Logistics: Exam 1

• Exam 1 Date: March 3, 2020 (Tuesday)
 • In-class exam (the same time/location as the lecture)
 • Exam duration: 75 minutes
 • Planned exam content: LFD Chapter 1 to 5
 • Everything in textbook/lectures are included, except for parts labeled as “safe to skip”.

• 2 sections
 • 5~6 long questions (written response questions with explanations required)
 • 10 multiple choice questions (no explanations needed)

• Closed-book exam. You can bring two cheat-sheets
 • Up to letter size, front and back (up to 4 pages)
 • No format limitations (it can be typed, written, or a combination)

• No calculators (you don’t need them)
Logistics: Exam Policies

• I plan to arrange random seat assignments
 • Will be announced on Piazza the night before the exam
Logistics: Exam Policies

• Please arrive on time. No extensions will be given if you arrive late.

• During the exam, if you have a question or if you finish before time is up:
 • **Do not get up**
 • Raise your hand and I will come to you
 • I most likely will not answer questions to individual students
 • But I’ll give clarifications to everyone if multiple students ask the same question

• When time is called:
 • **Stop writing**
 • **Do not get up**
 • Proctors will come around and collect your exam
Plans for Today

• A summary of the content so far.

• Discussion of the practice questions.

• Discussion of any other questions you might have.
Review for Exam 1

Brief overview on the content.
Not comprehensive and not covering everything that could appear in the exam.
Please make sure you still study for LFD Chapter 1-5.
Let me know if you find mistakes in lecture notes.
Whenever you have doubts on the lecture notes, please resort to the textbook for the confirmation.
• Chap 1: Setting up the learning problem
 • Problem setup
 • probability assumptions/inferences
 • error and noise

• Chap 2: Theory of generalization (training v.s. testing)
 • Hoeffding’s inequality
 • VC theory
 • Bias-variance decomposition

• Chap 3: Linear models
 • Linear classification/regression,
 • logistic regression, gradient descent,
 • nonlinear transformations

• Chap 4: Overfitting
 • Overfitting,
 • Regularization and validation

• Chap 5: Three learning principles
 • Occam’s razor, sampling bias, data snooping
Setup of the Learning Problem

- Key assumption:
 - Training/testing data from the same distribution

- Define (point-wise) error measure:
 - Binary error \(e(h(\vec{x}), y) = \mathbb{I}[h(\vec{x}) \neq y] \)
 - Squared error \(e(h(\vec{x}), y) = (h(\vec{x}) - y)^2 \)
 - Cost matrix

<table>
<thead>
<tr>
<th></th>
<th>(f)</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h = +1)</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(h = -1)</td>
<td></td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(f)</th>
<th>1</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h = +1)</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(h = -1)</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Hoeffding’s Inequality

• Fix a hypothesis h

 • $E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(\hat{x}_n), y_n) = $ In-sample error of h

 • $E_{out}(h) = \mathbb{E}_{\hat{x}}[e(h(\hat{x}), y)] = $ Out-of-sample error of h

 • Hoeffding’s inequality: $\Pr[|E_{out}(h) - E_{in}(h)| > \epsilon] \leq 2e^{-2\epsilon^2 N}$

• Learn a g from a finite hypothesis set $H = \{h_1, ..., h_M\}$

 • $\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \leq 2Me^{-2\epsilon^2 N}$
Dealing with Infinite Hypothesis Set: $M \rightarrow \infty$

- Instead of # hypothesis, counting “effective” # hypothesis

 Dichotomy
 - Informally, consider it as “data-dependent” hypothesis
 - Characterized by both H and N data points $(\tilde{x}_1, ..., \tilde{x}_N)$
 \[H(\tilde{x}_1, ..., \tilde{x}_N) = \{ h(\tilde{x}_1), ..., h(\tilde{x}_N) | h \in H \} \]
 - The set of possible prediction combinations $h \in H$ can induce on $\tilde{x}_1, ..., \tilde{x}_N$

 Growth function
 - Largest number of dichotomies H can induce across all possible data sets of size N
 \[m_H(N) = \max \limits_{(\tilde{x}_1, ..., \tilde{x}_N)} |H(\tilde{x}_1, ..., \tilde{x}_N)| \]
Why Growth Function?

• Finite-hypothesis Bound
 With prob at least $1 - \delta$,
 \[E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}} \]

• VC Generalization Bound (VC Inequality, 1971)
 With prob at least $1 - \delta$
 \[E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_H(2N)}{\delta}} \]

If we know the growth function $m_H(N)$ of H, we can obtain the learning guarantee for algorithms operating on H.
Bounding Growth Functions

• More definitions....
 • Shatter
 • \(H \) **shatters** \((\vec{x}_1, ... , \vec{x}_N)\) if \(|H(\vec{x}_1, ... , \vec{x}_N)| = 2^N\)
 • \(H \) can induce all label combinations for \((\vec{x}_1, ... , \vec{x}_N)\)
 • Break point
 • \(k \) is a **break point** for \(H \) if no data set of size \(k \) can be shattered by \(H \)
 • \(k \) is a break point for \(H \leftrightarrow m_H(k) < 2^k \)

• VC Dimension: \(d_{vc}(H) \) or \(d_{vc} \)
 • The VC dimension of \(H \) is the largest \(N \) such that \(m_H(N) = 2^N \)
 • Equivalently, if \(k^* \) is the smallest break point for \(H \), \(d_{vc}(H) = k^* - 1 \)
Examples

<table>
<thead>
<tr>
<th></th>
<th>(m_H(N))</th>
<th>(N=1)</th>
<th>(N=2)</th>
<th>(N=3)</th>
<th>(N=4)</th>
<th>(N=5)</th>
<th>Break Points</th>
<th>VC Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Rays</td>
<td>(k = 2,3,4, \ldots)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>(k = 2,3,4, \ldots)</td>
<td>1</td>
</tr>
<tr>
<td>Positive Intervals</td>
<td>(k = 3,4,5, \ldots)</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>16</td>
<td>(k = 3,4,5, \ldots)</td>
<td>2</td>
</tr>
<tr>
<td>Convex Sets</td>
<td>None</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>None</td>
<td>(\infty)</td>
</tr>
<tr>
<td>2D Perceptron</td>
<td>(k = 4,5,6, \ldots)</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>?</td>
<td>(k = 4,5,6, \ldots)</td>
<td>3</td>
</tr>
</tbody>
</table>

- **Positive Rays**: Predict +1 or -1 based on the position relative to the decision boundary.
- **Positive Intervals**: The boundaries are defined by the points where the function changes its prediction from +1 to -1 or vice versa.
- **Convex Sets**: The convex sets are defined by the region where the function is positive.
- **2D Perceptron**: The perceptron decision boundary separates the positive and negative examples.
Bounding Growth Functions using Break Points

• Theorem statement:
 • If there is no break point for H, then $m_H(N) = 2^N$ for all N.
 • If k is a break point for H, i.e., if $m_H(k) < 2^k$ for some value k, then
 \[m_H(N) \leq \sum_{i=0}^{k-1} \binom{N}{i} \]

• Rephrase the above theorem
 • If k is a break point for H, the following statements are true
 • $m_H(N) \leq N^{k-1} + 1$ [Can be proven using induction from above. See LFD Problem 2.5]
 • $m_H(N) = O(N^{k-1})$
 • $m_H(N)$ is polynomial in N

• If d_{vc} is the VC dimension of H, then
 • $m_H(N) \leq \sum_{i=0}^{d_{vc}} \binom{N}{i}$
 • $m_H(N) \leq N^{d_{vc}} + 1$
 • $m_H(N) = O(N^{d_{vc}})$

If d_{vc} is the VC dimension of H, $d_{vc} + 1$ is a break point for H
Vapnik–Chervonenkis (VC) Bound

• VC Generalization Bound

With prob at least $1 - \delta$

$$E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_H(2N)}{\delta}}$$

• Let d_{vc} be the VC dimension of H, we have $m_H(N) \leq N^{d_{vc}} + 1$. Therefore,

With prob at least $1 - \delta$

$$E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4((2N)^{d_{vc}}+1)}{\delta}}$$

• If we treat δ as a constant, then we can say, with high probability

$$E_{out}(g) \leq E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$
Approximation-Generalization Tradeoff

- **VC Dimension**: A single parameter to characterize the complexity of H

$$E_{out}(g) \leq E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$
Bias-Variance Decomposition

\[
\mathbb{E}_D[E_{out}(g^{(D)})] = \mathbb{E}_{\tilde{x}} \left[(\bar{g}(\tilde{x}) - f(\tilde{x}))^2 \right] + \mathbb{E}_{\tilde{x}} \left[\mathbb{E}_D \left[(g^{(D)}(\tilde{x}) - \bar{g}(\tilde{x}))^2 \right] \right]
\]

• The performance of your learning, i.e., \(\mathbb{E}_D[E_{out}(g^{(D)})] \), depends on
 • How well you can fit your data using your hypothesis set (bias)
 • How close to the best fit you can get for a given dataset (variance)

Very small model

Very large model
Learning Curves

Simple Model:
- E_{out}
- E_{in}

Expected Error vs. Number of Data Points, N

Complex Model:
- E_{out}
- E_{in}

Expected Error vs. Number of Data Points, N

VC Analysis:
- Expected Error vs. Number of Data Points, N
- Generalization error
- In-sample error

Bias-Variance Analysis:
- Expected Error vs. Number of Data Points, N
- Variance
- Bias
Linear Models

- H contains hypothesis $h(\vec{x})$ as **some function of $\vec{w}^T \vec{x}$**

<table>
<thead>
<tr>
<th>Domain</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Classification</td>
<td>$y \in {-1,+1}$ $H = {h(\vec{x}) = \text{sign}(\vec{w}^T \vec{x})}$</td>
</tr>
<tr>
<td>Linear Regression</td>
<td>$y \in \mathbb{R}$ $H = {h(\vec{x}) = \vec{w}^T \vec{x}}$</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>$y \in [0,1]$ $H = {h(\vec{x}) = \theta(\vec{w}^T \vec{x})}$</td>
</tr>
</tbody>
</table>

This is why it’s called linear models

- Algorithm:
 - Focus on $g = \arg\min_{h \in H} E_{in}(h)$
Linear Classification

• Formulation
 • Hypothesis set $H = \{ h(\hat{x}) = \text{sign}(\hat{w}^T \hat{x}) \}$
 • Error measure: binary error $e(h(\hat{x}), y) = \mathbb{I}[h(\hat{x}) \neq y]$

• Data is linearly separable
 • Run PLA => $E_{in} = 0$ => Low E_{out}

• Data is not linearly separable
 • Engineering the features
 • Pocket algorithm

Perceptron Learning Algorithm (PLA)

Initialize $\hat{w}(0) = \vec{0}$

For $t = 0, \ldots$

Find a misclassified example $(\hat{x}(t), y(t))$ in D
 that is, $\text{sign}(\hat{w}(t)^T \hat{x}(t)) \neq y(t)$

If no such sample exists
 Return $\hat{w}(t)$

Else
 $\hat{w}(t + 1) \leftarrow \hat{w}(t) + y(t) \hat{x}(t)$
Linear Regression

• Formulation
 • Hypothesis set \(H = \{ h(\hat{x}) = \vec{w}^T \hat{x} \} \)
 • Squared error \(e(h(\hat{x}), y) = (h(\hat{x}) - y)^2 \)

• Linear regression algorithm (one-step learning for solving \(\nabla_{\vec{w}} E_{in}(\vec{w}_{lin}) = 0 \))
 • Given \(D = \{(\hat{x}_1, y_1), \ldots, (\hat{x}_N, y_N)\} \)
 • Construct \(X = \begin{bmatrix} \hat{x}_1^T \\ \vdots \\ \hat{x}_N^T \end{bmatrix} = \begin{bmatrix} x_{1,0} & x_{1,1} & \cdots & x_{1,d} \\ x_{2,0} & x_{2,1} & \cdots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{2,0} & x_{N,1} & \cdots & x_{N,d} \end{bmatrix} \) and \(\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \)
 • Output \(\vec{w}_{lin} = (X^T X)^{-1} X^T \vec{y} \) (Assume \(X^T X \) is invertible)
Logistic Regression

- Hypothesis set \(H = \{ h(\vec{x}) = \theta(\vec{w}^T \vec{x}) \} \)
 \(\theta(s) = \frac{e^s}{1+e^s} = \frac{1}{1+e^{-s}} \)

- Predict a probability
 - Interpreting \(h(\vec{x}) \) as the prob for \(y = +1 \) given \(\vec{x} \) when \(h \) is the target function

- Algorithm
 - Find \(g = \text{argmin}_{h \in H} E_{in}(h) \)

- Two key questions
 - How to define \(E_{in}(h) \)?
 - How to perform the optimization (minimizing \(E_{in} \))?
Define \(E_{in}(\vec{w}) \): Cross-Entropy Error

\[
E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n\vec{w}^T\vec{x}_n})
\]

• Minimizing cross entropy error is the same as maximizing likelihood

• Likelihood: \(\Pr(D|\vec{w}) \)

 • \(\vec{w}^* = \text{argmax}_{\vec{w}} \Pr(D|\vec{w}) \) (maximizing likelihood)

 • \(\vec{w}^* = \text{argmin}_{\vec{w}} E_{in}(\vec{w}) \) (minimizing cross-entropy error)
Optimizing $E_{in}(\vec{w})$: Gradient Descent

• Gradient descent algorithm
 • Initialize $\vec{w}(0)$
 • For $t = 0, ...$
 • $\vec{w}(t + 1) \leftarrow \vec{w}(t) - \eta \nabla_w E_{in}(\vec{w}(t))$
 • Terminate if the stop conditions are met
 • Return the final weights

• Stochastic gradient decent
 • Replace the update step:
 • Randomly choose n from \{1, ..., N\}
 • $\vec{w}(t + 1) \leftarrow \vec{w}(t) - \eta \nabla_w e_n(\vec{w}(t))$

Works for functions where gradient exists everywhere
Nonlinear Transformation

\[
\hat{z} = \Phi(\hat{x})
\]

\[
g^{(z)}(\hat{z}) = \text{sign}(\tilde{w}^{(z)^T} \hat{z})
\]

\[
g(\hat{x}) = g^{(z)}(\Phi(\hat{x})) = \text{sign}(\tilde{w}^{(z)^T} \Phi(\hat{x}))
\]
MUST Choose Φ BEFORE Looking at the Data

- Rely on domain knowledge (feature engineering)
 - Handwriting digit recognition example

- Use common sets of feature transformation
 - Polynomial transformation
 - E.g., 2nd order Polynomial transformation
 - $\tilde{x} = (1, x_1, x_2)$, $\Phi_2(\tilde{x}) = (1, x_1, x_2, x_1x_2, x_1^2, x_2^2)$
 - Plus: more powerful (contains circle, ellipse, hyperbola, etc)
 - Minus:
 - More computation/storage
 - Worse generalization error

The VC dimension of d-dim perceptron is $d+1$
Q-th Order Polynomial Transform

• \(\tilde{x} = (1, x_1, ..., x_d) \)
• \(\Phi_1(\tilde{x}) = \tilde{x} \)
• \(\Phi_Q(\tilde{x}) = (\Phi_{Q-1}(\tilde{x}), x_1^Q, x_1^{Q-1}x_2, ..., x_d^Q) \)

• Each element in \(\Phi_Q(\tilde{x}) \) is in the form of \(\sum_{i=1}^{d} x_i^{a_i} \)
 • where \(\sum_{i=1}^{d} a_i \leq Q \), and \(a_i \) is a non-negative integer

• Number of elements in \(\Phi_Q(\tilde{x}) \): \(\binom{Q + d}{Q} \) (including the initial 1)
Overfitting and Its Cures

- **Overfitting**
 - Fitting the data more than is warranted
 - Fitting the noise instead of the pattern of the data
 - Decreasing E_{in} but getting larger E_{out}
 - When H is too strong, but N is not large enough

- **Regularization**
 - Intuition: Constraining H to make overfitting less likely to happen

- **Validation**
 - Intuition: Reserve data to estimate E_{out}
Regularization

• Constraining H
 • Example: Weight decay $H(C) = \{h \in H_Q \text{ and } \overrightarrow{w}^T \overrightarrow{w} \leq C\}$
 • Finding g => Constrained optimization

• Defining augmented error
 • $E_{aug}(h, \lambda, \Omega) = E_{in}(\overrightarrow{w}) + \frac{\lambda}{N} \Omega(h)$
 • Finding g => Unconstrained optimization

• The two interpretations are conceptually equivalent in a lot of cases.

• Understand the impacts of choosing Ω and λ
Validations

- Reserving data to estimate E_{out}

Model Selection

<table>
<thead>
<tr>
<th>Disjoint Data Splits</th>
<th>Outlook</th>
<th>Relationship to E_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{train}</td>
<td>E_{in}</td>
<td>Incredibly optimistic</td>
</tr>
<tr>
<td>D_{val}</td>
<td>E_{val}</td>
<td>Slightly optimistic</td>
</tr>
<tr>
<td>D</td>
<td>E_{test}</td>
<td>Unbiased</td>
</tr>
</tbody>
</table>
Cross Validation

• Split D into V equally sized data sets: D_1, D_2, \ldots, D_V

 • Let g_i be the hypothesis learned using all data sets except D_i

 • Let $e_i = E_{val}(g_i)$ where the validation uses data set D_i

• The V-fold cross validation error is $\frac{1}{V} \sum_{i=1}^{V} e_i$

• Leave-One-Out Cross Validation (LOOCV): $V = N$

![Diagram of cross validation process]

$E_{cv} = \frac{1}{3} (d_1^2 + d_2^2 + d_3^2)$
Three Learning Principles

• Occam’s Razor
 • The **simplest** model that fits the data is also the most **plausible**

• Sampling Bias
 • If the data is sampled in a biased way, learning will produce a similarly biased outcome.

• Data Snooping
 • If a data set has affected any step in the learning process, its ability to assess the outcome has been compromised.
Practice Questions