CSE417T – Lecture 18

• Please **mute** yourself and **turn off videos** to save bandwidth.

• If you have questions during the lecture
 • Use chatrooms to post your questions
 • I’ll review chatrooms in batches
 • You can also un-mute yourself and ask the questions directly

• The slides are posted on the course website

• **RECORD THE LECTURE!**
 • Please remind me if I forget to do so.
Logistics: Homework

• Homework 4 will be due April 13 (Monday)
 • Two implementation questions
 • You can work as a group of up to 2 persons
 • Doable and okay for working on the homework yourself
 • Collaboration could be challenging in the current situation
 • Please start it early
 • It was on average the most time consuming assignment for students in the past
 • Keep track of your own late days
 • Gradescope doesn’t allow separate deadlines
 • Your submissions won’t be graded if you exceed the late-day limit

• HW5 will have a tighter deadline
 • Tentative dates (still subject to change)
 • announce on April 7, due on April 19, 11AM
Logistics: E-Chapters of LFD (AML)

• The textbook offers a set of e-chapters
 • Chap 6: Similarity-Based Methods
 • Chap 7: Neural Networks
 • Chap 8: Support Vector Machines
 • Chap 9: Learning Aides

• How to access
 • User Name: bookreaders
 • Password: Enter the first word on page 27 of the book.
Recap
Ensemble Learning

• Goal: Utilize a set of weak learners to obtain a strong learner.

• Format of ensemble learning
 • Construct many diverse weak learners
 • Aggregate the weak learners

Bagging:
• Construct diverse weak learners
 • (Simultaneously) bootstrapping datasets
 • Train weak learners on them

• Aggregate the weak learners
 • Uniform aggregation

Boosting
• Construct diverse weak learners
 • Adaptively generating datasets
 • Train weak learners on them

• Aggregate the weak learners
 • Weighted aggregation
Bagging and Random Forest

• Construct many random trees
 • Bootstrap datasets (sample with replacement from D)
 • Learn a max-depth tree for each of them
 • Other randomizations (not required in HW4)
 • When choosing split features, choose from a random subset (instead of all features)
 • Randomly project features (similar to non-linear transformation) for each tree

• Aggregate the random trees
 • Classification: Majority vote $\bar{g}(\bar{x}) = \text{sign} \left(\frac{1}{M} \sum_{m=1}^{M} g_m(\bar{x}) \right)$
 • Regression: Average $\bar{g}(\bar{x}) = \frac{1}{M} \sum_{m=1}^{M} g_m(\bar{x})$
Outline of a Boosting Algorithm

• Initialize D_1 (usually the same as the initial dataset D)

• For $t = 1$ to T
 • Learn g_t from D_t
 • Reweight the distribution and obtain D_{t+1} based on g_t and D_t

• Output weighted-aggregate(g_1, \ldots, g_T)
 • Classification: $G(x) = \bar{g}(x) = \text{sign} \left(\frac{1}{T} \sum_{t=1}^{T} \alpha_t g_t(x) \right)$

Questions
 How to learn g_t from D_t
 How to reweight the distribution and obtain D_{t+1}
 How to perform weighted aggregation
AdaBoost Algorithm

- Given $D = \{(\tilde{x}_1, y_1), ..., (\tilde{x}_N, y_N)\}$
- Initialize $D_1(n) = 1/N$ for all $n = 1, ..., N$
- For $t = 1, ..., T$
 - Learn g_t from D_t (using decision stumps)
 - Calculate $\epsilon_t = E_{in}^{(D_t)}(g_t)$
 - Set $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right)$
 - Update $D_{t+1}(n) = \frac{1}{Z_t} D_t(n) e^{-\alpha_t y_t g_t(\tilde{x}_n)}$
- Output $G(\tilde{x}) = \text{sign}(\sum_{t=1}^{T} \alpha_t g_t(\tilde{x}))$
Lecture Notes Today

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.
AdaBoost in Action
AdaBoost in Action

• A toy example (by Yoav Freund Rob Schapire)
• Weak learner: decision stump (one-level decision tree)
Round 1

\[\epsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]

\[D_2 \]
Round 2

$\varepsilon_2 = 0.21$
$\alpha_2 = 0.65$

D_3

h_2
Round 3

$\alpha_3 = 0.92$

$\epsilon_3 = 0.14$
 Brief Discussion on Gradient Boosting

Gradient boosting is safe to skip
Look at the AdaBoost Algorithm Again

The format is similar to gradient descent!
- If we consider the space of the weak learners (i.e., $g_t(\hat{x})$) as the space of “weights”
- This observation leads to a general class of boosting algorithms: gradient boosting
- XGBoost is one implementation of gradient boosting that is popular in competitions
- See CASI 17.4 and the reference in CASI P.350 for more discussion

[Safe to Skip]
Gradient Boosting

• AdaBoost is a special case of Gradient Boosting
 • minimizing the exponential loss \(e_{\text{exp}}(h(\vec{x}), y) = e^{-yh(\vec{x})} \)
 • using decision stump as the weak learners

\[
f(x) = +1
\]

\(e_{\text{exp}} \) is a surrogate loss function of the binary classification error we care about

• Minimizing an alternative error (loss function) is a common trick in ML, especially when the target loss function is hard to optimize.
• There are some theoretical discussions on when doing this makes sense (“calibration”: whether minimizing the surrogate is consistent with minimizing the original loss).
Similarity-Based Method
Nearest Neighbor
Movie Rating Prediction

- Below is the historical move ratings from users (5 is the highest)

<table>
<thead>
<tr>
<th></th>
<th>Movie 1</th>
<th>Movie 2</th>
<th>Movie 3</th>
<th>Movie 4</th>
<th>Movie 5</th>
<th>Movie 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Bob</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Charlie</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>David</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What do you think Bob’s rating will be for Movie 6?
 - Maybe 2, since Bob’s taste seems to be similar with Alice’s
Movie Recommendation

• Below is the historical move ratings from users (5 is the highest)

<table>
<thead>
<tr>
<th></th>
<th>Movie 1</th>
<th>Movie 2</th>
<th>Movie 3</th>
<th>Movie 4</th>
<th>Movie 5</th>
<th>Movie 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>4</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Charlie</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>David</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Which movie will you recommend to Alice, why?
 • Maybe Movie 5, since Bob’s taste seems to be similar with Alice’s
Nearest Neighbor

• Predict \hat{x} according to its nearest neighbor

 • Given $D = \{(\hat{x}_1, y_1), (\hat{x}_2, y_2), \ldots, (\hat{x}_N, y_N)\}$

 • Let $\hat{x}_{[1]}$ be \hat{x}'’s nearest neighbor, i.e., the closest point to \hat{x} in D

 • Similarly, let $\hat{x}_{[i]}$ be the i^{th} closest point to \hat{x} in D

 • With some distance measure $d(\hat{x}, \hat{x}')$

 • $d(\hat{x}, \hat{x}_{[1]}) \leq d(\hat{x}, \hat{x}_{[2]}) \leq \ldots \leq d(\hat{x}, \hat{x}_{[N]})$

 • Let $y_{[i]}(\hat{x})$ or $y_{[i]}$ be the label of $\hat{x}_{[i]}$

• Nearest neighbor hypothesis

 $$g(\hat{x}) = y_{[1]}(\hat{x})$$
• In the practice question of exam 1:
 • Machine Learning Whiz Kid (MLWK) proposes the following learning algorithm
 • Given D, define the learned hypothesis g as follows
 $$g(\tilde{x}) = \begin{cases}
y_n & \text{if } x \text{ is equal to some } \tilde{x}_n \in D \\
1 & \text{otherwise}
\end{cases}$$

• In our discussion earlier, MLWK leads to
 • $E_{in} = 0$, infinite VC dimension, bad generalization
Nearest Neighbor

$g(\hat{x})$ looks like a Voronoi diagram

- Properties of Nearest Neighbor (NN)
 - No training is needed
 - Good interpretability
 - In-sample error $E_{in} = 0$
 - VC dimension is ∞

- This seems to imply bad learning models from what we talk about so far? Why we care?

- What we really care about is E_{out}
 - VC analysis: $E_{out} \leq E_{in} + \text{Generalization error}$
 - We can infer E_{out} through E_{in} and model complexity
 - NN has nice guarantees outside of VC analysis
Nearest Neighbor is 2-Optimal

• Given mild conditions, for nearest neighbor, when $N \rightarrow \infty$, with high probability,

\[E_{out} \leq 2E^* \]

• That is, we can not infer E_{out} from E_{in}, but we know it cannot be much worse than the best anyone can do.
Proof Sketch of 2-Optimality

• Setup
 • The target function is noisy: \(\pi(\tilde{x}) = \Pr[y = +1|\tilde{x}] \)
 • The noisy target \(\pi \) is continuous in \(\tilde{x} \)
 • Similar \(\tilde{x} \) should have similar labels
 • The underlying assumption for nearest neighbor to work

• Let \(g^*(\tilde{x}) \) be the optimal hypothesis
 • \(g^*(\tilde{x}) = \begin{cases} +1 \text{ if } \pi(\tilde{x}) \geq \frac{1}{2} \\ -1 \text{ otherwise} \end{cases} \)
 • Pointwise-error \(e(g^*(\tilde{x}), y) = \min\{\pi(\tilde{x}), 1 - \pi(x)\} \)

• \(E_{out}^* = \mathbb{E}_{\tilde{x}}[e(g^*(\tilde{x}), y)] = \mathbb{E}_{\tilde{x}}[\min\{\pi(\tilde{x}), 1 - \pi(x)\}] \)
Proof Sketch of 2-Optimality

- \(E_{out}^* = \mathbb{E}_{\hat{x}}[e(g^*(\hat{x}), y)] = \mathbb{E}_{\hat{x}}[\min\{\pi(\hat{x}), 1 - \pi(x)\}] \)

- Proof sketch:
 - For a new point \((\hat{x}, y)\), let \((\hat{x}_{[1]}, y_{[1]})\) be its nearest neighbor in \(D\)
 - Consider the case when \(N \to \infty\)
 - A new point is “very close” to its nearest neighbor in \(D\)
 - \(\pi(\hat{x}) \approx \pi(\hat{x}_{[1]})\)
 - Error of nearest neighbor hypothesis on a new point is
 \[
 \Pr[y \neq y_{[1]}] = \Pr[y = +1, y_{[1]} = -1] + \Pr[y = -1, y_{[1]} = +1]
 = \pi(\hat{x}) \left(1 - \pi(\hat{x}_{[1]})\right) + (1 - \pi(\hat{x}))\pi(\hat{x}_{[1]})
 \approx 2 \pi(\hat{x})(1 - \pi(\hat{x}))
 \leq 2\min\{\pi(\hat{x}), 1 - \pi(\hat{x})\}
 \]
Nearest Neighbor is Self-Regularizing

• Intuition of regularization:
 • Use simpler hypothesis if we don’t have enough data

• Nearest neighbor hypothesis

The complexity of hypothesis grows with the number of data points
Short Break and Questions
k-Nearest Neighbor
"Stabilize" the Hypothesis

• Instead of "single" nearest neighbor
 • Making predictions according to \(k \) nearest neighbors

• \(k \)-nearest neighbor (K-NN)
 • \(g(\hat{x}) = \text{sign}(\sum_{i=1}^{k} y_i(\hat{x})) \)
 • \((k \) is often odd for binary classification)
Impacts of k

- $k = 1$: the nearest neighbor hypothesis
 - many, complicated decision boundaries
 - may overfit

- $k = N$, g predicts the most common label in the training dataset
 - no decision boundaries
 - may underfit

- k controls the complexity of the hypothesis set
 - k affects how well the learned hypothesis will generalize
How to Choose k

• Making the choice of k a function of N, denoted by $k(N)$
 • Theorem:
 • If $k(N) \to \infty$ as $N \to \infty$ and $\frac{k(N)}{N} \to 0$ as $N \to \infty$
 • Then $E_{in}(g) \to E_{out}(g)$ and $E_{out}(g) \to E_{out}(g^*)$
 • Example: $k(N) = \sqrt{N}$ satisfies the condition

• Practical rule of thumb:
 • $k = 3$ is often a good enough choice
 • Using validation to choose k
Summary of k-NN So Far

• Pros
 • Simple algorithm
 • Good interpretations
 • Nice theoretical guarantee
 • Easy to adapt to regression (average of nearest neighbors) and multi-class classification (majority voting)

• Cons
 • Computational issue
 • each prediction requires $O(N)$ computation
 • Curse of dimensionality
Curse of Dimensionality

• Generally, higher dimensions implies harder learning (think VC)

• Things are worse with similarity-based methods
 • that rely on assumptions that points close to one another have similar labels

• As the dimension grows, most of the points will not be close to each other...
Illustration of Curse of Dimensionality

• Think about Euclidean distance: \(d(\tilde{x}, \tilde{x}') = \|\tilde{x} - \tilde{x}'\| \)

• Illustration
 • Consider the space \([0,1]^d\) (a hypercube with length of each side = 1)
 • What’s the side length \(\ell\) of a hypercube that takes up 1\% of the space?
 • \(d = 1: \ell = 0.01\)
 • \(d = 2: \ell = 0.1\)
 • \(\ell^d = 0.01 \Rightarrow d = 100, \ell \approx 0.95\)
Illustration of Curse of Dimensionality

• Consider the distance to the origin when $d = 100$
 • Consider the case that the value of each dimension is uniformly drawn
 • Only 1% of the points will be in the hypercube $[0,0.95]^{100}$
 • Most of the points will be far away from the origin
 • Most of the points will be far away from each other

• No simple solutions....
 • Dimension reduction techniques are often adopted (see LFD 9.2)
Computational Issues [Safe to Skip]

• k-Nearest Neighbor is computationally demanding
 • Need to store all data points: space complexity $O(Nd)$
 • For each prediction for \tilde{x}
 • Calculate the distance to every point in D
 • Find the k closest points
 • Time complexity $O(Nd + N\log k)$

• There are still ongoing research to address this issue

• Two general approaches:
 • Reduce the number of data points
 • Store the data in some data structure to speed up searching
 • See LFD 6.2.3 for more discussion
Computational Issues [Safe to Skip]

• Reduce the number of data points

• Store the data in some data structure to speed up searching
Computational Issues [Safe to Skip]

• Reduce the number of data points
 • Intuition: remove points that will not impact the decision boundary.
 • Generally a hard problem. But there are some heuristic approaches.

• Store the data in some data structure to speed up searching
 • Intuition: Clustering data points
 • For a new data point, first find a nearest cluster. Then find the nearest points within that cluster