CSE 417T
Introduction to Machine Learning

Lecture 15
Instructor: Chien-Ju (CJ) Ho
Logistics: Homework 3

• Homework 3 is posted on the course website

• Due on March 25 (Wednesday), 2020
 • Homework 4 will be announced before the due of homework 3
Discussion on Exam 1
417T Part 2
Machine Learning Techniques
UNKNOWN TARGET DISTRIBUTION
(target function f plus noise)
$P(y \mid x)$

$y_i \sim P(y \mid x_i)$

TRAINING EXAMPLES
$(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)$

UNKNOWN INPUT DISTRIBUTION
$P(x)$

\mathcal{H}

LEARNING ALGORITHM
A

ERROR MEASURE

FINAL HYPOTHESIS
g

$g(x) \approx f(x)$

x_1, x_2, \ldots, x_N
Focus of the rest of the semester
Decision Tree
Decision Tree Hypothesis

\[\tilde{x} = (\text{annual income, have debt}) \]
\[y \in \{\text{approve, deny}\} \]
Decision Tree Hypothesis

- **Pros**
 - Easy to interpret (interpretability is getting attention and is important in some domains)
 - Can handle multi-type data (Numerical, categorical. ...)
 - Easy to implement (Bunch of if-else rules)

- **Cons**
 - Generally speaking, bad generalization
 - VC dimension is infinity
 - High variance (small change of data leads to very different hypothesis)
 - Easily overfit

Credit Card Approval Example

```
Annual Income

≥ 100k                  ≥ 20k                  < 20k
    < 100k                  < 20k

Approve   have debt?   Deny

yes       no

Deny      Approve      Deny
```

Yes

No
Decision Tree Hypothesis

Pros
- **Easy to interpret** (interpretability is getting attention and is important in some domains)
- **Can handle multi-type data** (Numerical, categorical, ...)
- **Easy to implement** (Bunch of if-else rules)

Cons
- Generally speaking, bad generalization
- VC dimension is infinity
- **High variance** (small change of data leads to very different hypothesis)
- **Easily overfit**

Why we care?
- One of the classical model
- Building block for other models (e.g., random forest)

Credit Card Approval Example

1. **Annual Income**
 - $\geq 100k$
 - $\geq 20k$
 - $< 20k$
 - $< 100k$

2. **have debt?**
 - **yes**
 - **no**

3. **Approve**
 - **Deny**

Annual Income $\geq 100k$
Annual Income $\geq 20k$
Annual Income $< 100k$
Annual Income $< 20k$

Deny
Deny
Approve
Approve

Credit Card Approval Example
Learning Decision Tree from Data

• Given dataset D, how to learn a decision tree hypothesis?

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

• Potential approach
 • Find $g = \arg\min_{h \in H} E_{in}(h)$

• Multiple decision trees with zero E_{in}

Which one do you think might generalize better?
Learning Decision Tree from Data

• Conceptual intuition to deal with overfitting
 • Regularization: Constrain H

• Informally,

\[
\text{minimize } E_{in}(\vec{w}) \\
\text{subject to } \text{size}(\text{tree}) \leq C
\]

• This optimization is generally computationally intractable.
• Most decision tree learning algorithms rely on \textit{heuristics} to approximate the goal.
Greedy-Based Decision Tree Algorithm

- **DecisionTreeLearn(D):** Input a dataset D, output a decision tree hypothesis
 - Create a root node r
 - If termination conditions are met
 - return a single node tree with **leaf prediction** based on D
 - Else: Greedily find a feature A to split according to **split criteria**
 - For each possible value v_i of A
 - Let D_i be the dataset containing data with value v_i for feature A
 - Create a subtree DecisionTreeLearn(D_i) that being the child of root r

- Most decision tree learning algorithms follow this template, but with different choices of **heuristics**
Example

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

DecisionTreeLearn(D)
Create a root node r
If termination conditions are met
return a single node tree with leaf prediction based on
Else: Greedily find a feature A to split according to split criteria
For each possible value v_i of A
Let D_i be the dataset containing data with value v_i for feature A
Create a subtree DecisionTreeLearn(D_i) that being the child of root r

Termination conditions not met
Find a feature to split

Leaf prediction +1

Find next feature to split

Don’t terminate

terminate

+1

-1

x_1

$+1$ +1 +1 +1
-1 +1 -1 +1
+1 -1 +1 +1
-1 -1 -1 -1

-1 +1 +1 +1
-1 +1 -1 +1
-1 -1 +1 -1
-1 -1 -1 -1
Example Heuristics

• Termination conditions
 • When the dataset is empty
 • When all labels are the same
 • when all features are the same
 • When the depth of the tree is too deep
 • ...

• Leaf predictions
 • Majority voting
 • Average (for regression)
 • ...

• Split criteria?

DecisionTreeLearn(\(D\))
Create a root node \(r\)
If termination conditions are met
 return a single node tree with leaf prediction based on
Else: Greedily find a feature \(A\) to split according to split criteria
For each possible value \(v_i\) of \(A\)
 Let \(D_i\) be the dataset containing data with value \(v_i\) for feature \(A\)
 Create a subtree DecisionTreeLearn(\(D_i\)) that being the child of root \(r\)
Split Criteria

• Which feature would you choose to split?

<table>
<thead>
<tr>
<th>x₁</th>
<th>x₂</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

• Want the tree to be “smaller”
 • Intuition: choose the one that the labels are more “pure”
 • Example: choose the one maximizing information gain => ID3 Algorithm
Brief Intro to Information Entropy

• Assume there are K possible labels

• Entropy:

 $H(D) = \sum_{i=1}^{K} p_i \log_2 \frac{1}{p_i}$

 p_i: ratio of points with label i in the data

• Binary case with $K = 2$

By definition

$0 \log_2 \frac{1}{0} = 0; \quad 1 \log_2 \frac{1}{1} = 0$
Brief Intro to Information Entropy

• Assume there are K possible labels

• Entropy:

 \[H(D) = \sum_{i=1}^{K} p_i \log_2 \frac{1}{p_i} \]

 • p_i: ratio of points with label i in the data

• Binary case with $K = 2$

 • Interpretations of entropy
 • Expected # bit to encode a distribution

 • Higher entropy
 • data is less “pure”

 • ”pure” data => all labels are +1 or -1 => entropy = 0

 • Want to choose splits that lead to pure data, i.e., lower entropy

By definition

\[0 \log_2 \frac{1}{0} = 0; \quad 1 \log_2 \frac{1}{1} = 0 \]
ID3: Using Information Gain as Selection Criteria

- Information gain of choosing feature A to split
 \[
 \text{Gain}(D, A) = H(D) - \sum_{i} \frac{|D_i|}{|D|} H(D_i) \quad \text{[The amount of decrease in entropy]}
 \]

- ID3: Choose the split that maximize $\text{Gain}(D, A)$

DecisionTreeLearn(D)
- Create a root node r
- If termination conditions are met
 - return a single node tree with leaf prediction based on
- Else: Greedily find a feature A to split according to split criteria
 - For each possible value v_i of A
 - Let D_i be the dataset containing data with value v_i for feature A
 - Create a subtree $\text{DecisionTreeLearn}(D_i)$ that being the child of root r

Notation:
- $|D|$ is the number of points in D

ID3 termination conditions
- If all labels are the same
- If all features are the same
- If dataset is empty

ID3 leaf predictions
- Most common labels (majority voting)

ID3 split criteria
- Information gain
ID3: Using Information Gain as Selection Criteria

- Information gain of choosing feature A to split
 - $Gain(D, A) = H(D) - \sum_i \frac{|D_i|}{|D|} H(D_i)$
- ID3: Choose the split that maximize $Gain(D, A)$

\[
\begin{array}{ccc}
 x_1 & x_2 & y \\
 +1 & +1 & +1 \\
 +1 & -1 & +1 \\
 -1 & +1 & -1 \\
 -1 & -1 & -1 \\
\end{array}
\]

\[
H(D) = 0.5 \log_2 2 + 0.5 \log_2 2 = 1
\]

\[
\begin{align*}
 \text{Gain}(D, x_1) &= 1 \\
 \text{Gain}(D, x_2) &= 0
\end{align*}
\]

ID3 will choose x_1 as the next split attribute
Further Addressing Overfitting

• More Regularization (Constrain H)
 • Do not split leaves past a fixed depth
 • Do not split leaves with fewer than c labels
 • Do not split leaves where the maximal information gain is less than τ

• Pruning (removing leaves)
 • Evaluate each split using a validation set and compare the validation error with and without that split (replacing it with the most common label at that point)
 • Use statistical test to examine whether the split is “informative” (leads to different enough subtrees)
More Discussions

• Real-valued features (continuous x)
 • Need to select threshold for branching

• Regression (continuous y)
 • Change leaf prediction: e.g., average instead of majority vote
 • Change measure for “purity” of data: e.g., squared error of data
Ensemble Learning

The focus of the next two lectures
Ensemble Learning

• Assume we are given a set of learned hypothesis
 • $g_1, g_2, ..., g_M$

• What can we do?
 • Use validation to pick the best one
 • What if all of them are not good enough

• Can we aggregate them?
Is Aggregation a Good Idea?

• At a 1906 country fair, ~800 people participate in a contest to guess the weight of an ox.

• Reward is given to the person with the closest guess.

• The average guess is 1,197lbs. The true answer is 1,198lbs.
Is Aggregation a Good Idea?

• Maybe
 • If the hypothesis is “diverse”, and “in average” they seem good

• Question:
 • How do we find a set of hypothesis that are diverse and “in average” good
 • How do we aggregate the set of hypothesis

• Ensemble learning
 • Bagging – Random Forest (March 17)
 • Boosting – AdaBoost (March 19)