CSE 417T
Introduction to Machine Learning

Instructor: Chien-Ju (CJ) Ho
Logistics

• HW 0:
 • Due by **11am next Tuesday**
 • Submit via Gradescope
 • Only waitlisted students need to submit
 • No late days can be used
 • The rules on academic integrity apply

• HW 1: Will be announced next week
 • The question in HW0 will appear in HW1 as well
Logistics: Academic Integrity

• Discussion (conceptually) about course content and homework assignments is encouraged.

• How to make sure to not violate academic integrity?
• Rule of thumb:
 • You should write down the answers/codes entirely on your own.
 • Can’t look at the write-up / codes by others.

• Ask if you are not sure!
Recap
Given by the learning problem

Goal of learning

\[f : \mathcal{X} \mapsto \mathcal{Y} \]

(ideal credit approval formula)

\[y_n = f(x_n) \]

TRAINING EXAMPLES

\[(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\]

(historical records of credit customers)

LEARNING ALGORITHM

\[\mathcal{A} \]

FINAL HYPOTHESIS

\[g \approx f \]

(learned credit approval formula)

HYPOTHESIS SET

\[\mathcal{H} \]

(set of candidate formulas)
Linear hypothesis space (Perceptron)

- Input $\vec{x} = (x_1, x_2, ..., x_d)$
- Output $y \in \{-1, +1\}$

- A hypothesis h is a linear separator $\vec{w}^T \vec{x} = b$, characterized by
 - weight vector $\vec{w} = (w_1, ..., w_d)$
 - threshold b

- $h(\vec{x}) = sign(\sum_{i=1}^{d} w_i x_i - b) = sign(\vec{w}^T \vec{x} - b)$
 - Predict $+1$ if $\vec{w}^T \vec{x} > b$
 - Predict -1 if $\vec{w}^T \vec{x} < b$
Linear hypothesis space (Perceptron)

- To simplify $h(\vec{x}) = \text{sign}(\vec{w}^T \vec{x} - b)$, define
 - $x_0 = 1$
 - $w_0 = -b$

- And we implicitly let
 - $\vec{x} = (x_0, x_1, ..., x_d)$
 - $\vec{w} = (w_0, w_1, ..., w_d)$

- A hypothesis can then be written as
 - $h(\vec{x}) = \text{sign}(\vec{w}^T \vec{x})$
 - We will interchangeably use h and \vec{w} to express a hypothesis in Perceptron
Perceptron Learning Algorithm (PLA)

- Given a dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
- Assume the dataset is **linearly separable**
- Want to find a hypothesis that separates data in D

Perceptron Learning Algorithm
- Initialize $\vec{w}(0) = \vec{0}$
- For $t = 0, ...$
 - Find a misclassified example $(\vec{x}(t), y(t))$ in D
 - That is, $\text{sign}(\vec{w}(t)^T \vec{x}(t)) \neq y(t)$
 - If no such sample exists
 - Return $\vec{w}(t)$
 - Else
 - $\vec{w}(t + 1) \leftarrow \vec{w}(t) + y(t)\vec{x}(t)$

Notation:
We use $\vec{w}(t)$ to denote the value of \vec{w} at step t of the algorithm.
Similarly, we use $(\vec{x}(t), y(t))$ to denote the data point found at step t.
Perceptron Learning Algorithm (PLA)

• Theorem (informal):
 • If a dataset D is linearly separable, PLA find a linear separator that separates the data in D within a finite number of steps.

• HW0: Prove the above theorem
Perceptron

• Graphical Representation

Inspired by neurons:
The output signal is triggered when the weighted combination of the inputs is larger than some threshold

• Deep learning (neural network with many layers)
Lecture Today

The notes are not intended to be comprehensive.
Let me know if you spot errors.
Given by the learning problem

\[y_n = f(x_n) \]

(ideal credit approval formula)

Training Examples

\((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)

(historical records of credit customers)

Learning Algorithm

\(A \)

Final Hypothesis

\(g \approx f \)

(learned credit approval formula)

Hypothesis Set

\(\mathcal{H} \)

(set of candidate formulas)

Goal of Learning
How Do We Formally Characterize the Goal?

• Goal of learning: find $g \approx f$
 • f: unknown target function
 • g: output of the learning algorithm
 • What do we mean by $g \approx f$?

• Main idea: **Generalization**
 • Want g to make predictions similar to f for **unseen data points**

Focus of today’s lecture:
• Feasibility of learning
• Can we achieve generalization?
\[f(x) = +1 \]

\[f(x) = -1 \]

Predict for unseen points (Generalization)

\[f(x) = ??? \]
\[h(x) = \begin{cases} +1 & \text{if symmetric} \\ -1 & \text{otherwise} \end{cases} \]

Hypothesis 1

\[h \left(\begin{array}{ccc} \text{black} & \text{white} & \text{white} \\ \text{white} & \text{black} & \text{white} \\ \text{white} & \text{white} & \text{black} \end{array} \right) = +1 \]

Hypothesis 2

\[h(x) = \begin{cases} +1 & \text{if top left is white} \\ -1 & \text{otherwise} \end{cases} \]

\[h \left(\begin{array}{ccc} \text{black} & \text{white} & \text{white} \\ \text{white} & \text{black} & \text{white} \\ \text{white} & \text{white} & \text{black} \end{array} \right) = -1 \]

You can come up with many more hypotheses.
Feasibility of Learning

• Is learning feasible (can we generalize the learning)?
 • Cannot know anything \textit{for sure} about f outside the data without assumptions
 • We might need to give up the \textit{“for sure”} and make additional assumptions

• Thought experiments: Which hypothesis would you choose? Why?
Key assumption of ML

Training data points and *testing* data points are *i.i.d.* drawn from the same (unknown) distribution

• Remarks
 • Modern ML is built on *probabilistic inference* with this assumption
 • The assumption is a reasonable approximation in many useful scenarios.
 • The assumption might not hold in other cases
 • There are various research efforts on this, but it’s outside of the scope of this course
UNKNOWN TARGET FUNCTION

\[f : \mathcal{X} \mapsto \mathcal{Y} \]

\[y_n = f(x_n) \]

TRAINING EXAMPLES
\[(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N) \]

LEARNING ALGORITHM
\[\mathcal{A} \]

HYPOTHESIS SET
\[\mathcal{H} \]

FINAL HYPOTHESIS
\[g \]
UNKNOWN TARGET FUNCTION

\[f : \mathcal{X} \mapsto \mathcal{Y} \]

\[y_n = f(x_n) \]

TRAINING EXAMPLES

\((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)

LEARNING ALGORITHM

\(\mathcal{A}\)

HYPOTHESIS SET

\(\mathcal{H}\)

UNKNOWN INPUT DISTRIBUTION

\(P(x)\)

\(x_1, x_2, \ldots, x_N\)

\(x\)

\(g(x) \approx f(x)\)

FINAL HYPOTHESIS

\(g\)
Let’s discuss probability first

We’ll then talk about how it connects back to machine learning
A Thought Experiment about Probability

What can we say about \(\mu \) from \(\nu \)?

Law of large numbers
- When \(N \to \infty, \nu \to \mu \)

Hoeffding’s Inequality
- \(\Pr[|\mu - \nu| > \epsilon] \leq 2e^{-2\epsilon^2 N} \) for any \(\epsilon > 0 \)
Interpretations

\[\Pr[|\mu - \nu| > \epsilon] \leq 2e^{-2\epsilon^2 N} \]

- **Define** \(\delta = \Pr[|\mu - \nu| > \epsilon] \)
 - Probability of the bad event
 - Probability of the bad event is bounded by \(2e^{-2\epsilon^2 N} \)

- **A tradeoff between** \(\delta, \epsilon, N \)
 - Fix \(\epsilon, \delta = O(e^{-N}) \)
 - Fix \(N, \delta = O(e^{-\epsilon^2}) \)
 - Fix \(\delta, \epsilon = O(\sqrt{1/N}) \)

- **For example,** \(N=1000 \)
 - \(\mu - 0.05 \leq \nu \leq \mu + 0.05 \) with 99% chance
 - \(\mu - 0.10 \leq \nu \leq \mu - 0.10 \) with 99.9999996% chance
Interpretations

\[\Pr[|\mu - \nu| > \epsilon] \leq 2e^{-2\epsilon^2 N} \]

- Define \(\delta = \Pr[|\mu - \nu| > \epsilon] \)
 - Probability of the bad event

- For example, \(N=1000 \)
 - \(\mu - 0.05 \leq \nu \leq \mu + 0.05 \) with 99% chance
 - \(\mu - 0.10 \leq \nu \leq \mu - 0.10 \) with 99.9999996% chance

- \(\nu \) is approximately close to \(\mu \) with high probability
- \(\nu \) as an estimate of \(\mu \) is probably approximately correct (P.A.C.)

PAC learning is proposed by Leslie Valiant, who wins the Turing award in 2010.
Connection to Learning

• Let each marble represent a point \hat{x}, drawn from unknown $P(\hat{x})$
 • Dataset $D = \{(\hat{x}_1, y_1), \ldots, (\hat{x}_N, y_N)\}$
 • Recall that $y_n = f(\hat{x}_n)$ (will discuss noisy target function f later in the semester)

• “Fix” a hypothesis h
 • For each marble \hat{x}, color it as below
 • If $h(\hat{x}) = f(\hat{x})$, color it as **green marble** [h is **correct** on \hat{x}]
 • If $h(\hat{x}) \neq f(\hat{x})$, color it as **red marble** [h is **wrong** on \hat{x}]
Connection to Learning

• Let each marble represent a point \(\vec{x} \), drawn from unknown \(P(\vec{x}) \)
 - Dataset \(D = \{ (\vec{x}_1, y_1), ..., (\vec{x}_N, y_N) \} \)
 - Recall that \(y_n = f(\vec{x}_n) \) (will discuss noisy target function \(f \) later in the semester)

• “Fix” a hypothesis \(h \)
 - For each marble \(\vec{x} \), color it as below
 • If \(h(\vec{x}) = f(\vec{x}) \), color it as green marble [\(h \) is correct on \(\vec{x} \)]
 • If \(h(\vec{x}) \neq f(\vec{x}) \), color it as red marble [\(h \) is wrong on \(\vec{x} \)]

• With the above coloring

\[
\mu = \Pr_{\vec{x} \sim P(\vec{x})} \left[h(\vec{x}) \neq f(\vec{x}) \right] \quad \text{def} \quad E_{out}(h) \quad \text{[Out-of-sample error of } h\text{]}
\]
\[
\nu = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[h(\vec{x}_n) \neq f(\vec{x}_n)] \quad \text{def} \quad E_{in}(h) \quad \text{[in-sample error of } h\text{]}
\]
Connection to Learning

- Look at the error again
 - $E_{out}(h)$: What we really care about but unknown to us
 - $E_{in}(h)$: What we can calculate from dataset D

- Fixed a h, What can we say about $E_{out}(h)$ from $E_{in}(h)$?

 Hoeffding’s Inequality

 $$\Pr[|E_{out}(h) - E_{in}(h)| > \epsilon] \leq 2e^{-2\epsilon^2N} \quad \text{for any } \epsilon > 0$$

- Are we done?
 - Not really, this is verification, not learning

\[
\Pr[|\mu - \nu| > \epsilon] \leq 2e^{-2\epsilon^2 N}
\]
Verification vs. Learning

• Verification
 • I have a hypothesis \(h \).
 • I know \(E_{in}(h) \), i.e., how well \(h \) performs in my dataset.
 • I can infer what \(E_{out}(h) \) (how well \(h \) will perform for unseen data) might be.

• Learning
 • Given a dataset \(D \) and hypothesis set \(H \).
 • Apply some learning algorithm, that outputs a \(g \in H \).
 • Know \(E_{in}(g) \).
 • Want to infer \(E_{out}(g) \).
Connection to “Real” Learning

• Given a finite hypothesis set \(H = \{h_1, \ldots, h_M\} \)

• Apply some learning algorithm on \(D \), output a \(g \in H \)
 • For example, choosing the hypothesis that minimizes in-sample error
 • \(g = \arg\min_{h \in H} E_{in}(h) \)

• Can we apply Hoeffding’s inequality and claim
 \[
 \Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \leq 2e^{-2\epsilon^2 N} \quad \text{for any } \epsilon > 0
 \]

• No!
Consider this example

• If you toss a fair coin 10 times, the prob that you get heads 10 times is

\[2^{-10} = \frac{1}{1024} \]

• If you toss 1000 fair coins 10 times each, the probability that at least one coin comes up heads 10 times is

\[1 - \left(\frac{1023}{1024}\right)^{1000} \approx 62.36\% \]

• If each hypothesis is doing random guessing (i.e., tossing a fair coin), if we have 1000 hypothesis with 10 data points, more than 60% chance there will be at least one hypothesis with zero in-sample error

 • But that hypothesis is still random guessing and has 50% out-of-sample error