• Homework 3: Due **Mar 19 (Friday)**.
 • Keep track of your late days
 • Utilize the office hours early. Don’t wait till the last day

• Exam 1: **Mar 23 (Tuesday)**
 • Duration: 75+5 Minutes
 • Content: LFD Chapters 1 to 5
 • Time: during lecture time (exceptions: students who have informed me last week)
 • Format: Gradescope online exam + Zoom (with camera on)
 • Information access during exam:
 • Allowed: Textbook, slides, hardcopy materials (e.g., your own notes)
 • Not allowed: search for information online during exam, talk to any other persons

• Other notes
 • **Follow Piazza announcements**
 • Practice questions are now on Gradescope
 • **This Thursday lecture will be a review lecture**
Recap
Decision Tree
Decision Tree Hypothesis

Pros
- **Easy to interpret** (interpretability is getting attention and is important in some domains)
- **Can handle multi-type data** (Numerical, categorical, ...)
- **Easy to implement** (Bunch of if-else rules)

Cons
- Generally speaking, **bad generalization**
- **VC dimension is infinity**
- **High variance** (small change of data leads to very different hypothesis)
- **Easily overfit**

Why we care?
- One of the classical model
- Building block for other models (e.g., random forest)

Credit Card Approval Example

![Credit Card Approval Decision Tree](attachment:image.png)
Learning Decision Tree from Data

• Given dataset D, how to learn a decision tree hypothesis?

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

• Potential approach:
 • Empirical risk minimization
 • Find $g = \arg\min_{h \in H} E_{in}(h)$

• Multiple decision trees with zero E_{in}

How to avoid overfitting?
Learning Decision Tree from Data

• Conceptual intuition to deal with overfitting
 • Regularization: Constrain H

• Informally,
 \[
 \text{minimize } E_{in}(\overline{w}) \\
 \text{subject to } \text{size}(\text{tree}) \leq C
 \]

• This optimization is generally computationally intractable.
• Most decision tree learning algorithms rely on \textit{heuristics} to approximate the goal.
Greedy-Based Decision Tree Algorithm

• Greedily, recursively, choose the next feature to split

• DecisionTreeLearn(D): Input a dataset D, output a decision tree hypothesis
 • Create a root node
 • If termination conditions are met
 • return a single node tree with leaf prediction based on D
 • Else: Greedily find a feature A to split according to split criteria
 • For each possible value v_i of A
 • Let D_i be the dataset containing data with value v_i for feature A
 • Create a subtree DecisionTreeLearn(D_i) that being the child of root

• Most decision tree learning algorithms follow this template, but with different choices of heuristics
ID3: Using Information Gain as Selection Criteria

- Information gain of choosing feature A to split
 - $Gain(D, A) = H(D) - \sum_i \frac{|D_i|}{|D|} H(D_i)$ [The amount of decrease in entropy]
- ID3: Choose the split that maximize $Gain(D, A)$

DecisionTreeLearn(D)
- Create a root node r
- If termination conditions are met
 return a single node tree with leaf prediction based on
- Else: Greedily find a feature A to split according to split criteria
 For each possible value v_i of A
 - Let D_i be the dataset containing data with value v_i for feature A
 - Create a subtree DecisionTreeLearn(D_i) that being the child of root r

Notations:
- $H(D)$: Entropy of D
- $|D|$ is the number of points in D

- ID3 termination conditions
 - If all labels are the same
 - If all features are the same
 - If dataset is empty
- ID3 leaf predictions
 - Most common labels (majority voting)
- ID3 split criteria
 - Information gain
Illustration of “High Variance” of Decision Trees

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain</td>
<td>Before</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>Rain</td>
<td>During</td>
<td>Both</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>Rain</td>
<td>During</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>Rain</td>
<td>After</td>
<td>Lunchbox</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>Before</td>
<td>Backpack</td>
<td>Tired</td>
<td>Bike</td>
</tr>
<tr>
<td>No Rain</td>
<td>Before</td>
<td>Lunchbox</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>No Rain</td>
<td>Before</td>
<td>Lunchbox</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>During</td>
<td>Backpack</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>No Rain</td>
<td>During</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Not Tired</td>
<td>Bike</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Tired</td>
<td>Bike</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Both</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Lunchbox</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain</td>
<td>Before</td>
<td>Both</td>
<td>Not Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>Rain</td>
<td>During</td>
<td>Both</td>
<td>Not Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>Rain</td>
<td>During</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>Rain</td>
<td>After</td>
<td>Lunchbox</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>Before</td>
<td>Backpack</td>
<td>Tired</td>
<td>Bike</td>
</tr>
<tr>
<td>No Rain</td>
<td>Before</td>
<td>Lunchbox</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>No Rain</td>
<td>Before</td>
<td>Lunchbox</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>During</td>
<td>Backpack</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>No Rain</td>
<td>During</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Not Tired</td>
<td>Bike</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Backpack</td>
<td>Tired</td>
<td>Bike</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Both</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>No Rain</td>
<td>After</td>
<td>Lunchbox</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
</tbody>
</table>
Illustration of "High Variance" of Decision Trees

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain</td>
<td>Before</td>
<td>Both</td>
<td>Tired</td>
<td>Drive</td>
</tr>
<tr>
<td>Rain</td>
<td>During</td>
<td>Both</td>
<td>Not Tired</td>
<td>Metro</td>
</tr>
</tbody>
</table>

High variance: A small deviation of data would lead to very different learned hypothesis
Decision Tree Hypothesis

- **Pros**
 - Easy to interpret (interpretability is getting attention and is important in some domains)
 - Can handle multi-type data (Numerical, categorical, ...)
 - Easy to implement (Bunch of if-else rules)

- **Cons**
 - Generally speaking, bad generalization
 - VC dimension is infinity
 - High variance (small change of data leads to very different hypothesis)
 - Easily overfit

- **Why we care?**
 - One of the classical model
 - Building block for other models

Credit Card Approval Example

```
<table>
<thead>
<tr>
<th>Annual Income</th>
<th>have debt?</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 100k</td>
<td>&gt; 20k</td>
</tr>
<tr>
<td>Approve</td>
<td>Approve</td>
</tr>
<tr>
<td>Deny</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Deny</td>
</tr>
</tbody>
</table>
```

Today’s Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.
Ensemble Learning
Ensemble Learning

- Assume we are given a set of learned hypothesis
 - \(g_1, g_2, \ldots, g_M \)

- What can we do?
 - Select the best one: use validation for model selection
 - What if all of them are not good enough?

- Can we **aggregate** them?
Aggregation

• Given a set of weak learners g_1, \ldots, g_M, how to output a stronger learner that has better performance?

• Uniform aggregation
 • Regression (average): $\bar{g}(\vec{x}) = \frac{1}{M} \sum_{m=1}^{M} g_m(\vec{x})$
 • Classification (majority vote): $\bar{g}(\vec{x}) = \text{sign} \left(\frac{1}{M} \sum_{m=1}^{M} g_m(\vec{x}) \right)$

• Weighted aggregation
 • Regression (average): $\bar{g}(\vec{x}) = \frac{1}{M} \sum_{m=1}^{M} \alpha_m g_m(\vec{x})$
 • Classification (majority vote): $\bar{g}(\vec{x}) = \text{sign} \left(\frac{1}{M} \sum_{m=1}^{M} \alpha_m g_m(\vec{x}) \right)$

• Stacking (won’t talk about this in this course)
 • Take the prediction of g_1 to g_m as input features, train another model on top of that

Mathematically, majority voting and average is similar with +1/-1 labels
Is Aggregation a Good Idea?

• Some illustrative examples
Is Aggregation a Good Idea?

• Some illustrative examples
Is Aggregation a Good Idea?

• Maybe
 • If the hypothesis is diverse, and “on average” they seem good
 • (If you take humans as weak learners, this is almost democracy)

• Question:
 • How do we find a set of hypothesis that are diverse and “on average” good
 • How do we aggregate the set of hypothesis

• Ensemble learning
 • Bagging – Random Forest (This lecture)
 • Boosting – AdaBoost (Next lecture)
Diverse Weak Learners

• One common way to construct weak learners is via decision trees

• Fully grown decision trees
 • High variance
 • Low bias

• Decision stump (One-depth decision trees, split on only one attribute)
 • Low variance
 • High bias

• We will discuss how to construct diverse weak learners next
 • Hint: Randomization
Bagging

Bootstrapped Aggregating
Review: Bias-Variance Decomposition

- \(f \): sine function, \(H: h(x) = ax + b, N=2 \)

- Observations
 - The variance of each learned hypothesis is high
 - The variance of “average” of them (\(\bar{g}(\hat{x}) \)) is lower

- Can we apply similar intuitions?
 - Generate a lot of high-variance but low bias weak learners
 - Aggregate them using uniform aggregation

For each dataset, learn a hypothesis.

Draw many datasets, learn many hypothesis

Take average.

We only have one dataset in practice!
Bootstrapping

• Intuition:
 • Use the dataset D we have to approximate the data distribution
 • Sample (with replacement) from D to create bootstrapped datasets

• Bootstrapping:
 • Let $D = \{(\tilde{x}_1, y_1), \ldots, (\tilde{x}_N, y_N)\}$ be the dataset we have
 • Repeatedly uniformly sample N points from D with replacement
 • The number of sampled points doesn’t have to be N, but it’s a reasonable/common choice.
 • Obtain many bootstrapped datasets
 • $\tilde{D}^{(1)} = \{(x_1, y_1), (x_1, y_1), (x_4, y_4), \ldots\}$
 • \ldots
 • $\tilde{D}^{(M)}$
Bagging - Bootstrapped Aggregating

• Bootstrap M datasets $\{\tilde{D}^m\}$ and learn a hypothesis from each of them

• Aggregate the learned hypothesis (assume we are doing classification)
Bagging - Bootstrapped Aggregating

• Bootstrap M datasets $\{\tilde{D}^{(m)}\}$ and learn a hypothesis from each of them

\[
\begin{align*}
\tilde{D}^{(1)} & \rightarrow g_1 \\
\tilde{D}^{(2)} & \rightarrow g_2 \\
\vdots & \\
\tilde{D}^{(M)} & \rightarrow g_M
\end{align*}
\]

• Aggregate the learned hypothesis (assume we are doing classification)

\[
G(\tilde{x}) = \tilde{g}(\tilde{x}) = \text{sign} \left(\frac{1}{M} \sum_{m=1}^{M} g_m(\tilde{x}) \right)
\]
Why/When Bagging Might Be Helpful?

• What we know from statistics
 • Consider M independent random variables x_1, x_2, \ldots, x_M with variance σ^2
 • The variance of $\frac{1}{M} \sum_{m=1}^{M} x_m$ is $\frac{\sigma^2}{M}$

• If you have “weak learners” that have high variance but low bias
 • Bagging helps reduce the variance and maintain low bias
 • From bias-variance decomposition, this implies a strong learner
Exercise:
Given a dataset D with N points. Consider we bootstrap a dataset $\tilde{D}^{(m)}$ by sampling N points with replacement from D, what’s the probability that a given point (\tilde{x}_n, y_n) is not in $\tilde{D}^{(m)}$?
Out-Of-Bag (OOB) Error
Probability for a Point to be Out of Bag

• Consider we bootstrap a dataset $\widetilde{D}^{(m)}$ by sampling N points from D, what's the probability that a given point (\tilde{x}_n, y_n) is not in $\widetilde{D}^{(m)}$.

$$
(1 - \frac{1}{N})^N = \left(\frac{1}{1 + \frac{N}{N-1}}\right)^N
\approx \frac{1}{e} \approx 0.36 \text{ when } N \to \infty
$$

When N is large, for each bootstrapped dataset $\widetilde{D}^{(m)}$, a significant proportion of points in D is not included.

• A point that is not in $\widetilde{D}^{(m)}$ is not involved in training g_m
 • Can we utilize it to validate the performance of g_m?
 • Yes, but we care about the overall performance, not just the performance of g_m...
Out-Of-Bag (OOB) Error

<table>
<thead>
<tr>
<th></th>
<th>$\tilde{D}^{(1)}$</th>
<th>$\tilde{D}^{(2)}$</th>
<th>$\tilde{D}^{(3)}$</th>
<th>$\tilde{D}^{(4)}$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{x}_1, y_1)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>(\tilde{x}_2, y_2)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(\tilde{x}_N, y_N)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>...</td>
</tr>
</tbody>
</table>

Whether a point is in a bootstrapped dataset

- Recall that we learn $g_1, ..., g_M$ using $\tilde{D}^{(1)}, ..., \tilde{D}^{(M)}$

- Which set of hypothesis can (\tilde{x}_1, y_1) be used for validation?
Out-Of-Bag (OOB) Error

<table>
<thead>
<tr>
<th>(\hat{x}_1, y_1)</th>
<th>(\hat{x}_2, y_2)</th>
<th>...</th>
<th>(\hat{x}_N, y_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\[\bar{D}(1) \quad \bar{D}(2) \quad \bar{D}(3) \quad \bar{D}(4) \quad ... \]

\((\hat{x}_1, y_1) \): the aggregation of hypothesis that \(\hat{x}_n \) is OOB of
- \(G^-_1 = \text{aggregate}(g_3, g_4, ...) \)
- \(G^-_2 = \text{aggregate}(g_2, g_3, g_4, ...) \)
- \(G^-_N = \text{aggregate}(g_1, ..., ...) \)

Agggregate:
- Majority voting for classification
- Average for regression

Error:
- Binary error for classification
- Squared error for regression

\[E_{OOB}(G) = \frac{1}{N} \sum_{n=1}^{N} \text{error}(G^-_n(\hat{x}_n), y_n) \]

Whether a point is in a bootstrapped dataset
Out-Of-Bag (OOB) Error

\[E_{OOB}(G) = \frac{1}{N} \sum_{n=1}^{N} \text{error}(G_n^-(\hat{x}_n), y_n) \]

• Bagging provided an intrinsic mechanism for us to perform validation
 • We don’t need to split the dataset into training and validation

• Practical issues (you might face this in HW4)
 • What if some \(\hat{x}_n \) appears in all bootstrapped datasets?
 • The probability of this happening is small when the number of bags \(M \) is large
 • Let \(S \) be the set of points that is out of bag for at least one bootstrapped dataset
 • \(E_{OOB}(G) = \frac{1}{|S|} \sum_{(\hat{x}_n, y_n) \in S} \text{error}(G_n^-(\hat{x}_n), y_n) \)
Random Forest
What We Have Learned

Bagging:
A method to generate and aggregate many high-variance weak learners into a stronger one.

Decision tree:
Various nice properties
Bad generalization
- Due to high variance

Random Forest:
1. Construct many random trees
2. Aggregate the random trees
Random Forest

• Construct many random trees
 • Bootstrapping datasets and learn a max-depth tree for each of them
 • Other randomizations (not required in HW4)
 • When choosing split features, choose from a random subset (instead of all features)
 • Randomly project features (similar to non-linear transformation) for each tree

• Aggregate the random trees
 • Classification: Majority vote $\bar{g}(\hat{x}) = \text{sign}\left(\frac{1}{M} \sum_{m=1}^{M} g_m(\hat{x})\right)$
 • Regression: Average $\bar{g}(\hat{x}) = \frac{1}{M} \sum_{m=1}^{M} g_m(\hat{x})$
Questions?

• Note that in HW4, you will be asked to implement Bagging Decision Tree and calculate the OOB errors.

• Make sure you know the definitions/algorithm well.
Brief Discussion on Feature Importance

• Not all features are equally important
 • Some features could be redundant -- (birth year, age)
 • Some features might be irrelevant -- feature: name, label: prob of heart attack

• How do we know which features are more important?
 • Linear models:
 • The size of the weight is a proxy for feature importance
 • Applying L1 regularization is one way to reduce the number of features.
 • Decision tree:
 • The feature closer to the root is probably more important
 • Random forest:
 • Average "information gain" of all trees is a proxy for feature importance

• See LFD e-Chap 9.2 for more discussion on feature selection