• Please **mute** yourself and **turn off videos** to save bandwidth.

• If you have questions during the lecture
 • Use chatrooms to post your questions
 • I’ll review chatrooms in batches
 • You can also un-mute yourself and ask the questions directly

• The slides are posted on the course website

• RECORD THE LECTURE!
 • Please remind me if I forget to do so.
Logistics: Homework

• Homework 3 is due this Friday
• Homework 4 will be posted by today or tomorrow
 • Two implementation questions
 • Implement bagging decision trees
 • Implement AdaBoost
 • You can work as a group of up to 2 persons
 • Doable and totally okay doing the homework yourself
 • Collaboration could be challenging in the current situation
• Will be due sometime around April 9-13
 • Will have a tighter deadline for HW5 (entirely written problems)
Recap
Decision Tree Hypothesis

• **Pros**
 - **Easy to interpret** (interpretability is getting attention and is important in some domains)
 - **Can handle multi-type data** (Numerical, categorical. ...)
 - **Easy to implement** (Bunch of if-else rules)

• **Cons**
 - Generally speaking, **bad generalization**
 - **VC dimension is infinity**
 - **High variance** (small change of data leads to very different hypothesis)
 - Easily overfit

• **Why we care?**
 - One of the classical model
 - Building block for other models (e.g., random forest)

Credit Card Approval Example

Annual Income

- ≥ 100k
- ≥ 20k
- < 20k

> have debt?

> yes
- Deny

> no
- Approve

> Approve

> Deny
ID3: Using Information Gain as Selection Criteria

• Information gain of choosing feature \(A \) to split

 • \(\text{Gain}(D, A) = H(D) - \sum_i \frac{|D_i|}{|D|} H(D_i) \) [The amount of decrease in entropy]

• ID3: Choose the split that maximize \(\text{Gain}(D, A) \)

DecisionTreeLearn\((D) \)
Create a root node \(r \)
If termination conditions are met
 return a single node tree with leaf prediction based on
Else: Greedily find a feature \(A \) to split according to split criteria
For each possible value \(v_i \) of \(A \)
 Let \(D_i \) be the dataset containing data with value \(v_i \) for feature \(A \)
 Create a subtree DecisionTreeLearn\((D_i) \) that being the child of root \(r \)

• ID3 termination conditions
 • If all labels are the same
 • If all features are the same
 • If dataset is empty

• ID3 leaf predictions
 • Most common labels (majority voting)

• ID3 split criteria
 • Information gain

Notations:
\(H(D) \): Entropy of \(D \)
\(|D| \) is the number of points in \(D \)
Bagging - Bootstrapped Aggregating

- Bootstrap M datasets $\{\tilde{D}^{\{m\}}\}$ (Sample with replacement from D)
- Learn a hypothesis from each of them

\[H \rightarrow \tilde{D}^{\{1\}} \rightarrow g_1 \]
\[\quad \tilde{D}^{\{2\}} \rightarrow g_2 \]
\[\quad \vdots \]
\[\quad \tilde{D}^{\{M\}} \rightarrow g_M \]

- Aggregate the learned hypothesis (assume we are doing classification)

\[G(\hat{x}) = \bar{g}(\hat{x}) = \text{sign} \left(\frac{1}{M} \sum_{m=1}^{M} g_m(\hat{x}) \right) \]
Out-Of-Bag (OOB) Error

\[\tilde{D}^{(1)} \quad \tilde{D}^{(2)} \quad \tilde{D}^{(3)} \quad \tilde{D}^{(4)} \quad \ldots \]

\((\tilde{x}_1, y_1) \) Yes Yes No No \ldots

\((\tilde{x}_2, y_2) \) Yes No No No \ldots

\ldots \ldots \ldots \ldots \ldots \ldots

\((\tilde{x}_N, y_N) \) No Yes Yes Yes \ldots

Whether a point is in a bootstrapped dataset

- \(G_n^- \): the aggregation of hypothesis that \(\tilde{x}_n \) is OOB of
 - \(G_1^- = \text{aggregate}(g_3, g_4, \ldots) \)
 - \(G_2^- = \text{aggregate}(g_2, g_3, g_4, \ldots) \)
 - \(G_N^- = \text{aggregate}(g_1, \ldots) \)

- OOB Error
 - \(E_{OOB}(G) = \frac{1}{N} \sum_{n=1}^{N} \text{error}(G_n^-(\tilde{x}_n), y_n) \)

Aggregate:
- Majority voting for classification
- Average for regression

Error:
- Binary error for classification
- Squared error for regression
Random Forest

Bagging:
A method to generate and aggregate many high-variance weak learners into a stronger one.

Decision tree:
Various nice properties
Bad generalization
- Due to high variance

Random Forest:
1. Construct many random trees
2. Aggregate the random trees
Random Forest

• Construct many random trees
 • Bootstrapping datasets and learn a max-depth tree for each of them
 • Other randomizations (not required in HW4)
 • When choosing split features, choose from a random subset (instead of all features)
 • Randomly project features (similar to non-linear transformation) for each tree

• Aggregate the random trees
 • Classification: Majority vote \(\bar{g}(\tilde{x}) = \text{sign} \left(\frac{1}{M} \sum_{m=1}^{M} g_m(\tilde{x}) \right) \)
 • Regression: Average \(\bar{g}(\tilde{x}) = \frac{1}{M} \sum_{m=1}^{M} g_m(\tilde{x}) \)
Lecture Notes Today

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.
Boosting
Ensemble Learning

• Goal: Utilize a set of weak learners to obtain a strong learner.

• Format of ensemble learning
 • Construct many diverse weak learners
 • Aggregate the weak learners

Bagging:
 • Construct diverse weak learners
 • (Simultaneously) bootstrapping datasets
 • Train weak learners on them
 • Aggregate the weak learners
 • Uniform aggregation
Ensemble Learning

• Goal: Utilize a set of weak learners to obtain a strong learner.

• Format of ensemble learning
 • Construct many diverse weak learners
 • Aggregate the weak learners

Bagging:
• Construct diverse weak learners
 • (Simultaneously) bootstrapping datasets
 • Train weak learners on them
• Aggregate the weak learners
 • Uniform aggregation

Boosting
• Construct diverse weak learners
 • Adaptively generating datasets
 • Train weak learners on them
• Aggregate the weak learners
 • Weighted aggregation
Informal Intuitions about Boosting

• Example: Teach a class of kids to identify apples from data

- Alice: Apples are circular
- Teacher: Circular is a good feature, but using this feature might make some mistakes

Let me highlight the mistakes.

 • Make correct images smaller
 • Make incorrect images larger

Example created by Hsuan-Tien Lin
Informal Intuitions about Boosting

• Example: Teach a class of kids to identify apples from data

 • Alice: Apples are **circular**
 • Bob: Apples are **red**
 • Teacher:
 Yes, many apples are red but it could still make mistakes.

Let me **highlight** the mistakes.
 • Make correct images smaller
 • Make incorrect images larger

Example created by Hsuan-Tien Lin
Informal Intuitions about Boosting

• Example: Teach a class of kids to identify apples from data

 • Alice: Apples are circular
 • Bob: Apples are red
 • Charlie: Apples could be green

Example created by Hsuan-Tien Lin
Informal Intuitions about Boosting

• Example: Teach a class of kids to identify apples from data

 - Alice: Apples are circular
 - Bob: Apples are red
 - Charlie: Apples could be green
 - David: Apples have stems at the top
 - Class: Apples are somewhat circular, somewhat red, possibly green, and may have stems at the top

Example created by Hsuan-Tien Lin
Informal Intuitions about Boosting

• Example: Teach a class of kids to identify apples from data

Example created by Hsuan-Tien Lin

- Alice: Apples are circular
- Bob: Apples are red
- Charlie: Apples could be green
- David: Apples have stems at the top
- Class: Apples are somewhat circular, somewhat red, possibly green, and may have stems at the top

Key steps of this process:
• Learn a simple hypothesis for each dataset
• Iteratively update the dataset to focus on what we got wrong (i.e., create diversity)
• Aggregate the learned simple hypothesis

Example created by Hsuan-Tien Lin
Outline of a Boosting Algorithm

• Initialize D_1 (usually the same as the initial dataset D)

• For $t = 1$ to T
 • Learn g_t from D_t
 • Reweight the distribution and obtain D_{t+1} based on g_t and D_t

• Output weighted-aggregate(g_1, \ldots, g_T)
 • Classification: $G(\vec{x}) = \bar{g}(\vec{x}) = \text{sign} \left(\frac{1}{T} \sum_{t=1}^{M} \alpha_t g_t(\vec{x}) \right)$

Questions
 How to learn g_t from D_t
 How to reweight the distribution and obtain D_{t+1}
 How to perform weighted aggregation
Discussion on Re-weighted D_t

• Dataset $D = \{(\hat{x}_1, y_1), ..., (\hat{x}_N, y_N)\}$

• Notation of D_t
 • $D_t(n)$ is the weight/probability of data point (\hat{x}_n, y_n) in D_t
 • $\sum_{n=1}^{N} D_t(n) = 1$

• What is $E_{in}(h)$ on D_t? (Expressed as $E_{in}^{(D_t)}(h)$)
 • Re-sample dataset
 • Re-sample the dataset from D according to distribution D_t
 • Calculate E_{in} on the re-sampled dataset as usual

 • Calculate weighted error
 • $E_{in}^{(D_t)}(h) = \sum_{n=1}^{N} D_t(n) \text{error}(h(\hat{x}_n), y_n)$

When $D_t(n) = 1/N$. This reduces to standard definition of E_{in}.
AdaBoost – Adaptive Boosting

How to learn g_t from D_t
How to reweight the distribution and obtain D_{t+1}
How to perform weighted aggregation

[AdaBoost focuses on classification problem]
Boosting Background

• A theoretical question asked by Kearns and Valiant
 • whether a “weak” learning algorithm which performs just slightly better than random guessing in the PAC model can be “boosted” into an arbitrarily accurate “strong” learning algorithm

• AdaBoost
 • The first adaptive boosting algorithm that
 • has nice theoretical guarantees
 • successfully incorporates into applications
Outline of a Boosting Algorithm

• Initialize D_1 (usually the same as the initial dataset D)

• For $t = 1$ to T
 • Learn g_t from D_t
 • Reweight the distribution and obtain D_{t+1} based on g_t and D_t

• Output weighted-aggregate($g_1, ..., g_T$)
 • Classification: $G(\vec{x}) = \vec{g}(\vec{x}) = \text{sign} \left(\frac{1}{T} \sum_{t=1}^{M} \alpha_t g_t(\vec{x}) \right)$

Questions
 How to learn g_t from D_t
 How to reweight the distribution and obtain D_{t+1}
 How to perform weighted aggregation
Short Break and Questions Answering
Learn weak learner g_t from D_t

• We want *simple* weak learners
 • low variance, high bias
 • Decision stump (one-level decision tree) is one good option.

• How to learn g_t from D_t
 • Find the decision stump that
 • minimizes $E_{in}^{(D_t)}$
 • maximize information gain (you can call decision tree library directly)
How to Reweight D_{t+1}

• We want to make g_{t+1} (learned from D_{t+1}) to be **diverse** from g_t
 • Increase the weights of points that g_t makes **wrong** predictions
 • Decrease the weights of points that g_t makes **correct** predictions

• Define a parameter $\gamma > 1$
 • If g_t makes **wrong** predictions on \mathbf{x}_n
 • $D_{t+1}(n) = \frac{1}{Z_t} D_t(n) \cdot \gamma$ (increase the weight)
 • If g_t makes **correct** predictions on \mathbf{x}_n
 • $D_{t+1}(n) = \frac{1}{Z_t} D_t(n) / \gamma$ (decrease the weight)

• Goal:
 • Choose γ such that $E_{in}^{(D_{t+1})}(g_t) = 0.5$
 • Since g_{t+1} minimizes $E_{in}^{(D_{t+1})} \Rightarrow g_t$ and g_{t+1} are **diverse**

Z_t: normalization constant

We need to ensure $\sum_{n=1}^{N} D_{t+1}(n) = 1$
• Define $\epsilon_t = E_{in}^{(D_t)}(g_t) = \sum_{n=1}^{N} D_t(n) \mathbb{I}[g_t(\hat{x}_n) \neq y_n]$

• Weighted in-sample error of g_t on D_t

• Goal: Want to make $E_{in}^{(D_{t+1})}(g_t) = 0.5$

\[
E_{in}^{(D_{t+1})}(g_t) = \sum_{n=1}^{N} D_{t+1}(n) \mathbb{I}[g_t(\hat{x}_n) \neq y_n]
\]
\[
= \sum_{n=1}^{N} \frac{1}{Z_t} D_t(n) \gamma \mathbb{I}[g_t(\hat{x}_n) \neq y_n]
\]
\[
= \frac{\gamma}{Z_t} \sum_{n=1}^{N} D_t(n) \mathbb{I}[g_t(\hat{x}_n) \neq y_n] = \frac{\gamma}{Z_t} \epsilon_t
\]

\[
Z_t = \sum_{n=1}^{N} D_t(n) \gamma \mathbb{I}[g_t(\hat{x}_n) \neq y_n] + \sum_{n=1}^{N} D_t(n) \frac{1}{\gamma} \mathbb{I}[g_t(\hat{x}_n) = y_n]
\]
\[
= \gamma \epsilon_t + \frac{1}{\gamma} (1 - \epsilon_t)
\]

Note that we consider the case weak learners are better than random guessing: $\epsilon_t < 0.5$
• Want to make $E_{in}^{(D_{t+1})}(g_t) = 0.5$
 • $E_{in}^{(D_{t+1})}(g_t) = \frac{\gamma}{Z_t} \epsilon_t$
 • $Z_t = \gamma \epsilon_t + \frac{1}{\gamma} (1 - \epsilon_t)$

\[
\frac{\gamma \epsilon_t}{\gamma \epsilon_t + (1-\epsilon_t)/\gamma} = 0.5 \Rightarrow \frac{1-\epsilon_t}{\gamma} = \gamma \epsilon_t \Rightarrow \gamma = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}
\]

• Reweight rule
 • If $g_t(\vec{x}_n) \neq \gamma_n$, then $D_{t+1}(n) = \frac{1}{Z_t} D_t(n) \left(\sqrt{\frac{1-\epsilon_t}{\epsilon_t}} \right)$
 • If $g_t(\vec{x}_n) = \gamma_n$, then $D_{t+1}(n) = \frac{1}{Z_t} D_t(n) \left(\sqrt{\frac{1-\epsilon_t}{\epsilon_t}} \right)^{-1}$

• Note that both $g_t(\vec{x}_n)$ and γ_n are either +1 or -1
 • If $g_t(\vec{x}_n) \neq \gamma_n$, $g_t(\vec{x}_n)\gamma_n = -1$; if $g_t(\vec{x}_n) = \gamma_n$, $g_t(\vec{x}_n)\gamma_n = 1$
Want to make $E_{in}^{(D_{t+1})}(g_t) = 0.5$

- $E_{in}^{(D_{t+1})}(g_t) = \frac{\gamma}{Z_t} \epsilon_t$
- $Z_t = \gamma \epsilon_t + \frac{1}{\gamma} (1 - \epsilon_t)$

$$\frac{\gamma \epsilon_t}{\gamma \epsilon_t + (1 - \epsilon_t) / \gamma} = 0.5 \implies \frac{1 - \epsilon_t}{\gamma} = \gamma \epsilon_t \implies \gamma = \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}$$

Reweight rule

- If $g_t(\tilde{x}_n) \neq y_n$, then $D_{t+1}(n) = \frac{1}{Z_t} D_t(n) \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) = \frac{1}{Z_t} D_t(n) \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)^{-g_t(\tilde{x}_n)y_n}$

- If $g_t(\tilde{x}_n) = y_n$, then $D_{t+1}(n) = \frac{1}{Z_t} D_t(n) \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)^{-1} = \frac{1}{Z_t} D_t(n) \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)^{-g_t(\tilde{x}_n)y_n}$

Reweight rule: $D_{t+1}(n) = \frac{1}{Z_t} D_t(n) \left(\sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} \right)^{-g_t(\tilde{x}_n)y_n}$
How to Reweight D_{t+1}

- Reweight rule:

 $D_{t+1}(n) = \frac{1}{z_t} D_t(n) \left(\sqrt{\frac{1-\epsilon_t}{\epsilon_t}} \right)^{-g_t(\tilde{x}_n) y_n}$

- A bit more manipulations (the reasons will be clear later)

 - Define $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right)$

 - $e^{-\alpha_t} = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$

- Final reweight rule: $D_{t+1}(n) = \frac{1}{z_t} D_t(n) e^{-\alpha_t g_t(\tilde{x}_n) y_n}$
How to Aggregate Weak Learners

• Intuition:
 • We want to put more weights on better weak learners
 • \(\epsilon_t = E_{in}^{(D_t)}(g_t) \) is a proxy on how well \(g_t \) performs (smaller \(\epsilon_t \) => better \(g_t \))

• Recall that \(\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right) \)
 • Better \(g_t \), smaller \(\epsilon_t \), higher \(\alpha_t \)
 • When \(\epsilon_t = 0.5, \alpha_t = 0 \) (random guessing leads to 0 weights)
 • When \(\epsilon_t = 0, \alpha_t = \infty \) (if a feature perfectly classifies the data, use it as our final hypothesis)

• Aggregation rule
 • \(G(\hat{x}) = \text{sign}(\sum_{t=1}^{T} \alpha_t g_t(\hat{x})) \)
AdaBoost Algorithm

• Given $D = \{ (\tilde{x}_1, y_1), \ldots, (\tilde{x}_N, y_N) \}$
• Initialize $D_1(n) = 1/N$ for all $n = 1, \ldots, N$
• For $t = 1, \ldots, T$
 • Learn g_t from D_t (minimizing $E_{in}^{(D_t)}$ using decision stumps)
 • Calculate $\epsilon_t = E_{in}^{(D_t)}(g_t)$
 • Set $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right)$
 • Update $D_{t+1}(n) = \frac{1}{Z_t} D_t(n) e^{-\alpha_t y_n g_t(\tilde{x}_n)}$
• Output $G(\tilde{x}) = \text{sign}(\sum_{t=1}^{T} \alpha_t g_t(\tilde{x}))$
Short Break and Questions Answering
Theoretical Properties of AdaBoost

• The training error of AdaBoost converges fast
 • Let $\gamma_t = \frac{1}{2} - \epsilon_t$ (how good each weak learner is better than random guessing)
 • $E_{in} \leq e^{-2 \sum_{t=1}^{T} \gamma_t^2}$

• Generalization error
 • VC analysis gives us $E_{out} \leq E_{in} + \tilde{O}\left(\sqrt{\frac{T d_{vc}}{m}}\right)$
 • It seems as T goes large, overfitting could happen
 • Empirically, AdaBoost is relatively robust to overfitting
 • There are some more delicate analysis using the idea of margins to explain why

• See Freund & Schapire's Tutorial for more discussion.
AdaBoost in Action
AdaBoost in Action

- A toy example (by Yoav Freund Rob Schapire)
- Weak learner: decision stump (one-level decision tree)
Round 1

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]
Round 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]

\[D_3 \]
Round 3

\[h_3 \]

\[\varepsilon_3 = 0.14 \]

\[\alpha_3 = 0.92 \]
$H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92) = \text{sign}(1.99) = +$
Practical Success of AdaBoost
Viola-Jones Face Detection (2001)

• First real-time object detection framework
Weak Learners (Haar wavelet features)
Weak Learners (Haar wavelet features)

- Each hypothesis is very weak.
- There are many possible features.
 - For a 24x24 detection region, more then 160,000 features

- AdaBoost!
 - Training is slow
 - Testing is fast
 - (inherent feature selection)