Logistics

• Homework 1 Returned
 • Regrade requests till this Saturday
 • Please be concise and polite

• Homework 3: Due **Mar 5** (Sat)
 • Keep track of your own late-day usages

• Exam 1: **Mar 10 (Thursday)**
 • Topics: LFD Chapters 1 to 5
 • Covid-permitting
 • Timed exam (75 min) during lecture time in the classroom
 • Closed-book exam with 2 letter-size cheat sheets allowed (4 pages in total)
 • No format limitations (it can be typed, written, or a combination)
 • Mar 8 (Tuesday) will be a review lecture
Recap
Decision Tree
Decision Tree Hypothesis

Pros
- Easy to interpret (interpretability is getting attention and is important in some domains)
- Can handle multi-type data (Numerical, categorical, ...)
- Easy to implement (Bunch of if-else rules)

Cons
- Generally speaking, bad generalization
- VC dimension is infinity
- High variance (small change of data leads to very different hypothesis)
- Easily overfit

Why we care?
- One of the classical model
- Building block for other models (e.g., random forest)

Credit Card Approval Example

```
Annual Income

≥ 100k

≥ 20k
< 100k

< 20k

Approve

have debt?

yes

no

Deny

Approve

Deny

Approve
```
Learning Decision Tree from Data

• Given dataset D, how to learn a decision tree hypothesis?

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

• Potential approach:
 • Empirical risk minimization
 • Find $g = \arg\min_{h \in H} E_{in}(h)$

• Multiple decision trees with zero E_{in}

How to avoid overfitting?
Learning Decision Tree from Data

• Conceptual intuition to deal with overfitting
 • Regularization: Constrain H

• Informally,

$$\text{minimize } E_{in}(\overline{w})$$
$$\text{subject to } \text{size(tree)} \leq C$$

• This optimization is generally computationally intractable.
• Most decision tree learning algorithms rely on heuristics to approximate the goal.
Greedy-Based Decision Tree Algorithm

• Greedily, recursively, choose the next feature to split

• DecisionTreeLearn(D): Input a dataset \(D \), output a decision tree hypothesis
 • Create a root node
 • If termination conditions are met
 • return a single node tree with leaf prediction based on \(D \)
 • Else: Greedily find a feature \(A \) to split according to split criteria
 • For each possible value \(v_i \) of \(A \)
 • Let \(D_i \) be the dataset containing data with value \(v_i \) for feature \(A \)
 • Create a subtree DecisionTreeLearn(\(D_i \)) that being the child of root

• Most decision tree learning algorithms follow this template, but with different choices of heuristics
ID3: Using Information Gain as Selection Criteria

• Information gain of choosing feature A to split
 • $Gain(D, A) = H(D) - \sum_i \frac{\lvert D_i \rvert}{\lvert D \rvert} H(D_i)$ [The amount of decrease in entropy]

• ID3: Choose the split that maximize $Gain(D, A)$

DecisionTreeLearn(D)
Create a root node r
If termination conditions are met
 return a single node tree with leaf prediction based on
Else: Greedily find a feature A to split according to split criteria
For each possible value v_i of A
 Let D_i be the dataset containing data with value v_i for feature A
 Create a subtree DecisionTreeLearn(D_i) that being the child of root r

• ID3 termination conditions
 • If all labels are the same
 • If all features are the same
 • If dataset is empty

• ID3 leaf predictions
 • Most common labels (majority voting)

• ID3 split criteria
 • Information gain

Notations:
$H(D)$: Entropy of D
$\lvert D \rvert$ is the number of points in D
Illustration of "High Variance" of Decision Trees

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain</td>
<td>Before</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>Rain</td>
<td>During</td>
<td>Both</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>Rain</td>
<td>During</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>Rain</td>
<td>After</td>
<td>Lunchbox</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>Before</td>
<td>Backpack</td>
<td>Tired</td>
<td>Bike</td>
</tr>
<tr>
<td>No Rain</td>
<td>Before</td>
<td>Lunchbox</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>No Rain</td>
<td>Before</td>
<td>Lunchbox</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>During</td>
<td>Backpack</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>No Rain</td>
<td>During</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Not Tired</td>
<td>Bike</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Tired</td>
<td>Bike</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Both</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Lunchbox</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
</tbody>
</table>
High variance: A small deviation of data would lead to very different learned hypothesis
Decision Tree Hypothesis

Pros
- Easy to interpret (interpretability is getting attention and is important in some domains)
- Can handle multi-type data (Numerical, categorical, ...)
- Easy to implement (Bunch of if-else rules)

Cons
- Generally speaking, bad generalization
- VC dimension is infinity
- High variance (small change of data leads to very different hypothesis)
- Easily overfit

Why we care?
- One of the classical model
- Building block for other models

Credit Card Approval Example

```
<table>
<thead>
<tr>
<th>Annual Income</th>
<th>have debt?</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 100k</td>
<td>Approve</td>
</tr>
<tr>
<td>≥ 20k</td>
<td>have debt?</td>
</tr>
<tr>
<td>&lt; 20k</td>
<td>Deny</td>
</tr>
<tr>
<td>&lt; 100k</td>
<td>no</td>
</tr>
<tr>
<td>yes</td>
<td>Deny</td>
</tr>
<tr>
<td>no</td>
<td>Approve</td>
</tr>
</tbody>
</table>
```

Annual Income ≥ 100k: Approve
Annual Income ≥ 20k: have debt?
Annual Income < 20k: Deny
Annual Income < 100k: no

Have debt?
- yes: Deny
- no: Approve
Today’s Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.
Ensemble Learning
Ensemble Learning

• Assume we are given a set of learned hypothesis
 • g_1, g_2, \ldots, g_M

• What can we do?
 • Select the best one: use validation for model selection
 • What if all of them are not good enough?

• Can we aggregate them?
Aggregation

• Given a set of weak learners g_1, \ldots, g_M, how to output a stronger learner that performs better?

• Uniform aggregation
 • Regression (average): $\bar{g}(\vec{x}) = \frac{1}{M} \sum_{m=1}^{M} g_m(\vec{x})$
 • Classification (majority vote): $\bar{g}(\vec{x}) = \text{sign} \left(\frac{1}{M} \sum_{m=1}^{M} g_m(\vec{x}) \right)$

• Weighted aggregation
 • Regression (average): $\bar{g}(\vec{x}) = \frac{1}{M} \sum_{m=1}^{M} \alpha_m g_m(\vec{x})$
 • Classification (majority vote): $\bar{g}(\vec{x}) = \text{sign} \left(\frac{1}{M} \sum_{m=1}^{M} \alpha_m g_m(\vec{x}) \right)$

• Stacking (won’t talk about this in this course)
 • Take the prediction of g_1 to g_m as input features, train another model on top of that
Is Aggregation a Good Idea?

• Some illustrative examples
Is Aggregation a Good Idea?

- Some illustrative examples
Is Aggregation a Good Idea?

• Maybe
 • If the hypothesis is diverse, and “on average” they seem good
 • (If you take humans as weak learners, this is almost democracy)

• Question:
 • How do we find a set of hypothesis that are diverse and “on average” good
 • How do we aggregate the set of hypothesis

• Ensemble learning
 • Bagging – Random Forest (This lecture)
 • Boosting – AdaBoost (Next lecture)
Diverse Weak Learners

• One common way to construct weak learners is via decision trees

• Fully grown decision trees
 • High variance
 • Low bias

• Decision stump (One-depth decision trees, split on only one attribute)
 • Low variance
 • High bias
Bagging

Bootstrapped Aggregating

(Using randomization to construct diverse weak learners)
Review: Bias-Variance Decomposition

• f: sine function, $H: h(x) = ax + b$, $N=2$

• Observations
 • The variance of each learned hypothesis is high
 • The variance of “average” of them ($\bar{g}(\hat{x})$) is lower

• Can we apply similar intuitions?
 • Generate a lot of high-variance but low bias weak learners
 • Aggregate them using uniform aggregation

We only have one dataset in practice!
Bootstrapping

• Intuition:
 • Use the dataset D we have to approximate the data distribution
 • Sample (with replacement) from D to create bootstrapped datasets

• Bootstrapping:
 • Let $D = \{ (\hat{x}_1, y_1), ..., (\hat{x}_N, y_N) \}$ be the dataset we have
 • Repeatedly uniformly sample N points from D with replacement
 • The number of sampled points doesn’t have to be N, but it’s a reasonable/common choice.
 • Obtain many bootstrapped datasets
 • $\tilde{D}^{(1)} = \{ (x_1, y_1), (x_1, y_1), (x_4, y_4), ... \}$
 • ...
 • $\tilde{D}^{(M)}$
Bagging - Bootstrapped Aggregating

• Bootstrap M datasets $\{\tilde{D}^{(m)}\}$ and learn a hypothesis from each of them

• Aggregate the learned hypothesis
Bagging - Bootstrapped Aggregating

• Bootstrap M datasets $\{\mathcal{D}^{(m)}\}$ and learn a hypothesis from each of them

$$H \rightarrow \mathcal{D}^{(1)} \rightarrow g_1$$
$$H \rightarrow \mathcal{D}^{(2)} \rightarrow g_2$$
$$\vdots$$
$$H \rightarrow \mathcal{D}^{(M)} \rightarrow g_M$$

• Aggregate the learned hypothesis

$$G(\hat{x}) = \bar{g}(\hat{x}) = \text{sign}\left(\frac{1}{M} \sum_{m=1}^{M} g_m(\hat{x})\right)$$

(assume we are doing classification)
Why/When Bagging Might Be Helpful?

- What we know from statistics
 - Consider M independent random variables x_1, x_2, \ldots, x_M, each with variance σ^2
 - The variance of $\frac{1}{M} \sum_{m=1}^{M} x_m$ is $\frac{\sigma^2}{M}$

- If we have “weak learners” that have high variance but low bias
 - Bagging helps reduce the variance and maintain low bias
 - From bias-variance decomposition, this implies a strong learner
Break and Question

Exercise:
Given a dataset D with N points. Consider we bootstrap a dataset $\tilde{D}^{(m)}$ by sampling N points with replacement from D, what’s the probability that a given point $(\tilde{x}_n, \tilde{y}_n)$ is not in $\tilde{D}^{(m)}$?
Out-Of-Bag (OOB) Error
Probability for a Point to be Out of Bag

• Consider we bootstrap a dataset $\tilde{D}^{(m)}$ by sampling N points from D, what’s the probability that a given point (\tilde{x}_n, y_n) is not in $\tilde{D}^{(m)}$.

\[
\left(1 - \frac{1}{N}\right)^N = \left(\frac{1}{1+\frac{1}{N-1}}\right)^N \\
\approx \frac{1}{e} \approx 0.36 \text{ when } N \to \infty
\]

When N is large, for each bootstrapped dataset $\tilde{D}^{(m)}$, a significant proportion of points in D is not included.

• A point that is not in $\tilde{D}^{(m)}$ is not involved in training g_m
 • Can we utilize it to validate the performance of g_m?
 • Yes, but we care about the overall performance, not just the performance of g_m...
Out-Of-Bag (OOB) Error

<table>
<thead>
<tr>
<th></th>
<th>$\tilde{D}^{(1)}$</th>
<th>$\tilde{D}^{(2)}$</th>
<th>$\tilde{D}^{(3)}$</th>
<th>$\tilde{D}^{(4)}$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{x}_1, y_1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>\tilde{x}_2, y_2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>\tilde{x}_N, y_N</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>...</td>
</tr>
</tbody>
</table>

Whether a point is in a bootstrapped dataset

- Recall that we learn g_1, \ldots, g_M using $\tilde{D}^{(1)}, \ldots, \tilde{D}^{(M)}$

- Which set of hypothesis can (\tilde{x}_1, y_1) be used for validation?
Out-Of-Bag (OOB) Error

\[G_n^- : \] the aggregation of hypothesis that \(\tilde{x}_n \) is OOB of

- \(G_1^- = \text{aggregate}(g_3, g_4, \ldots) \)
- \(G_2^- = \text{aggregate}(g_2, g_3, g_4, \ldots) \)
- \(G_N^- = \text{aggregate}(g_1, \ldots) \)

• OOB Error

\[E_{OOB}(G) = \frac{1}{N} \sum_{n=1}^{N} \text{error}(G_n^-(\tilde{x}_n), y_n) \]
Out-Of-Bag (OOB) Error

\[E_{OOB}(G) = \frac{1}{N} \sum_{n=1}^{N} \text{error}(G_n^{-}(\hat{x}_n), y_n) \]

- Bagging provided an intrinsic mechanism for us to perform validation
 - We don’t need to split the dataset into training and validation

Practical issues (you might face this in HW4)
- What if some \(\hat{x}_n \) appears in all bootstrapped datasets?
 - The probability of this happening is small when the number of bags \(M \) is large
- Let \(S \) be the set of points that is out of bag for at least one bootstrapped dataset
 - \(E_{OOB}(G) = \frac{1}{|S|} \sum_{(\hat{x}_n, y_n) \in S} \text{error}(G_n^{-}(\hat{x}_n), y_n) \)
Random Forest
What We Have Learned

Bagging:
A method to generate and aggregate many high-variance weak learners into a stronger one.

Decision tree:
Various nice properties
Bad generalization
- Due to high variance

Random Forest:
1. Construct many random trees
2. Aggregate the random trees
Random Forest

- Construct many random trees
 - Bootstrapping datasets and learn a max-depth tree for each of them
 - Other randomizations (not required in HW4)
 - When choosing split features, choose from a random subset (instead of all features)
 - Randomly project features (similar to non-linear transformation) for each tree

- Aggregate the random trees
 - Classification: Majority vote $\bar{g}(\hat{x}) = \text{sign} \left(\frac{1}{M} \sum_{m=1}^{M} g_m(\hat{x}) \right)$
 - Regression: Average $\bar{g}(\hat{x}) = \frac{1}{M} \sum_{m=1}^{M} g_m(\hat{x})$
Questions?

• Note that in HW4, you will be asked to implement Bagging Decision Tree and calculate the OOB errors.

• Make sure you know the definitions/algorithm well.
Brief Discussion on Feature Importance

• Not all features are equally important
 • Some features could be redundant -- (birth year, age)
 • Some features might be irrelevant -- feature: name, label: prob of heart attack

• How do we know which features are more important?
 • Linear models:
 • The size of the weight is a proxy for feature importance
 • Applying L1 regularization is one way to reduce the number of features
 • Decision tree:
 • The feature closer to the root is probably more important
 • Random forest:
 • Average “information gain” of all trees is a proxy for feature importance

• See LFD e-Chap 9.2 for more discussion on feature selection
Boosting
Ensemble Learning

• Goal: Utilize a set of weak learners to obtain a strong learner.

• Format of ensemble learning
 • Construct many diverse weak learners
 • Aggregate the weak learners

Bagging:
 • Construct diverse weak learners
 • (Simultaneously) bootstrapping datasets
 • Train weak learners on them
 • Aggregate the weak learners
 • Uniform aggregation

Boosting:
 • Construct diverse weak learners
 • Adaptively generating datasets
 • Train weak learners on them
 • Aggregate the weak learners
 • Weighted aggregation
Informal Intuitions about Boosting

• Example: Teach a class of kids to identify apples from data

 Alice: Apples are circular

 Teacher:
 Circular is a good feature, but using this feature might make some mistakes

 Let me highlight the mistakes.
 • Make correct images smaller
 • Make incorrect images larger

Example created by Hsuan-Tien Lin
Informal Intuitions about Boosting

• Example: Teach a class of kids to identify apples from data

 Alice: Apples are circular
 Bob: Apples are red
 Teacher: Yes, many apples are red but it could still make mistakes.

Let me highlight the mistakes.

 • Make correct images smaller
 • Make incorrect images larger

Example created by Hsuan-Tien Lin
Informal Intuitions about Boosting

• Example: Teach a class of kids to identify apples from data

 • Alice: Apples are **circular**
 • Bob: Apples are **red**
 • Charlie: Apples could be **green**

Example created by Hsuan-Tien Lin
Informal Intuitions about Boosting

• Example: Teach a class of kids to identify apples from data

 • Alice: Apples are circular
 • Bob: Apples are red
 • Charlie: Apples could be green
 • David: Apples have stems at the top
 • Class: Apples are somewhat circular, somewhat red, possibly green, and may have stems at the top

Example created by Hsuan-Tien Lin
Informal Intuitions about Boosting

• Example: Teach a class of kids to identify apples from data

Alice: Apples are circular
Bob: Apples are red
Charlie: Apples could be green
David: Apples have stems at the top

Class: Apples are somewhat circular, somewhat red, possibly green, and may have stems at the top

Key steps of this process:
• Learn a simple hypothesis for each dataset
• Iteratively update the dataset to focus on what we got wrong (i.e., create diversity)
• Aggregate the learned simple hypothesis
Outline of a Boosting Algorithm

• Initialize D_1 (usually the same as the initial dataset D)

• For $t = 1$ to T
 • Learn g_t from D_t
 • Reweight the distribution and obtain D_{t+1} based on g_t and D_t

• Output weighted-aggregate($g_1, ..., g_T$)
 • Classification: $G(\vec{x}) = \bar{g}(\vec{x}) = \text{sign} \left(\frac{1}{T} \sum_{t=1}^{M} \alpha_t g_t(\vec{x}) \right)$

Questions
- How to learn g_t from D_t
- How to reweight the distribution and obtain D_{t+1}
- How to perform weighted aggregation
Discussion on Re-weighted D_t (What does re-weighting mean?)

• Original Dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$

• Notation of D_t
 • $D_t(n)$ is the weight/probability of data point (\vec{x}_n, y_n) in D_t
 • $\sum_{n=1}^{N} D_t(n) = 1$

• What is $E_{in}(h)$ on D_t? (Expressed as $E_{in}^{(D_t)}(h)$)
 • Re-sample dataset (noisier)
 • Re-sample the dataset from D according to distribution D_t
 • Calculate E_{in} on the re-sampled dataset as usual

• Calculate weighted error
 • $E_{in}^{(D_t)}(h) = \sum_{n=1}^{N} D_t(n) \text{error}(h(\vec{x}_n), y_n)$

When $D_t(n) = 1/N$. This reduces to standard definition of E_{in}.