk

max := maxp∈S(pk) ∆p = ∆pk
1 . Let Regϵ(T )

denote the regret relative to the best strategy in the discretized space parameterized by ϵ.

With these notations, we first establish the following instance-dependent regret.

Lemma B.3.4. Following the UCB designed in (B.3), we have the following instance-dependent

regret on the discretized arm space: Regϵ(T ) ≤ ⌈K/ϵ⌉·(∆max +O(1))+
∑

pk:∆
pk
min>0 8K lnT/∆pk

min,

where ∆max := maxpk ∆
pk
max.

Proof. Note that by definition, we can compute the regret Regϵ(T ) as follows:

Regϵ(T ) =
∑
p∈Pϵ

E[NT (p)]∆p ≤
∑
pk

∑
l∈[I(pk)]

E[NT (pl)]∆
pk
l . (B.4)

Observe that, by Lemma B.3.3, for each discretized arm pk, there are two possible cases:
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• There exists a meta arm pl ∈ S(pk), and its pmin(pl) = pk. Then by linearity of expectation,

we can bound the expectation of total number of pulls for all pl′ ∈ S(pk) as follows

∑
pl′∈S(pk)

E[NT (pl′)] = E[nT (pk)] ≤
4K lnT

(∆pk
min)

2
+O(1).

• There exists no meta arm p ∈ S(pk), and pmin(p) for each p is pk. In this case, for each

pl ∈ S(pk), there always exists another discretized arm p′ that is included in pl such that

p′ = pmin(pl) but p′ ̸= pk. Thus, for each pl ∈ S(pk), together with other meta arms which

also include discretized arm p′ as pl, we have that

∑
p∈

⋃
p′∈p p

E[NT (p)] =
∑

p∈S(p′)

E[NT (p)]

= E[nT (p
′)] ≤ 4K lnT

(∆p′

min)
2
+O(1).

The above observations imply that even though we can not find any meta arm p in S(pk) such

that pmin(p) = pk, we can always carry out similar analysis by finding another discretized arm

p′ ∈ p but p′ ̸= pk, such that p′ = pmin(p). Thus, for each discretized arm pk, we can focus

on the case where pk is able to attain the minimum nt(pk) for some p ∈ S(pk). For analysis

convenience, instead of looking at the counter of p, i.e., nt(pmin(p)), we will define a counter

c(pk) for each discretized arm pk and the value of c(pk) at time t is denoted by ct(pk). The

update of ct(pk) is as follows: For a round t > ⌈K/ϵ⌉ (here ⌈K/ϵ⌉ is the number of rounds

needed for initialization), let p(t) be the meta arm selected in round t by the algorithm. Let

pk = argminpk∈p(t) ct−1(pk). We increment c(pk) by one, i.e., ct(pk) = ct−1(pk) + 1. In other

words, we find the discretized arm pk with the smallest counter in p(t) and increment its

counter. If such pk is not unique, we pick an arbitrary discretized arm with the smallest

counter. Note that the initialization gives
∑

pk
c⌈K/ϵ⌉(pk) = ⌈K/ϵ⌉. It is easy to see that for

any pk = pmin(p), we have nt(pk) = ct(pk).
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With the above change of counters, Lemma B.3.2 and Lemma B.3.3 then have the implication

on selecting discretized arm pk /∈ p∗
ϵ given its counter ct(pk). To see this, for each pl ∈ S(pk),

we define sufficient selection of discretized arm pk with respect to pl as pk being selected

4K lnT/
(
∆pk

l

)2 times and pk’s counter c(pk) being incremented in these selected instances.

Then Lemma B.3.2 tells us when pk is sufficiently selected with respect to pl, the probability

that the meta arm pl is selected by the algorithm is very small. On the other hand, when

pk’s counter c(pk) is incremented, but if pk is under-selected with respect to pl, we incur a

regret of at most ∆pk
j for some j ≤ l.

Define CT (∆) := 4K lnT
∆2 , the number of selection that is considered sufficient for a meta arm

with reward ∆ away from the optimal strategy p∗
ϵ with respect to time horizon t. With the

above analysis, we define following two situations for the counter of each discretizad arm:

cl,sufT (pk) :=
T∑

t=⌈K/ϵ⌉+1

1 (p(t) = pl, ct(pk) > ct−1(pk) > CT (∆
pk
l )) ,

cl,undT (pk) :=
T∑

t=⌈K/ϵ⌉+1

1 (p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ≤ CT (∆
pk
l )) .

Clearly, we have cT (pk) = 1 +
∑

l∈I(pk)
(
cl,sufT (pk) + cl,undT (pk)

)
. With these notations, we can

write (B.4) as follows:

Regϵ(T ) ≤ E
[∑

pk

(
∆pk

max +
∑

l∈[I(pk)]

(
cl,sufT (pk) + cl,undT (pk)

)
·∆pk

l

)]
. (B.5)
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The proof of this lemma will complete after establishing following two claims:

Claim 1: E
[∑

pk

∑
l∈[I(pk)]

cl,sufT (pk)

]
≤ ⌈K/ϵ⌉ · O(1). (B.6)

Claim 2: E
[∑

pk

∑
l∈[I(pk)]

cl,undT (pk)∆
pk
l

]
≤
∑
pk

((4K lnT )/∆pk
min + 4K lnT (1/∆pk

min − 1/∆pk
max)) .

(B.7)

We now first prove the Claim 1 as in (B.6), i.e., for any t > ⌈K/ϵ⌉, we have following upper

bound over counters of sufficiently selected discretized arms. To see this, by definition of

cl,sufT (pk), it reduces to show that for any T ≥ t > ⌈K/ϵ⌉,

E
[∑

pk

∑
l∈[I(pk)]

1 (p(t) = pl, ct(pk) > ct−1(pk) > CT (∆
pk
l ))

]
=
∑
pk

∑
l∈[I(pk)]

P (p(t) = pl, pk = pmin(pl);∀p ∈ pl, ct−1(p) > CT (∆
pk
l ))

(a)
≤ ⌈4K/ϵ⌉ · t−2,

where the last step (a) is due to Lemma B.3.2, thus (B.6) follows from a simple series bound.

We now proceed to analyze the discretized arms that are not sufficiently included in the

meta arm chosen by the algorithm and prove the Claim 2 as in (B.7). For any under-

selected discretized arm pk, its counter c(pk) will increase from 1 to CT (∆
pk
min). To simplify

the notation, we set CT (∆
pk
0 ) = 0. Suppose that at round t, c(pk) is incremented, and

ct−1(pk) ∈ (CT (∆
pk
j−1), CT (∆

pk
j )] for some j ∈ [I(pk)]. Notice that we are only interested in the

case that pk is under-selected. In particular, if this is indeed the case, p(t) = pl for some l ≥ j.

(Otherwise, p(t) is sufficiently selected based on the counter value ct−1(pk).) Thus, we will

suffer a regret of ∆pk
l ≤ ∆pk

j (step (a)). As a result, for counter ct(pk) ∈ (CT (∆
pk
j−1), CT (∆

pk
j )],

we will suffer a total regret for those playing suboptimal meta arms that include under-selected

175



discretized arms at most (CT (∆
pk
j )− CT (∆

pk
j−1)) ·∆pk

j in rounds that ct(pk) is incremented

(step (b)). In what follows we establish the above analysis rigorously.

∑
l∈[I(pk)]

cl,undT (pk)∆
pk
l

=
T∑

t=⌈K/ϵ⌉+1

∑
l∈[I(pk)]

1 (p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ≤ CT (∆
pk
l )) ·∆pk

l

=
T∑

t=⌈K/ϵ⌉+1

∑
l∈[I(pk)]

l∑
j=1

1
(
p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ∈ (CT (∆

pk
j−1), CT (∆

pk
j )]
)
·∆pk

l

(a)
≤

T∑
t=⌈K/ϵ⌉+1

∑
l∈[I(pk)]

l∑
j=1

1
(
p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ∈ (CT (∆

pk
j−1), CT (∆

pk
j )]
)
·∆pk

j

≤
T∑

t=⌈K/ϵ⌉+1

∑
l,j∈[I(pk)]

1
(
p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ∈ (CT (∆

pk
j−1), CT (∆

pk
j )]
)
·∆pk

j

=
T∑

t=⌈K/ϵ⌉+1

∑
j∈[I(pk)]

1
(
p(t) ∈ S(pk), ct(pk) > ct−1(pk), ct−1(pk) ∈ (CT (∆

pk
j−1), CT (∆

pk
j )]
)
·∆pk

j

(b)
≤

∑
j∈[I(pk)]

(CT (∆
pk
j )− CT (∆

pk
j−1)) ·∆pk

j .

Now, we can compute the regret incurred by selecting the meta arm which includes under-

selected discretized arms:

∑
pk

∑
l∈[I(pk)]

cl,undT (pk)∆
pk
l ≤

∑
pk

∑
j∈[I(pk)]

(CT (∆
pk
j )− CT (∆

pk
j−1)) ·∆pk

j

=
∑
pk

(
CT (∆

pk
min)∆

pk
min +

∑
j∈[I(pk)−1]

CT (∆
pk
j ) · (∆pk

j −∆pk
j+1)

)

≤
∑
pk

(
CT (∆

pk
min)∆

pk
min +

∫ ∆
pk
max

∆
pk
min

Ct(x)dx

)
=
∑
pk

(
4K lnT

∆pk
min

+ 4K lnT

(
1

∆pk
min
− 1

∆pk
max

))
. (B.8)
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Equipped with the above set of results, the bound of regret (B.5) follows by combing the

bounds in (B.6) and (B.7).

To achieve instance-independent regret bound, we need to deal with the case when the

meta-arm gap ∆pk
min is too small, leading the regret to approach infinite. Nevertheless, one

can still show that when ∆pk
min ≤ 1/

√
T , the regret contributed by this scenario scales at most

O(
√
T ) at time horizon T .

Lemma B.3.5. Following the UCB designed in (B.3), we have: Regϵ(T ) ≤ O
(
K
√

T lnT/ϵ
)
.

Proof. Following the proof of Lemma B.3.4, we only need to consider the meta arms that are

played when they are under-sampled. We particularly need to deal with the situation when

∆pk
min is too small. We measure the threshold for ∆pk

min based on cT (pk), i.e., the counter of

disretized arm pk at time horizon T . Let {T (pk),∀pk} be a set of possible counter values at time

horizon T . Our analysis will then be conditioned on the event that E(pk) = {cT (pk) = T (pk)}.

By definition,

E
[ ∑
l∈[I(pk)]

cl,undT (pk) ·∆pk
l | E(pk)

]
=

T∑
t=⌈K/ϵ⌉+1

∑
l∈[I(pk)]

1 (p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ≤ CT (∆
pk
l ) | E(pk)) ·∆pk

l . (B.9)

We define ∆∗(T (pk)) :=
(

4K lnT
T (pk)

)1/2
, i.e., CT (∆

∗(T (pk))) = T (pk). To achieve instance-

independent regret bound, we consider following two cases:

Case 1: ∆pk
min > ∆∗(T (pk)), we thus have

E
[ ∑
l∈[I(pk)]

cl,undT (pk) ·∆pk
l | E(pk)

]
≤ O

(√
4K lnT · T (pk)

)
. (B.10)
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Case 2: ∆pk
min < ∆∗(T (pk)). Let l∗ := min{l ∈ I(pk) : ∆

pk
l > ∆∗(T (pk))}. Observe that we

have ∆pk
l∗ ≤ ∆∗(T (pk)) and the counter c(pk) never go beyond T (pk), we thus have

(B.9) ≤ (CT (∆
∗(T (pk)))− CT (∆

pk
l∗−1)) ·∆∗(T (pk)) +

∑
j∈[l∗−1]

(CT (∆
pk
j )− CT (∆

pk
j−1)) ·∆pk

j

≤ CT (∆
∗(T (pk))) ·∆∗(T (pk)) +

∫ ∆
pk
max

∆∗(T (pk))

CT (x)dx ≤ O
(√

K lnT · T (pk)
)
. (B.11)

Thus, combining (B.10) and (B.11), we have

E
[ ∑
pk:∆

pk
min>0

∑
l∈[I(pk)]

cl,undT (pk) ·∆pk
l | E(pk)

]
≤

∑
pk:∆

pk
min>0

O(
√

K lnT · T (pk))

(a)
≤ O(K

√
T lnT/ϵ),

where (a) is by Jesen’s inequality and
∑

pk
T (pk) ≤ KT/ϵ. Put all pieces together, we have the

instance-independent regret bound as stated in the lemma. Observe that the final inequality

does not depend on the event E(pk), we thus can drop this conditional expectation.

With the above lemma in hand, picking ϵ = Θ((lnT/T )1/3) will give us desired result in

Theorem 3.4.1. 26

Remark B.3.1. When only one arm is activated according to p(t), the Hoeffding’s inequality

is adapted as follows:

P
(
|U t(p)− U(p)| ≥ δ

)
≤
∑
k

P
(
|pkr̄(pk)− pkr(pk)| ≥ δ/K

)
≤
∑
k

2 exp
(
−2δ2nt(pk)/K

2
)
≤ 2K exp

(
−2δ2nt(pmin(p))/K

2
)
.

26Here the choice of ϵ absorbs Lipschitz constant of rk(·).
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The below analysis carries over with accordingly changing δ =
√

K ln t
nt(pmin(p))

to δ =
√

K2 ln(
√
Kt)

nt(pmin(p))
,

and the condition of nt(pmin(p)) in Lemma B.3.2 is changed to 4K2 ln(
√
Kt)/∆2

p to account

for larger δ. As a result, the instance-independent regret bound in Lemma B.3.5 is changed

to O
(
K
√
KT ln(

√
KT )/ϵ

)
. Together with the discretization error, one can then optimize

the choice of ϵ to get Õ(K4/3T 2/3) regret bound.

Regret Bound Comparison with [29]

In the work [29], the authors study the setting when pulling the meta arm, each base arm in

(or possibly other base arm) this meta arm will be triggered and played as a result. Back

to our setting, this is saying that when pulling a meta arm p = (p1, . . . , pK), each base arm

k will be triggered with its corresponding probability (discretized arm) pk. The authors

in [29] discuss a general setting which allows complex reward structure where only requires

two mild conditions. In particular, one of the condition they need for expected reward of

playing a meta arm is the bounded smoothness (cf., Definition 1 in [29].). In the Theorem 2

of [29], the authors give results when the function used to characterize bounded smoothness

is f(x) = γ · xω for some γ > 0 and ω ∈ (0, 1]. In more detail, they achieve a regret bound

O
(

2γ
2−ω

(
12|M| lnT

p∗

)ω/2
· T 1−ω/2 + |M| ·∆max

)
where p∗ ∈ (0, 1) is the minimum triggering

probability across all base arms and ∆max is the largest badness of the suboptimal meta arm

in discretized space. 27 Adapt to our setting, by inspection, we have γ = L∗, ω = 1, p∗ = ϵ,

|M| = Θ(K/ϵ), and ∆max = Θ(KL∗). Substituting these values to the above bound, ignoring

constant factors and combining with the discretization error, we have

O
((

K lnT

ϵ2

)1/2

· T 1/2 +K2/ϵ

)
+O(TKϵ).

Picking ϵ = Θ(lnT/(KT ))1/4 will give us result.
27For simplicity, the bound we present here omits a non-significant term.
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B.4 Proof of Theorem 3.5.1 for History-dependent Ban-

dits

In this section, we provide the analysis of Theorem 3.5.1. The analysis follows a similar

structure to the one used in the proof of the regret bound in Theorem 3.4.1. However, due to

the existence of historical bias, we need to perform a careful computation when handling the

high-probability bounds. Specifically, we need to prove that, after deploying p consecutively

for moderate long rounds (tuning sa), the approximation error
∣∣U(p) − U

est
m (p)

∣∣ is small

enough. The analysis is provided below.

Step 1: Bounding the small error of
∣∣U(p)− U

est
m (p)

∣∣ with high-probability. Our

first step is to ensure the empirical mean reward estimation we obtain from the information

we collected in all the estimation stages will approximate well the true mean of meta arm we

want to deploy.

To return a high-probability error bound, we first bound the approximation error incurred

due to the dependency of history of arm selection (“historical bias"). This is summarized

below.

Lemma B.4.1. Keeping deploying p = {p1, . . . , pK} in the approaching stage with sa rounds,

and collect all reward feedback in the following estimation stage for the empirical estimation

of rewards generated by p, one can bound the approximation error as follows:

E
[∣∣Uest

m (p)− U(p)
∣∣] ≤ Kγsa(L∗ + 1),

where U(p) denote the empirical mean of rewards if the instantaneous reward is truly sampled

from mean reward function according to p.
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Proof. The proof of this lemma is mainly built on analyzing the convergence of p(γ) via

pulling the base arms with the same probability consistently. For the ease of presentation, let

us suppose t = mL and let testm := t
L
(L− sa) = m(L− sa) be the total number of estimation

rounds in the first m phases. Thus, at the end of the approaching stage, we have

p̂
(γ)
k (t+ sa) =

pk(t+ sa)γ
0 + . . .+ pk(t+ 1)γsa−1 + (1 + γ + . . .+ γt−1)γsa p̂

(γ)
k (t)

1 + γ + . . .+ γt+sa−1
,

where p̂
(γ)
k (t) = pk(t)γ

0+...+pk(1)γ
t−1

1+γ+...+γt−1 . Recall that during the approaching stage, we consistently

pull arm k with the same probability pk. Thus, the approximation error of p̂(γ)k (t+ sa) w.r.t.

pk can be computed as:

∣∣p̂(γ)k (t+ sa)− pk
∣∣ = ∣∣∣∣pk(1− γsa) + p̂

(γ)
k (t)γsa(1− γt)

1− γt+sa
− pk

∣∣∣∣ ≤ γsa(1− γt)

1− γt+sa
< γsa .

Recall that U(p) =
∑

pk∈p pkrk(pk). In the estimation stage, we approximate all the realized

utility as the utility generated by the meta arm p. However, note that we actually cannot

compute the empirical value of U(p), instead, we use U
est
m (p(t + sa)) of each phase as an

approximation of U(p), i.e., we approximate all p(γ)(t+ s),∀s ∈ (sa, L] as p(t+ sa) and use

p(t+ sa) as the approximation of p. Recall that for any s ∈ (sa, L], we have:

∣∣p̂(γ)k (t+ s)− pk
∣∣ = ∣∣∣∣γs(1− γt)(p̂

(γ)
k (t)− pk)

1− γt+s

∣∣∣∣ ≤ γs(1− γt)

1− γt+s
<

γsa(1− γt)

1− γt+sa
< γsa .
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Thus, the approximation error on the empirical estimation can be computed as follows:

E
[∣∣Uest

m (p(t+ sa))− U(p)
∣∣] = E

[∣∣∣∣ ∑
p
(γ)
k ∈p(t+sa)

p
(γ)
k r̄estt+sa(p

(γ)
k )−

∑
pk∈p

pkr̄
est
t+sa(pk)

∣∣∣∣]

=

∣∣∣∣∑ p
(γ)
k E

[
r̄estt+sa(p

(γ)
k )
]
−
∑

pkE
[
r̄estt+sa(pk)

] ∣∣∣∣
=

∣∣∣∣∑ p
(γ)
k rk(p

(γ)
k )−

∑
pkrk(pk)

∣∣∣∣
=

∣∣∣∣∑(
p
(γ)
k

(
rk(p

(γ)
k )− rk(pk)

)
+ rk(pk)(p

(γ)
k − pk)

) ∣∣∣∣
≤
∑∣∣∣γsaLkp

(γ)
k + rk(pk)γ

sa
∣∣∣ ≤ Kγsa(L∗ + 1).

With the approximation error at hand, we can then bound the error of
∣∣U(p)−U

est
m (p)

∣∣ with

high probability:

Lemma B.4.2. With probability at least 1− 6(
Lρm
)2 , we have

∣∣U(p)− U
est
m (p)

∣∣ ≤ err+ 3

√
K ln

(
Lρm

)
nest
m (pmin(p))

,

where pmin(p) = argminpk∈p n
est
m (pk).
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Proof. We first decompose
∣∣U(p)−U

est
m (p

(γ)
e )
∣∣ as

∣∣U(p)−U(p)
∣∣+ ∣∣U(p)−U

est
m (p)

∣∣ and then

apply union bound.

P
(∣∣U(p)− U

est
m (p(t+ sa))

∣∣ ≥ δ
)

≤ P
(∣∣U(p)− U(p)

∣∣+ ∣∣U(p)− U
est
m (p(t+ sa))

∣∣ ≥ δ
)

By triangle inequality

= P
(∣∣U(p)− U(p)

∣∣+ ∣∣Uest
m (p(t+ sa))− E[Uest

m (p(t+ sa))]−

(U(p)− E[U(p)]) + E[U(p)]− E[Uest
m (p(t+ sa))]

∣∣ ≥ δ

)
≤ P

(
2
∣∣U(p)− U(p)

∣∣+ ∣∣Uest
m (p(t+ sa))− E[Uest

m (p(t+ sa))
∣∣ ≥ δ − err

)
(a)
≤ 3P

(
|U(p)− U(p)

∣∣ ≥ δ − err
3

)
≤ 6 exp

(
− 2nest

m (pmin(p))(δ − err)2

9K

)
,

where in step (a), we use the Hoeffding’s Inequality on Weighted Sums and Lemma B.4.1.

Step 2: Bounding the probability on deploying suboptimal meta arm. Till now,

with the help of the above high probability bound on the empirical reward estimation, the

history-dependent reward bandit setting is largely reduced to an action-dependent one with

a certain approximation error. Then, similar to our argument on upper bound of action-

dependent bandits, we have the following specific Lemma for history-dependent bandits:

Lemma B.4.3. At the end of each phase, for a suboptimal meta arm p, if it satisfies

nest
m (pmin(p)) ≥

9K ln
(
Lρm
)(

∆p/2−err
)2 , then with the probability at least 1− 12(

Lρm
)2 , we have UCBm(p) <

UCBm(p∗), i.e.,

P
(
p(m+ 1) = p|nest

m (pmin(p)) ≥
9K ln

(
Lρm

)(∆p

2
− err

)2 ) ≤ 12(
Lρm

)2 .
Proof. To prove the above lemma, we construct two high-probability events. Event 1

corresponds to that the UCB index of each meta arm concentrates on the true mean utility of
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p; Event 2 corresponds to that the empirical mean utility of each approximated meta arm

p(γ) concentrates on the true mean utility of p. The probability of Event 1 or Event 2 not

holding is at most 4/t2. By the definition of the constructed UCB, we’ll have

UCBm(p) = U
est
m (p(t+ sa)) + err+ 3

√
K ln (Lρm)

nest
m (pmin(p))

(a)
≤ U

est
m (p(t+ sa)) + ∆p/2

(b)
< (U(p) + ∆p/2) + ∆p/2 By Event 1

= U(p∗
ϵ)

(c)
< UCBm(p∗

ϵ), By Event 2

where the first inequality (a) is due to nest
m (pmin(p)) ≥ 9K ln(Lρm)

(∆p/2−err)2
, and the probability of

step (b) or (c) not holding is at most 12/(Lρm)2.

The above lemma implies that we will stop deploying suboptimal meta arm p and further

prevent it from incurring regret as we gather more information about it such that UCBm(p) <

UCBm(p∗
ϵ).

Step 3: Bounding the E[nest
m (pmin(p))]. The results we obtain in Step 2 implies following

guarantee:

Lemma B.4.4. For each suboptimal meta arm p ̸= p∗, we have following:

E[nest
m (pmin(p))] ≤

9K ln
(
Lρm

)(
∆p/2− err

)2 +
2π2

L− sa
.
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Proof. For notation simplicity, suppose t = mL. For each suboptimal arm p ̸= p∗
ϵ , and

suppose there exists pmin(p) /∈ p∗
ϵ such that pmin(p) = argminpk∈p n

est
t (pk), then

E[nest
t (pmin(p))]

= (L− sa)E

[
m∑
i=1

1 (p(i) = p,p ∈ S(pmin(p)))

]

= (L− sa)E

[
m∑
i=1

1

(
p(i) = p,p ∈ S(pmin(p));n

est
i (pmin(p)) <

9K ln (i(L− sa))

(∆p/2− err)2

)]
+

(L− sa)E

[
m∑
i=1

1

(
p(i) = p,p ∈ S(pmin(p));n

est
i (pmin(p)) ≥

9K ln (i(L− sa))

(∆p/2− err)2

)]
(a)
≤ 9K ln (testm )

(∆p/2− err)2
+ (L− sa)E

[
m∑
i=1

1

(
p(i) = p,p ∈ S(pmin(p));n

est
i (pmin(p)) ≥

9K ln (i(L− sa))

(∆p/2− err)2

)]

=
9K ln (testm )

(∆p/2− err)2
+ (L− sa)

m∑
i=1

P

(
p(i) = p,p ∈ S(pmin(p))

∣∣∣∣nest
i (pmin(p)) ≥

9K ln (i(L− sa))

(∆p/2− err)2

)
·

P

(
nest
i (pmin(p)) ≥

9K ln (i(L− sa))

(∆p/2− err)2

)

≤ 9K ln (testm )

(∆p/2− err)2
+ (L− sa)

m∑
i=1

12

(i(L− sa))
2 ≤

9K ln (testm )

(∆p/2− err)2
+

2π2

L− sa
.

In step (a), suppose for contradiction that the indicator 1 (p(i) = p,p ∈ S(pmin(p));n
est
i (pmin(p)) < S)

takes value of 1 at more than S− 1 time steps, where S = 9K ln(i(S−sa))

(∆p/2−err)2
. Let τ be the phase at

which this indicator is 1 for the (S − 1)-th phase. Then the number of pulls of all meta arms

in S(pmin(p)) is at least L times until time τ (including the initial pull), and for all i > τ ,

ni(pmin(p)) ≥ S which implies nest
i (pmin(p)) ≥ 9K ln(i(S−sa))

(∆p/2−err)2
. Thus, the indicator cannot be 1

for any i ≥ τ , contradicting the assumption that the indicator takes value of 1 more than S

times. This bounds 1 + E [
∑m

i=1 1 (p(i) = p,p ∈ S(pmin(p));n
est
i (pmin(p)) < S)] by S.

Wrapping up: Proof of Theorem 3.5.1. Following the similar analysis in Section 3, we

can also get an instance-dependent regret bound for history-dependent bandits:
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Lemma B.4.5. Following the UCB designed in Algorithm 5, we have following instance-

dependent regret on discretized arm space for history-dependent bandits:

Regϵ(T ) ≤ O
(
K∆max

Lϵρ2

)
+
∑
pk

(
9K ln (Tρ)

ρ

(
∆pk

min

(∆pk
min/2− err)2

+
2

∆pk
min/2− err

))
.

Proof. For notation simplicity, we include all initialization rounds to phase 0 and suppose

the time horizon T = ML. Note that by definitions, we can compute the regret Regϵ(T ) as

follows:

Regϵ(T ) =
∑
p∈Pϵ

E[NT (p)]∆p ≤
∑
pk

∑
pl∈S(pk)

E[NT (pl)]∆
pk
l . (B.12)

where Nt(p) = K + L
∑M

m=1 1 (p(m) = p), where K here accounts for the initialization.

Follow the same analysis in action-dependent bandits, we can also define a counter cest(pk)

for each discretized arm pk and the value of cest(pk) at phase m is denoted by cestm (pk). But

different from the action-dependent bandit setting, we update the counter cest(pk) only when

we start a new phase. In particular, for a phase m ≥ 1, let p(m) be the meta arm selected

in the phase m by the algorithm. Let pk = argminpk∈p(m) c
est
m (pk). We increment cestm (pk)

by one, i.e., cestm (pk) = cestm−1(pk) + 1. In other words, we find the discretized arm pk with

the smallest counter in p(m) and increment its counter. If such pk is not unique, we pick

an arbitrary discretized arm with the smallest counter. Note that the initialization gives∑
pk
cest0 (pk) = ⌈K/ϵ⌉. It is easy to see that for any pk = pmin(p), we have nm(pk) = Lρ·cm(pk).

Like in action-dependent bandits, we also define Cest
M (∆) := 9K ln(MLρ)

Lρ(∆/2−err)2
, the number of

selection that is considered sufficient for a meta arm with reward ∆ away from the optimal

strategy p∗
ϵ with respect to phase horizon M . With the above notations, we define following
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two situations for the counter of each discretized arm:

cest,l,sufM (pk) :=
M∑

m=1

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk) > Cest

M (∆pk
l )
)

(B.13)

cest,l,undM (pk) :=
M∑

m=1

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), c

est
m−1(pk) ≤ Cest

M (∆pk
l )
)
. (B.14)

Clearly, we have cestM (pk) = 1 +
∑

l∈I(pk)
(
cest,l,sufM (pk) + cest,l,undM (pk)

)
. With these notations,

we can write (B.12) as follows:

Regϵ(T ) ≤ E

∑
pk

∆pk
max + L ·

∑
l∈[I(pk)]

(
cest,l,sufM (pk) + cest,l,undM (pk)

)
·∆pk

l

 . (B.15)

We now first show that for any m ≥ 1, we have following upper bound over counters of

sufficiently selected discretized arms:

E
[
L ·
∑
pk

∑
l∈[I(pk)]

cl,sufM (pk)

]
≤ O

(
K

Lϵρ2

)
. (B.16)

To see this, by definition of cest,l,sufM (pk), it reduces to show that for any M ≥ m > 1,

E
[
L ·
∑
pk

∑
l∈[I(pk)]

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk) > Cest

M (∆pk
l )
) ]

= L ·
∑
pk

∑
l∈[I(pk)]

P
(
p(m) = pl, pk = pmin(pl);∀p ∈ pl, Lρ · cestm−1(p) >

9K ln (MLρ)(
∆pk

l /2− err
)2)

(a)
≤ ⌈12LK/ϵ⌉ · (MLρ)−2,

where the last step (a) is due to Lemma B.4.3, thus (B.16) follows from a simple series bound.

We now proceed to analyze the discretized arms that are not sufficiently included in the meta

arm chosen by the algorithm. For any under-selected discretized arm pk, its counter cest(pk)
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will increase from 1 to Cest
M (∆pk

min). To simplify the notation, we set Cest
M (∆pk

0 ) = 0. Suppose

that at phase m ≥ 1, cest(pk) is incremented, and cestm−1(pk) ∈ (Cest
M (∆pk

j−1), C
est
M (∆pk

j )] for

some j ∈ [I(pk)]. Notice that we are only interested in the case that pk is under-selected.

In particular, if this is indeed the case, p(m) = pl for some l ≥ j. (Otherwise, p(m) is

sufficiently selected based on the counter value cestm−1(pk).) Thus, we will suffer a regret of

∆pk
l ≤ ∆pk

j (step (a)). As a result, for counter cestm (pk) ∈ (Cest
M (∆pk

j−1), C
est
M (∆pk

j )/L], we will

suffer a total regret for those playing suboptimal meta arms that include under-selected

discretized arms at most (Cest
M (∆pk

j )−Cest
M (∆pk

j−1)) ·∆pk
j in rounds that cestm (pk) is incremented

(step (b)). In what follows we establish the above analysis rigorously.

∑
l∈[I(pk)]

cest,l,undM (pk)∆
pk
l

=
M∑

m=1

∑
l∈[I(pk)]

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), c

est
m−1(pk) ≤ Cest

M (∆pk
l )
)
·∆pk

l

=
M∑

m=1

∑
l∈[I(pk)]

l∑
j=1

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), c

est
m−1(pk) ∈ (Cest

M (∆pk
j−1), C

est
M (∆pk

j )]
)
·∆pk

l

(a)
≤

M∑
m=1

∑
l∈[I(pk)]

l∑
j=1

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), c

est
m−1(pk) ∈ (Cest

M (∆pk
j−1), C

est
M (∆pk

j )]
)
·∆pk

j

≤
M∑

m=1

∑
l,j∈[I(pk)]

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), c

est
m−1(pk) ∈ (Cest

M (∆pk
j−1), C

est
M (∆pk

j )]
)
·∆pk

j

=
M∑

m=1

∑
j∈[I(pk)]

1
(
p(m) ∈ S(pk), cestm (pk) > cestm−1(pk), c

est
m−1(pk) ∈ (Cest

M (∆pk
j−1), C

est
M (∆pk

j )]
)
·∆pk

j

(b)
≤

∑
j∈[I(pk)]

(Cest
M (∆pk

j )− Cest
M (∆pk

j−1)) ·∆pk
j .
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Now, we can compute the regret incurred by selecting the meta arm which includes under-

selected discretized arms:

L ·
∑
pk

∑
l∈[I(pk)]

cest,l,undM (pk) ·∆pk
l

≤ L ·
∑
pk

∑
j∈[I(pk)]

(Cest
M (∆pk

j )− Cest
M (∆pk

j−1)) ·∆pk
j

= L ·
∑
pk

(
Cest

M (∆pk
min)∆

pk
min +

∑
j∈[I(pk)−1]

Cest
M (∆pk

j ) · (∆pk
j −∆pk

j+1)

)

≤ L ·
∑
pk

(
Cest

M (∆pk
min)∆

pk
min +

∫ ∆
pk
max

∆
pk
min

Cest
M (x)dx

)

=
∑
pk

(
9K ln (MLρ)

ρ (∆pk
min/2− err)2

·∆pk
min + 9K ln (MLρ) /ρ ·

∫ ∆
pk
max

∆
pk
min

1

(x/2− err)2
dx

)

=
∑
pk

(
9∆pk

minK ln (MLρ)

ρ (∆pk
min/2− err)2

+
9K ln (MLρ)

ρ

(
2

∆
pk
min

2
− err

− 2

∆pk
max/2− err

))

≤
∑
pk

(
9K ln (MLρ)

ρ

(
∆pk

min

(∆pk
min/2− err)2

+
2

∆pk
min/2− err

))
.

Combing the bound established in (B.16) will complete the proof.

The instance-independent regret on discretized arm space is summarized in following lemma:

Lemma B.4.6. Following the UCB designed in Algorithm 5, the instance-independent regret

is given as Regϵ(T ) ≤ O
(
K ·

√
T ln(Tρ)/(ρϵ) +K/(Lϵρ2)

)
.

Proof. Following the proof action-dependent bandits, we only need to consider the meta

arms that are played when they are under-sampled. We particularly need to deal with the

situation when ∆pk
min is too small. We measure the threshold for ∆pk

min based on cestM (pk), i.e.,

the counter of disretized arm pk at phase horizon M . Let {M(pk),∀pk} be a set of possible

counter values at time horizon M . Our analysis will then be conditioned on the event that
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E(pk) := {cestM (pk) = M(pk)}. By definition,

E
[ ∑
l∈[I(pk)]

cest,l,undM (pk) ·∆pk
l | E(pk)

]
=

M∑
m=1

∑
l∈[I(pk)]

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), c

est
m−1(pk) ≤ Cest

M (∆pk
l ) | E(pk)

)
·∆pk

l .

(B.17)

We define ∆∗(M(pk)) := 2
(

9K ln(MLρ)
Lρ·M(pk)

)1/2
+ 2err. thus we have Cest

M (∆∗(M(pk))) = M(pk).

To achieve instance-independent regret bound, we consider following two cases:

Case 1: ∆pk
min > ∆∗(M(pk)), clearly we have ∆pk

min/2 > err. Thus,

L · E
[ ∑
l∈[I(pk)]

cest,l,undM (pk) ·∆pk
l | E(pk)

]
≤ O

(√
K ln(Tρ) · LM(pk)

ρ

)
. (B.18)

Case 2: ∆pk
min < ∆∗(M(pk)). Let l∗ := min{l ∈ I(pk) : ∆

pk
l > ∆∗(M(pk))}. Observe that we

have ∆pk
l∗ ≤ ∆∗(M(pk)) and the counter cest(pk) never go beyond M(pk), we thus have

L · (B.17) ≤ L(Cest
M (∆∗(M(pk)))− Cest

M (∆pk
l∗−1)) ·∆∗(M(pk)) +

∑
j∈[l∗−1]

L(Cest
M (∆pk

j )− Cest
M (∆pk

j−1)) ·∆pk
j

≤ LCest
M (∆∗(M(pk))) ·∆∗(M(pk)) + L

∫ ∆
pk
max

∆∗(M(pk))

Cest
M (x)dx

≤ O
(√

K ln(Tρ) · LM(pk)

ρ

)
. (B.19)

Combining (B.18) and (B.19), and with Jesen’s inequality and
∑

pk
M(pk) ≤ KM/ϵ will give

us desired result. Put all pieces together, we have the instance-independent regret bound as

stated in the lemma. The final inequality does not depend on the event E(pk), we thus can

drop this conditional expectation.
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Combining with the discretization error, we have

Reg(T ) ≤ O
(
K ·

√
T ln(Tρ)/(ρϵ) +K/(Lϵρ2)

)
+O(KϵT ).

Picking

ϵ = O
(
ln(Tρ)

Tρ

)1/3

; sa = O

1/3 ln
(

ln(Tρ)
Tρ

)
− ln(L∗K)

ln γ

 .

We will obtain the results as stated in the theorem.
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