CSE 417T
Introduction to Machine Learning

Lecture 12
Instructor: Chien-Ju (CJ) Ho
Logistics: Reminders

• HW 2: Feb 24, 2020 (Monday)
 • Reserve time for submissions
 • No extensions will be given for last-minute technical reasons

• Exam 1: March 3, 2020 (Tuesday)
 • In-class exam (the same time/location as the lecture)
 • Exam duration: 75 minutes
 • Planned exam content: LFD Chapter 1 to 5
 • Check seat assignments on Piazza the night before the exam
 • More details in the Slides on Feb 18
Recap
Overfitting and Its Cures

• Overfitting
 • Fitting the data more than is warranted
 • Fitting the noise instead of the pattern of the data
 • Decreasing E_{in} but getting larger E_{out}
 • When H is too strong, but N is not large enough

• Regularization
 • Intuition: Constraining H to make overfitting less likely to happen

• Validation
 • Intuition: Reserve data to estimate E_{out}
Regularization (Constraining H)

- Weight decay

$$H(C) = \{ h \in H_Q \text{ and } \vec{w}^T\vec{w} \leq C \}$$

- Algorithm: Find $g \in H(C)$ such that $g \approx f$

Constrained optimization

\[
\text{minimize } E_{in}(\vec{w}) \\
\text{subject to } \vec{w}^T\vec{w} \leq C
\]

Unconstrained optimization

\[
\text{minimize } E_{in}(\vec{w}) + \frac{\lambda_c}{N}\vec{w}^T\vec{w}
\]

Augmented error
Augmented Error

• Define augmented error

 \[E_{aug}(\vec{w}) = E_{in}(\vec{w}) + \frac{\lambda_C}{N} \vec{w}^T \vec{w} \]

 • Algorithm: Find \(\vec{w}^* = \arg\min E_{aug}(\vec{w}) \)

• A bit more discussion

 • When \(C \to \infty, \lambda_C = 0 \)

 • Smaller \(C \) (stronger constraints)

 • \(\Rightarrow \) larger \(\lambda_C \)

 • \(\Rightarrow \) smaller \(H \)

 • \(\Rightarrow \) stronger regularization

 • Use \(\lambda_C \) to tune the level of regularization

\[H(C) = \{ h \in H_Q \text{ and } \vec{w}^T \vec{w} \leq C \} \]
General Form of Regularization

\[E_{aug}(h, \lambda, \Omega) = E_{in}(\overline{w}) + \frac{\lambda}{N} \Omega(h) \]

• Key components
 • \(\Omega \): Regularizer
 • \(\lambda \): Amount of regularization

• Does the form look familiar? Recall in the VC Theory (treating \(\delta \) as a constant)
 • \(E_{out}(g) \leq E_{in}(g) + O(\sqrt{d_{vc} \frac{\ln N}{N}}) \)

• If we pick the right \(\Omega \), \(E_{aug} \) can be a good proxy for \(E_{out} \)
How to Pick the Right Ω

- Intuition: pick Ω that leads to “smoother” hypothesis
 - Overfitting is due to noise
 - Informally, noise is generally ”high frequency”

- Computation: prefer Ω that makes the optimization easier (e.g., convex/differentiable)
 - Similar to picking the error measure

- We might have some other objective in mind
 - Ex: L-1 regularizer leads to weight vectors with more 0s
Brief Lecture Notes Today

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.
More Discussion on Regularization
Why $\vec{w}^T \vec{w}$ is Called Weight Decay

• Run gradient descent on $E_{aug}(\vec{w}) = E_{in}(\vec{w}) + \lambda_c \vec{w}^T \vec{w}$

• The update rule would be

\[
\vec{w}(t + 1) \leftarrow \vec{w}(t) - \eta \nabla_{\vec{w}} E_{aug}(\vec{w}(t))
\]

\[
\Rightarrow \vec{w}(t + 1) \leftarrow (1 - 2\eta \lambda_c)\vec{w}(t) - \eta \nabla_{\vec{w}} E_{in}(\vec{w}(t))
\]

We are **decaying** the weights first, then do the update
Linear Regression with Weight Decay

\[E_{aug}(\vec{w}) = E_{in}(w) + \frac{\lambda_c}{N} \vec{w}^T \vec{w} = \frac{1}{N} \|X\vec{w} - \vec{y}\|^2 + \frac{\lambda_c}{N} \vec{w}^T \vec{w} \]

Solve \(\nabla_{\vec{w}} E_{aug}(\vec{w}) \big|_{\vec{w}=\vec{w}_{reg}} = 0 \), we get

1. \(\frac{2}{N} (X^TX\vec{w}_{reg} - X^T\vec{y} + \lambda_c \vec{w}_{reg}) = 0 \)
2. \((X^TX + \lambda_c I)\vec{w}_{reg} = X^T\vec{y} \)
3. \(\vec{w}_{reg} = (X^TX + \lambda_c I)^{-1}X^T\vec{y} \)

Notation: \(I \) is an identity matrix: only the elements in the diagonals are 1, and all others are 0.

This is called “Ridge Regression” in statistics.
Effect of Regularization (Different λ)

- Minimizing $E_{in}(\vec{w}) + \frac{\lambda}{N} \vec{w}^T \vec{w}$ with different λ

\[\lambda = 0 \] \hspace{1cm} \[\lambda = 0.0001 \] \hspace{1cm} \[\lambda = 0.01 \] \hspace{1cm} \[\lambda = 1 \]

Overfitting → → Underfitting
Overfitting and Underfitting

Need to pick the right λ:
Using validation: Focus of this lecture
Variations on Weight Decay (Different Ω)

Uniform Weight Decay

Low Order Fit

Weight Growth!

\[
\sum_{q=0}^{Q} w_q^2
\]

\[
\sum_{q=0}^{Q} qw_q^2
\]

\[
\sum_{q=0}^{Q} \frac{1}{w_q^2}
\]
How to Pick the Right Ω

• As discussed earlier
 • Intuition: pick Ω that leads to “smoother” hypothesis
 • Overfitting is due to noise
 • Informally, noise is generally “high frequency”
 • Computation: prefer Ω that makes the optimization easier (e.g., convex/differentiable)
 • Similar to picking the error measure
 • We might have some other objective in mind
 • Ex: L-1 regularizer leads to weight vectors with more 0s

• What if we pick the wrong Ω (weight growth)
 • We might still fix it by picking the right λ – using validation
Summarizing Regularization

- Regularization is everywhere in machine learning

- Two main ways of thinking about regularization
 - Constraining H to make overfitting less likely to happen
 - Will discuss more regularization methods in the 2nd half of the semester
 - Pruning for decision trees, early stopping / dropout for neural networks, etc

 - Define augmented error E_{aug} to better approximate E_{out}
 - $E_{aug}(h, \lambda, \Omega) = E_{in}(\vec{w}) + \frac{\lambda}{N} \Omega(h)$

- We show the equivalence of the two for weight decay
 - The conceptual equivalence is general with Lagrangian relaxation (will cover later in the semester)
Validation
Prevent Overfitting

\[E_{out}(g) = E_{in}(g) + \text{overfit penalty} \]

- Regularization
 - Choose a regularizer \(\Omega \) to approximate the penalty

- Validation
 - Directly estimate \(E_{out} \) (The real goal of learning is to minimize \(E_{out} \))
Test Set (Want to Estimate E_{out})

• Out-of-sample error $E_{out}(g) = \mathbb{E}_{\tilde{x}}[e(g(\tilde{x}), y)]$
 • Key: \tilde{x} need to be out of sample

• Test set $D_{test} = \{(\tilde{x}_1, y_1), ..., (\tilde{x}_K, y_K)\}$
 • Reserve K data points used to estimate E_{out}
 • None of the data points in test set can be involved in training

• Using the data in test set to estimate E_{out}
 • Since all data points in D_{test} are out of sample
Test Set

• Test set $D_{test} = \{ (\vec{x}_1, y_1), ..., (\vec{x}_K, y_K) \}$
• For a g learned using only training set

• Let $E_{test}(g) = \frac{1}{K} \sum_{k=1}^{K} e(g(\vec{x}_k), y_k)$

 • $E_{test}(g)$ is an unbiased estimate of $E_{out}(g)$
 • $\mathbb{E}[E_{test}(g)] = \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[e(g(\vec{x}_k), y_k)] = E_{out}(g)$

 • Single hypothesis Hoeffding bound applies
 • $E_{out}(g) \leq E_{test}(g) + O\left(\sqrt{\frac{1}{K}}\right)$
Where are Test Set From?

• Given a data set D of N points
 • $D = D_{\text{train}} \cup D_{\text{test}}$
 • Reserving K points for test set means we only have $N - K$ points for training

• Effect of the choice of K
Where are Test Set From?

• Given a data set \(D \) of \(N \) points

 \[D = D_{\text{train}} \cup D_{\text{test}} \]

 • Reserving \(K \) points for test set means we only have \(N - K \) points for training

• Effect of the choice of \(K \)

Rule of Thumb: \(K^* = \frac{N}{5} \)
Utilizing the Whole D

• Process:
 • $D = D_{train} \cup D_{test}$ where $|D_{test}| = K$, $|D_{train}| = N - K$
 • Learn some hypothesis g^- using only D_{train}
 • Estimate $E_{out}(g^-)$ using D_{test}
 • Let g be the hypothesis that would be learned using D

• Generally (informally, not theoretically proven)
 • Training on more data leads to better learned hypothesis
 • $E_{out}(g) \leq E_{out}(g^-)$
Validation: Beyond Test Set

• What if we want to estimate E_{out} multiple times?

• Model selection:
 • Should I use linear models or decision trees?
 • Should I set the regularization parameter λ to 0.1, 0.01, or 0.001?
 • A model with different λ can be considered as different model

• Validation set
 • $D = D_{train} \cup D_{val}$

 • Key difference: We need to account for the multiple usage of D_{val}
Model Selection

• Which model should we choose?
Model Selection using Validation

• Which model should we choose?

Choose H_m^* such that $E_{val}(g_{m^*}) \leq E_{val}(g_{m})$ for all m.

Key: D_{val} is used M times
Question…

• Which of the following is true?

(a) $\mathbb{E}[\text{Eval}(g_{m^*})] = \text{Out}(g_{m^*})$

(b) $\mathbb{E}[\text{Eval}(g_{m^*})] \leq \text{Out}(g_{m^*})$

(c) $\mathbb{E}[\text{Eval}(g_{m^*})] \geq \text{Out}(g_{m^*})$

Choose H_{m^*} such that $\text{Eval}(g_{m^*}) \leq \text{Eval}(g_{m})$ for all m
Question...

• Which of the following is true?

(a) $\mathbb{E}[\text{val}(g_{m}^{\ast})] = E_{out}(g_{m}^{\ast})$

(b) $\mathbb{E}[\text{val}(g_{m}^{-})] \leq E_{out}(g_{m}^{-})$

(c) $\mathbb{E}[\text{val}(g_{m}^{\ast})] \geq E_{out}(g_{m}^{\ast})$

Choose H_{m}^{\ast} such that $\text{val}(g_{m}^{\ast}) \leq \text{val}(g_{m}^{-})$ for all m

Equivalent to use D_{val} to choose from $H = \{g_{1}^{-}, ..., g_{M}^{-}\}$

$E_{out}(g_{m}^{\ast}) \leq E_{\text{val}}(g_{m}^{\ast}) + O\left(\sqrt{\frac{\ln M}{K}}\right)$ => Hoeffding Bound for Multiple Hypothesis
Question...

• Which of the following is true?

(a) \[\mathbb{E}[E_{val}(g_{m^*}^-)] = E_{out}(g_{m^*}^-) \]

(b) \[\mathbb{E}[E_{val}(g_{m^*}^-)] \leq E_{out}(g_{m^*}^-) \]

(c) \[\mathbb{E}[E_{val}(g_{m^*}^-)] \geq E_{out}(g_{m^*}^-) \]

Equivalent to use \(D_{val} \) to choose from \(H = \{g_1^-, \ldots, g_M^-\} \)

\[E_{out}(g_{m^*}^-) \leq E_{val}(g_{m^*}^-) + O\left(\sqrt{\frac{\ln M}{N}}\right) \quad \Rightarrow \quad \text{Hoeffding Bound for Multiple Hypothesis} \]
Utilizing the Whole D

$g_{\hat{m}}$: the hypothesis minimizes in-sample error over $\{H_1, \ldots, H_M\}$
<table>
<thead>
<tr>
<th>Outlook</th>
<th>Relationship to E_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{in}</td>
<td></td>
</tr>
<tr>
<td>E_{val}</td>
<td></td>
</tr>
<tr>
<td>E_{test}</td>
<td></td>
</tr>
<tr>
<td>Outlook</td>
<td>Relationship to E_{out}</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>E_{in}</td>
<td>Incredibly optimistic</td>
</tr>
<tr>
<td>E_{val}</td>
<td>Slightly optimistic</td>
</tr>
<tr>
<td>E_{test}</td>
<td>Unbiased</td>
</tr>
</tbody>
</table>
Outlook vs. Relationship to E_{out}

<table>
<thead>
<tr>
<th>E_{in}</th>
<th>Incredibly optimistic</th>
<th>VC-bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{val}</td>
<td>Slightly optimistic</td>
<td>Hoeffding’s bound (multiple hypotheses)</td>
</tr>
<tr>
<td>E_{test}</td>
<td>Unbiased</td>
<td>Hoeffding’s bound (single hypothesis)</td>
</tr>
</tbody>
</table>

Note that the outlook comparisons are “in expectation”
If you only get one “draw” of $D_{train}, D_{val}, D_{test}$, you cannot say anything “for certain”

Remember that ML results are under the condition “with high probability”
The Dilemma When Choosing K

• The main ideas behind validation

Want large K
(E_{val} estimates E_{out} well)

$$E_{out}(g) \approx E_{out}(g^-) \approx E_{val}(g^-)$$

Want small K
(didn’t sacrifice too much training data)
Leave-One-Out Cross Validation (LOOCV)

Getting the best of the both world

Intuition: Setting $K = 1$ but do it many times...
Illustrative Example

\[E_{cv} = \frac{1}{3} (d_1^2 + d_2^2 + d_3^2) \]
Properties of LOOCV

• LOOCV is unbiased (If not used for model selection)
 • E_{CV} is an unbiased estimator of $\bar{E}_{out}(N - 1)$
 (expected E_{out} when learning on $N - 1$ points)

• The “effective number” of examples in E_{CV} estimation is high for LOOCV

• However, LOOCV is computationally expensive
 • Need to train N models, each on $N - 1$ points
V-Fold Cross Validation

- Split D into V equally sized data sets: $D_1, D_2, ..., D_V$
 - Let g^i be the hypothesis learned using all data sets except D_i
 - Let $e_i = E_{val}(g^i)$ where the validation uses data set D_i

- The V-fold cross validation error is $\frac{1}{V}\sum_{i=1}^{V} e_i$

- Practical rule of thumb: $V = 10$