Lecture 4
Instructor: Chien-Ju (CJ) Ho
Logistics: Homework 1

• Due: **Feb 14 (Monday), 2022**
 • http://chienjuho.com/courses/cse417t/hw1.pdf
 • Intended deadline: Feb 10.
 • Recommend to work on it early to spare time for homework 2

• Two submission links: Report and Code
 • Report: Answer all questions, including the implementation question
 • Grades are based on the report
 • Code: Complete and submit `hw1.py` for Problem 2
 • The code will only be used for correctness checking (when in doubts) and plagiarism checking

• Reserve time if you never used Gradescope.
 • Make sure to **specify the pages for each problem**. You **won’t get points** otherwise
Logistics: Office Hours

• Tentative schedule of TA office hours (starting next Monday)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>TAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>11:30am</td>
<td>(Herbert Zhou)</td>
</tr>
<tr>
<td></td>
<td>4pm</td>
<td>(Dean Yu)</td>
</tr>
<tr>
<td>Tuesday</td>
<td>1pm</td>
<td>(Ziqi Xu)</td>
</tr>
<tr>
<td></td>
<td>3:30pm</td>
<td>(Neal Huang)</td>
</tr>
<tr>
<td>Wednesday</td>
<td>1pm</td>
<td>(Eddie Choi)</td>
</tr>
<tr>
<td></td>
<td>4:30pm</td>
<td>(Weiwei Ma)</td>
</tr>
<tr>
<td>Thursday</td>
<td>10am</td>
<td>(Jackie Zhong)</td>
</tr>
<tr>
<td></td>
<td>3pm</td>
<td>(Fankun Zeng)</td>
</tr>
<tr>
<td>Friday</td>
<td>8am</td>
<td>(Shohaib Shaffiey)</td>
</tr>
<tr>
<td></td>
<td>1pm</td>
<td>(Yunfan Wang)</td>
</tr>
<tr>
<td></td>
<td>7pm</td>
<td>(Hao Qin)</td>
</tr>
<tr>
<td>Sunday</td>
<td>1pm</td>
<td>(Jonathan Ma)</td>
</tr>
</tbody>
</table>

• 60 minutes per session

• Please follow Piazza for additional information

• Recommendation: Try to utilize the office hour early (way ahead of deadlines), you are likely to get more of TAs’ time this way
Recap
Common Notations

• Data point with augmented x_0: $\tilde{x} = (x_0, \ldots, x_d)$
 • We often use d to specify the dimensions of data points
 • We augment $x_0 = 1$ for each data point (Check Lecture 1 for the reasoning)

• Dataset: $D = \{(\tilde{x}_1, y_1), \ldots, (\tilde{x}_N, y_N)\}$
 • We often use N to specify the number of data points in the dataset

• Hypothesis set H
 • We use $h \in H$ to specify an arbitrary hypothesis
 • We use $g \in H$ to specify the hypothesis output by the learning algorithm

• Indicator variable:
 • $\mathbb{I}[\text{event}] = \begin{cases} 1 & \text{if event is true} \\ 0 & \text{if event is false} \end{cases}$
 Example: $\mathbb{I}[h(\tilde{x}) \neq f(\tilde{x})] = \begin{cases} 1 & \text{if } h(\tilde{x}) \neq f(\tilde{x}) \\ 0 & \text{if } h(\tilde{x}) = f(\tilde{x}) \end{cases}$

Note that by default, \tilde{x} is a column vector.
More formally, we should write $\tilde{x} = \begin{bmatrix} x_0 \\ \vdots \\ x_d \end{bmatrix}$.
For convenience, I usually write $\tilde{x} = (x_0, \ldots, x_d)$.

Note that by default, \tilde{x} is a column vector.
Unknown target function

\[f : \mathcal{X} \mapsto \mathcal{Y} \]

Training examples

\[(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\]

Learning algorithm

\[\mathcal{A} \]

Hypothesis set

\[\mathcal{H} \]

Unknown input distribution

\[P(x) \]

Final hypothesis

\[g \]

Key assumption in machine learning

\[y_n = f(x_n) \]

\[x_1, x_2, \ldots, x_N \]
Hoeffding’s Inequality

\[\Pr[|\mu - \nu| > \epsilon] \leq 2e^{-2\epsilon^2N} \]

Define \(\delta = \Pr[|\mu - \nu| > \epsilon] \)
- Fix \(\delta, \epsilon \) decreases as \(N \) increases
- Fix \(\epsilon, \delta \) decreases as \(N \) increases
- Fix \(N, \delta \) decreases as \(\epsilon \) increases

Informal intuitions of notations
\(N \): # sample
\(\delta \): probability of “bad” event
\(\epsilon \): error of estimation
Connection to Learning

• Given dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$.

• Fix a hypothesis h

 \[E_{in}(h) \overset{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}[h(\vec{x}_n) \neq f(\vec{x}_n)] \quad \text{[In-sample error, analogy to } \nu]\]

 \[E_{out}(h) \overset{\text{def}}{=} \Pr_{\vec{x} \sim P(\vec{x})} [h(\vec{x}) \neq f(\vec{x})] \quad \text{[Out-of-sample error, analogy to } \mu]\]

• Apply Hoeffding’s inequality

\[
Pr[|E_{out}(h) - E_{in}(h)| > \epsilon] \leq 2e^{-2\epsilon^2 N}
\]

• This is verification, not learning
Connection to “Real” Learning

• Given a finite hypothesis set $H = \{h_1, \ldots, h_M\}$
• Apply some learning algorithm on D, output a $g \in H$

• What can we say about $E_{out}(g)$ from $E_{in}(g)$?

$$Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \leq 2Me^{-2\epsilon^2N} \text{ for any } \epsilon > 0$$

Intuitions:

1. Bad event $B(g) \subseteq B(h_1) \cup B(h_2) \ldots \cup B(h_M)$

 g is selected within $\{h_1, \ldots, h_M\}$

 => bad event of g is within the union of the bad events of h_1, \ldots, h_M

2. $Pr[B(g)] \leq Pr[B(h_1)] + \ldots + Pr[B(h_M)]$

 each of the $Pr[B(h_m)]$ follows Hoeffding’s inequality
Today’s Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.
Revisit the learning problem
How to generally characterize $g \approx f$
Goal: \(g \approx f \)

- A general approach:
 - Define an error function \(E(h, f) \) that quantify how far away \(h \) is to \(f \)
 - choose \(g = \arg\min_{h \in \mathcal{H}} E(h, f) \)

- A major component of ML is optimization

- \(E \) is usually defined in terms of a pointwise error function \(e(h(\vec{x}), f(\vec{x})) \)
 - Binary error (classification): \(e(h(\vec{x}), f(\vec{x})) = \mathbb{1}[h(\vec{x}_n) \neq f(\vec{x}_n)] \)
 - Squared error (regression): \(e(h(\vec{x}), f(\vec{x})) = (f(\vec{x}) - h(\vec{x}))^2 \)

\[
E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(\vec{x}_n), f(\vec{x}_n)) \\
E_{out}(h) = \mathbb{E}_{\vec{x}}[e(h(\vec{x}), f(\vec{x}))]
\]

The discussion on the Hoeffding’s inequality applies for general (bounded) error functions.
How to choose the error function?

- Consideration 1: Properties of domain applications
- Example: Fingerprint recognition
 - Input: fingerprints
 - Outputs: whether the person is authorized

$h(\tilde{x})$	$f(\tilde{x})$	
+1	0	Small
-1	Large	0

$h(\tilde{x})$	$f(\tilde{x})$	
+1	0	Large
-1	Small	0
How to choose the error function?

• Consideration 1: Properties of application problems

• Consideration 2: Computation
 • ML algorithms are essentially performing optimization (finding g with smallest error)

$$g = \underset{h \in H}{\arg \min} E(h, f)$$

• Choose the error that is “easier” to optimize
 • e.g., if the error function is continuous, differentiable, and convex, we usually have efficient algorithms
How to choose the error function?

• Consideration 1: Properties of application problems

• Consideration 2: Computation

• Specifying the error function is part of setting up the learning problem
 • It impacts what you eventually learn
What if f is not deterministic?
Noisy Target

• What if there doesn’t exist f such that $y = f(x)$?
 • f is stochastic instead of deterministic
 • (even if two customers have exactly the same attributes, one might be a good customer for the bank, and the other might not be)

• Common approach
 • Instead of a target function, define a target distribution
 • Instead of $y = f(x)$, y is drawn from a conditional distribution $P(y|x)$
 • $y = f(x) + \epsilon$
 • $f(x)$ is the mean of the distribution $\mathbb{E}[y|x]$
 • ϵ is zero-mean noise $y - \mathbb{E}[y|x]$

The discussion on the Hoeffding’s inequality applies for noisy targets.
General Setup of (Supervised) Learning

UNKNOWN TARGET DISTRIBUTION
(target function f plus noise)

$P(y \mid x)$

$y_n \sim P(y \mid x_n)$

UNKNOW INPUT DISTRIBUTION

$P(x)$

TRAINING EXAMPLES

$(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)$

ERROR MEASURE

LEARNING ALGORITHM

A

FINAL HYPOTHESIS

g

HYPOTHESIS SET

\mathcal{H}
Theory of Generalization
Revisit the “Multi-Hypothesis” Bound

• Given a finite hypothesis set \(H = \{ h_1, ..., h_M \} \)
• Apply some learning algorithm on \(D \), output a \(g \in H \)

• What can we say about \(E_{out}(g) \) from \(E_{in}(g) \)?

\[
Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \leq 2Me^{-2\epsilon^2N} \quad \text{for any } \epsilon > 0
\]
What if M is infinite?

$$Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \leq 2Me^{-2\epsilon^2N}$$

don’t seem to carry any meanings
Key Intuitions in the Multi-Hypothesis Analysis

• Define "bad event of h" $B(h)$ as $|E_{out}(h) - E_{in}(h)| > \epsilon$

• If g is selected from $\{h_1, h_2\}$
 • $B(g) \subseteq B(h_1) \cup B(h_2)$

 • $\Pr[B(g)] \leq \Pr[B(h_1) \text{ or } B(h_2)]$

 $\leq \Pr[B(h_1)] + \Pr[B(h_2)]$ \hspace{1cm} (Union Bound)

• Union bound considers the worst case: Bad events don’t overlap
Do Bad Events Overlap?

• Oftentimes, they overlap a lot!

The two linear separators on the left make the same predictions for most points.

If it’s a bad event for one, it’s likely to be a bad event for the other.

"bad event of h" $B(h)$: $|E_{out}(h) - E_{in}(h)| > \epsilon$

Recall: Informally, you can interpret “bad event of h” as the event that we draw a “unrepresentative dataset D” that makes the in-sample errors of h to be far away from out-of-sample error of $h"
What Can We Do?

For this dataset, any difference between A and B?

For this dataset, probably not.

They make the same predictions for every data point in this dataset.
What Can We Do?

• Let’s define “data-dependent” hypothesis, call it **dichotomy**.

 - **dichotomy**

 noun

 a division or contrast between two things that are or are represented as being opposed or entirely different.
 "a rigid dichotomy between science and mysticism"

• A hypothesis \(h: X \rightarrow \{-1, +1\} \)

• A dichotomy for a set of data points \((\tilde{x}_1, \ldots, \tilde{x}_N)\):

 - Assign either +1 or -1 for each of the data points (divide the data points into two groups)

• Why dichotomies?

 - It helps us count “effective number of hypothesis” (to replace \(M \))
More Formal Definitions

• **Dichotomies**
 - Informally, consider a dichotomy as a “data-dependent” hypothesis
 - Characterized by both hypothesis set H and N data points $(\mathbf{x}_1, ... , \mathbf{x}_N)$
 \[
 H(\mathbf{x}_1, ... , \mathbf{x}_N) = \{(h(\mathbf{x}_1), ... , h(\mathbf{x}_N)) | h \in H\}
 \]
 - The set of possible prediction combinations $h \in H$ can induce on $\mathbf{x}_1, ... , \mathbf{x}_N$

• **Growth function**
 - Largest number of dichotomies H can induce across all possible data sets of size N
 \[
 m_H(N) = \max_{(\mathbf{x}_1, ... , \mathbf{x}_N)} |H(\mathbf{x}_1, ... , \mathbf{x}_N)|
 \]
Example: $H = \text{Positive Rays}$

- Data points are in one-dimensional space
- Positive rays: $h(x) = \text{sign}(x - a)$

\[H(\tilde{x}_1, ..., \tilde{x}_N) = \{(h(\tilde{x}_1), ..., h(\tilde{x}_N)) | h \in H\} \]

Dichotomies
- Informally, consider a dichotomy as a "data-dependent" hypothesis
- Characterized by both hypothesis set H and N data points $(\tilde{x}_1, ..., \tilde{x}_N)$

Growth function
- Largest number of dichotomies H can induce across all possible data sets of size N

\[m_H(N) = \max_{(\tilde{x}_1, ..., \tilde{x}_N)} |H(\tilde{x}_1, ..., \tilde{x}_N)| \]

- What is $H(\tilde{x}_1, ..., \tilde{x}_N)$?
- What is $m_H(N)$?
Example: $H = \text{Positive Rays}$

- Data points are in one-dimensional space
- Positive rays: $h(x) = \text{sign}(x - a)$

- What is $H(\vec{x}_1, \ldots, \vec{x}_N)$?

$$H(\vec{x}_1, \ldots, \vec{x}_N) = \{(+1, +1, \ldots, +1), (-1, +1, \ldots, +1), \ldots, (-1, -1, \ldots, -1)\}$$

- What is $m_H(N)$?

$$m_H(N) = N + 1$$
What is \(m_H(N) \)?

- **\(H = \) Positive Intervals**
 - Data points are in one-dimensional space
 - Choose two thresholds. Predict +1 within the interval, -1 outside

- **\(H = \) Convex Sets**
 - Data points are in 2-dimensional space
 - Hypothesis is represented by a convex set

Dichotomies
- Informally, consider a dichotomy as a “data-dependent” hypothesis
- Characterized by both hypothesis set \(H \) and \(N \) data points \((\tilde{x}_1, \ldots, \tilde{x}_N)\)
 \[
 H(\tilde{x}_1, \ldots, \tilde{x}_N) = \{(h(\tilde{x}_1), \ldots, h(\tilde{x}_N)) | h \in H\}
 \]
- The set of possible prediction combinations \(h \in H \) can induce on \(\tilde{x}_1, \ldots, \tilde{x}_N \)

Growth function
- Largest number of dichotomies \(H \) can induce across all possible data sets of size \(N \)
 \[
 m_H(N) = \max_{(\tilde{x}_1, \ldots, \tilde{x}_N)} |H(\tilde{x}_1, \ldots, \tilde{x}_N)|
 \]
Example: $H = \text{Positive Intervals}$

- What is $m_H(N)$?
 - $m_H(N) = \binom{N+1}{2} + 1 = \frac{N^2}{2} + \frac{N}{2} + 1$
Example: $H = \text{Convex Sets}$

- What is $m_H(N)$?
 - $m_H(N) = 2^N$

Note:
$m_H(N) \leq 2^N$ for all H and all N
(There are only 2^N possible label combinations for N points)
Why Growth Function?

• Growth function $m_H(N)$
 • Largest number of “effective” hypothesis H can induce on N data points
 • A more precise “complexity” measure for H
 • Goal: Replace M in finite-hypothesis analysis with $m_H(N)$
 • With prob $1 - \delta$, $E_{out}(g) \leq E_{in}(g) + \frac{1}{2N} \ln \frac{2M}{\delta}$

• Theorem: VC Inequality (1971)
 With prob $1 - \delta$
 $$E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_H(2N)}{\delta}}$$
Growth Functions for Other H

- $H = 2$-D Perceptron
 - What is $m_H(3)$
 - What is $m_H(4)$

Dichotomies
- Informally, consider a dichotomy as a “data-dependent” hypothesis
- Characterized by both hypothesis set H and N data points $(\hat{x}_1, ..., \hat{x}_N)$
 \[
 H(\hat{x}_1, ..., \hat{x}_N) = \{(h(\hat{x}_1), ..., h(\hat{x}_N)) | h \in H\}
 \]
- The set of possible prediction combinations $h \in H$ can induce on $\hat{x}_1, ..., \hat{x}_N$

Growth function
- Largest number of dichotomies H can induce across all possible data sets of size N
 \[
 m_H(N) = \max_{(\hat{x}_1, ..., \hat{x}_N)} |H(\hat{x}_1, ..., \hat{x}_N)|
 \]
Growth Functions for Other H

• $H = 2$-D Perceptron
 • What is $m_H(3)$
 • What is $m_H(4)$

• Exactly calculating the growth function is generally hard!

• Next lecture
 • Discuss how we can “bound” the growth function
 • Introduce the notion of VC dimension