Logistics: HW1

• Due: **Feb 19 (Friday), 2020**
 • http://chienjuho.com/courses/cse417t/hw1.pdf
 • Strongly encouraged to work on it before the drop deadline
 • Two submission links: Report and Code
 • Report: Answer all questions, including the implementation question
 • Grades are based on the report
 • Code: Complete and submit `hw1.py` for Problem 2
 • The code will only be used for correctness checking (when in doubts) and plagiarism checking

• Reserve time if you never used Gradescope.
 • Make sure to **specify the pages for each problem. You won’t get points** otherwise.

• (Optional) Python session
 • See Piazza post
Logistics: Office Hours

- **TA office hours**

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>TAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>10:00 AM to 11:20 AM (Oliver)</td>
<td>02:30 PM to 03:50 PM (Guanghui)</td>
</tr>
<tr>
<td>Tuesday</td>
<td>02:30 PM to 03:50 PM (Quentin)</td>
<td>05:00 PM to 06:20 PM (Victoria)</td>
</tr>
<tr>
<td>Wednesday</td>
<td>04:30 PM to 05:50 PM (Amrit)</td>
<td>08:00 PM to 09:20 PM (Cecilia)</td>
</tr>
<tr>
<td>Thursday</td>
<td>10:00 AM to 11:20 AM (Aaron)</td>
<td>02:30 PM to 03:50 PM (Matthew)</td>
</tr>
<tr>
<td>Friday</td>
<td>08:00 AM to 09:20 AM (Shohaib)</td>
<td>12:00 PM-1:20 PM (Tong)</td>
</tr>
</tbody>
</table>

- **My office hour**: after Tuesday’s class till 2pm

- **Remote via Zoom**

- **Please follow Piazza** for zoom links and potential updates

- **Recommendation**: Try to utilize the office hour early (way ahead of deadlines), you are likely to get more of TAs’ time this way
Recap
Hoeffding’s Inequality

\[\Pr[|\mu - \nu| > \epsilon] \leq 2e^{-2\epsilon^2N} \]

Define \(\delta = \Pr[|\mu - \nu| > \epsilon] \)
- Fix \(\delta, \epsilon \) decreases as \(N \) increases
- Fix \(\epsilon, \delta \) decreases as \(N \) increases
- Fix \(N, \delta \) decreases as \(\epsilon \) increases

Informal intuitions of notations
- \(N \): # sample
- \(\delta \): probability of “bad” event
- \(\epsilon \): error of estimation
Connection to Learning

• Given dataset \(D = \{(\tilde{x}_1, y_1), \ldots, (\tilde{x}_N, y_N)\} \)

 • \(E_{in}(h) \overset{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[h(\tilde{x}_n) \neq f(\tilde{x}_n)] \) [In-sample error, analogy to \(\nu \)]

 • \(E_{out}(h) \overset{\text{def}}{=} \Pr_{\tilde{x} \sim P(\tilde{x})} [h(\tilde{x}) \neq f(\tilde{x})] \) [Out-of-sample error, analogy to \(\mu \)]

• Learning bounds
 • Fixed \(h \) (verification)
 \[
 \Pr[|E_{out}(h) - E_{in}(h)| > \epsilon] \leq 2e^{-2\epsilon^2 N}
 \]

 • Finite hypothesis set: learn \(g \in \{h_1, \ldots, h_M\} \)
 \[
 \Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \leq 2Me^{-2\epsilon^2 N}
 \]
Dealing with Infinite Hypothesis Set: $M \rightarrow \infty$

- Most of the practical cases involve $M \rightarrow \infty$

- Instead of # hypothesis, counting “effective” # hypothesis

- **Dichotomies**
 - Informally, consider a dichotomy as “data-dependent” hypothesis
 - Characterized by both H and N data points $(\vec{x}_1, ..., \vec{x}_N)$
 \[
 H(\vec{x}_1, ..., \vec{x}_N) = \{h(\vec{x}_1), ..., h(\vec{x}_N) | h \in H\}
 \]
 - The set of possible prediction combinations $h \in H$ can induce on $\vec{x}_1, ..., \vec{x}_N$

- **Growth function**
 - Largest number of dichotomies H can induce across all possible data sets of size N
 \[
 m_H(N) = \max_{(\vec{x}_1, ... ,\vec{x}_N)} |H(\vec{x}_1, ..., \vec{x}_N)|
 \]
Examples on Growth Functions

• $H =$ Positive rays
 • $m_H(N) = N + 1$

• $H =$ Positive intervals
 • $m_H(N) = \binom{N+1}{2} + 1 = \frac{N^2}{2} + \frac{N}{2} + 1$

• $H =$ Convex sets
 • $m_H(N) = 2^N$

• For all H and for all N
 • $m_H(N) \leq 2^N$
Why Growth Function?

• Growth function $m_H(N)$
 • Largest number of “effective” hypothesis H can induce on N data points
 • A more precise “complexity” measure for H
 • Goal: Replace M in finite-hypothesis analysis with $m_H(N)$
 • With prob at least $1 - \delta$, $E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$

• VC Generalization Bound (VC Inequality, 1971)
 With prob at least $1 - \delta$
 $$E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_H(2N)}{\delta}}$$
Today’s Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.
Bounding Growth Function

• What we know so far
 • \(H = \text{Positive rays: } m_H(N) = N + 1 \)
 • \(H = \text{Positive intervals: } m_H(N) = \binom{N+1}{2} + 1 \)
 • \(H = \text{Convex sets: } m_H(N) = 2^N \)

• What about \(H = 2\text{-D Perceptron} \)?
 • \(m_H(3) = 8 \)
 • \(m_H(4) = 14 \)
 • \(m_H(5) = \) ?

• Generally hard to write down the growth function exactly
 • Goal: “bound” the growth function using some proxy
Bounding Growth Function

- More definitions....
 - **Shatter:**
 - H shatters $(\vec{x}_1, ..., \vec{x}_N)$ if $|H(\vec{x}_1, ..., \vec{x}_N)| = 2^N$
 - H can induce all label combinations for $(\vec{x}_1, ..., \vec{x}_N)$
 - **Break point**
 - k is a **break point** for H if no data set of size k can be shattered by H

- A peek at the key result (take this as a fact for now)
 - If there are no break points for H, $m_H(N) = 2^N$
 - If k is a break point for H, $m_H(N)$ is polynomial in N.
 In particular, $m_H(N) = \mathcal{O}(N^{k-1})$
 - A bit more accurately:
 - $m_H(N) \leq \sum_{i=1}^{k-1} \binom{N}{i}$, or
 - $m_H(N) \leq N^{k-1} + 1$
Dichotomies

- Informally, consider a dichotomy as “data-dependent” hypothesis
- Characterized by both hypothesis set H and N data points $(\bar{x}_1, ..., \bar{x}_N)$
 \[H(\bar{x}_1, ..., \bar{x}_N) = \{ h(\bar{x}_1), ..., h(\bar{x}_N) | h \in H \} \]
- The set of possible prediction combinations $h \in H$ can induce on $\bar{x}_1, ..., \bar{x}_N$

Growth function

- Largest number of dichotomies H can induce across all possible data sets of size N
 \[m_H(N) = \max_{(\bar{x}_1, ..., \bar{x}_N)} |H(\bar{x}_1, ..., \bar{x}_N)| \]

Shatter:

- H shatters $(\bar{x}_1, ..., \bar{x}_N)$ if $|H(\bar{x}_1, ..., \bar{x}_N)| = 2^N$
- H can induce all label combinations for $(\bar{x}_1, ..., \bar{x}_N)$

Break point

- k is a break point for H if no data set of size k can be shattered by H

What is the break point for

1. Positive Rays
 ![Positive Rays Diagram]

2. Positive Intervals
 ![Positive Intervals Diagram]

3. Convex Sets
 ![Convex Sets Diagram]

4. 2-D Perceptron
 ![2-D Perceptron Diagram]
Practice

- **Dichotomies**
 - Informally, consider a dichotomy as “data-dependent” hypothesis
 - Characterized by both hypothesis set H and N data points $(\bar{x}_1, ... , \bar{x}_N)$
 \[H(\bar{x}_1, ... , \bar{x}_N) = \{ h(\bar{x}_1), ..., h(\bar{x}_N) | h \in H \} \]
 - The set of possible prediction combinations $h \in H$ can induce on $\bar{x}_1, ... , \bar{x}_N$

- **Growth function**
 - Largest number of dichotomies H can induce across all possible data sets of size N
 \[m_H(N) = \max_{(\bar{x}_1, ... , \bar{x}_N)} |H(\bar{x}_1, ... , \bar{x}_N)| \]

- **Shatter:**
 - H shatters $(\bar{x}_1, ... , \bar{x}_N)$ if $|H(\bar{x}_1, ... , \bar{x}_N)| = 2^N$
 - H can induce all label combinations for $(\bar{x}_1, ... , \bar{x}_N)$

- **Break point**
 - k is a break point for H if no data set of size k can be shattered by H

<table>
<thead>
<tr>
<th>$m_H(N)$</th>
<th>$N=1$</th>
<th>$N=2$</th>
<th>$N=3$</th>
<th>$N=4$</th>
<th>$N=5$</th>
<th>Break Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N + 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{N^2}{2} + \frac{N}{2} + 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Positive Rays
- Positive Intervals
- Convex Sets
- 2D Perceptron
Practice

- **Dichotomies**
 - Informally, consider a dichotomy as “data-dependent” hypothesis
 - Characterized by both hypothesis set \(H \) and \(N \) data points \((\tilde{x}_1, ..., \tilde{x}_N)\)
 \[H(\tilde{x}_1, ..., \tilde{x}_N) = \{ h(\tilde{x}_1), ..., h(\tilde{x}_N) | h \in H \} \]
 - The set of possible prediction combinations \(h \in H \) can induce on \(\tilde{x}_1, ..., \tilde{x}_N \)

- **Growth function**
 - Largest number of dichotomies \(H \) can induce across all possible data sets of size \(N \)
 \[m_H(N) = \max_{(\tilde{x}_1, ..., \tilde{x}_N)} |H(\tilde{x}_1, ..., \tilde{x}_N)| \]

- **Shatter:**
 - \(H \) shatters \((\tilde{x}_1, ..., \tilde{x}_N)\) if \(|H(\tilde{x}_1, ..., \tilde{x}_N)| = 2^N \)
 - \(H \) can induce all label combinations for \((\tilde{x}_1, ..., \tilde{x}_N)\)

- **Break point**
 - \(k \) is a break point for \(H \) if no data set of size \(k \) can be shattered by \(H \)

\(m_H(N) \)

<table>
<thead>
<tr>
<th></th>
<th>(N=1)</th>
<th>(N=2)</th>
<th>(N=3)</th>
<th>(N=4)</th>
<th>(N=5)</th>
<th>Break Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Rays</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>(k = 2,3,4, ...)</td>
</tr>
<tr>
<td>Positive Intervals</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>16</td>
<td>(k = 3,4,5, ...)</td>
</tr>
<tr>
<td>Convex Sets</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>None</td>
</tr>
<tr>
<td>2D Perceptron</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>?</td>
<td>(k = 4,5,6, ...)</td>
</tr>
</tbody>
</table>
Why Break Points?

• **Theorem statement** (Again, take it as a fact for now)
 • If there is no break point for H, then $m_H(N) = 2^N$ for all N.
 • If k is a break point for H, i.e., if $m_H(k) < 2^k$ for some value k, then
 $$m_H(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

• **Rephrase the above theorem**
 • If there is no break point for H, then $m_H(N) = 2^N$ for all N.
 • If k is a break point for H, the following statements are true
 • $m_H(N) \leq N^{k-1} + 1$ [Can be proven using induction. See LFD Problem 2.5]
 • $m_H(N) = O(N^{k-1})$
 • $m_H(N)$ is polynomial in N

• We can “bound” the growth function without knowing it exactly.
 • Find break point!
Why Break Points?

• VC Generalization Bound
 With prob at least $1 - \delta$

$$E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_H(2N)}{\delta}}$$

• In the following discussion, we treat δ as a constant
 [i.e., with high probability, the following is true]

$$E_{out}(g) \leq E_{in}(g) + O \left(\sqrt{\frac{1}{N} \ln m_H(N)} \right)$$

[For example, we can set δ to be a small constant, say 0.01. Then every time we wrote the above inequality, we mean that it is true with probability at least 99%.]
Applying Break Points in VC Bound

• VC Bound:

\[E_{out}(g) \leq E_{in}(g) + O\left(\sqrt{\frac{1}{N} \ln m_H(N)}\right) \]

• If there are no break point \((m_H(N) = 2^N)\)

\[E_{out}(g) \leq E_{in}(g) + \text{Constant} \]
(This implies that we can’t infer \(E_{out}\) from \(E_{in}\) even when \(N \to \infty\))

• If \(k\) is a break point for \(H\), i.e., \(m_H(N) = O(N^{k-1})\)

\[E_{out}(g) \leq E_{in}(g) + O\left(\sqrt{(k - 1) \frac{\ln N}{N}}\right) \]

• Rephrase the above theorem
 • If there is no break point for \(H\), then \(m_H(N) = 2^N\) for all \(N\).
 • If \(k\) is a break point for \(H\), the following statements are true
 • \(m_H(N) \leq N^{k-1} + 1\) [Can be proven using induction. See LFD Problem 2.5]
 • \(m_H(N) = O(N^{k-1})\)
 • \(m_H(N)\) is polynomial in \(N\)
H is Either Good or Bad

• The growth function of H is either one of the two
 • Without break points, $m_H(N) = 2^N$
 • With some break point, $m_H(N)$ is polynomial in N (it can be bounded more tightly using the theorem)
 • There is nothing in between!

• Bad hypothesis set

 $E_{out}(g) \leq E_{in}(g) + \text{Constant}$

• Good hypothesis set $m_H(N) = O(N^{k-1})$

 $E_{out}(g) \leq E_{in}(g) + O\left(\sqrt{(k - 1) \frac{\ln N}{N}}\right)$

Rephrase the above theorem

• If there is no break point for H, then $m_H(N) = 2^N$ for all N.
• If k is a break point for H, the following statements are true
 • $m_H(N) \leq N^{k-1} + 1$ [Can be proven using induction. See LFD Problem 2.5]
 • $m_H(N) = O(N^{k-1})$
 • $m_H(N)$ is polynomial in N
VC Dimension

• VC Dimension of H: $d_{vc}(H)$ or d_{vc}

 • The VC dimension of H is the largest N such that $m_H(N) = 2^N$.
 - $d_{vc}(H) = \infty$ if $m_H(N) = 2^N$ for all N.

 • Or, let k^* be the smallest break point for H, the VC dimension of H is $k^* - 1$

<table>
<thead>
<tr>
<th></th>
<th>$m_H(N)$</th>
<th>Break Points</th>
<th>VC Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Rays</td>
<td>N=1 2</td>
<td>N=2 3</td>
<td>N=3 4</td>
</tr>
<tr>
<td>Positive Intervals</td>
<td>N=1 2</td>
<td>N=2 4</td>
<td>N=3 7</td>
</tr>
<tr>
<td>Convex Sets</td>
<td>N=1 2</td>
<td>N=2 4</td>
<td>N=3 8</td>
</tr>
<tr>
<td>2D Perceptron</td>
<td>N=1 2</td>
<td>N=2 4</td>
<td>N=3 8</td>
</tr>
</tbody>
</table>
VC Dimension

• VC Dimension of H: $d_{vc}(H)$ or d_{vc}
 • The VC dimension of H is the largest N such that $m_H(N) = 2^N$.
 • $d_{vc}(H) = \infty$ if $m_H(N) = 2^N$ for all N.
 • Or, let k^* be the smallest break point for H, the VC dimension of H is $k^* - 1$

<table>
<thead>
<tr>
<th>$m_H(N)$</th>
<th>$N=1$</th>
<th>$N=2$</th>
<th>$N=3$</th>
<th>$N=4$</th>
<th>$N=5$</th>
<th>Break Points</th>
<th>VC Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Rays</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>$k = 2, 3, 4, \ldots$</td>
<td>1</td>
</tr>
<tr>
<td>Positive Intervals</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>16</td>
<td>$k = 3, 4, 5, \ldots$</td>
<td>2</td>
</tr>
<tr>
<td>Convex Sets</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>None</td>
<td>∞</td>
</tr>
<tr>
<td>2D Perceptron</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>?</td>
<td>$k = 4, 5, 6, \ldots$</td>
<td>3</td>
</tr>
</tbody>
</table>
VC Dimension

- VC Dimension of H: $d_{vc}(H)$ or d_{vc}

 - The VC dimension of H is the largest N such that $m_H(N) = 2^N$.
 - $d_{vc}(H) = \infty$ if $m_H(N) = 2^N$ for all N.

 - Or, let k^* be the smallest break point for H, the VC dimension of H is $k^* - 1$

- Plug the definition into VC Generalization Bound

$$E_{out}(g) \leq E_{in}(g) + O\left(\sqrt{d_{vc}} \frac{\ln N}{N}\right)$$

- If there are no break point ($m_H(N) = 2^N$)
 $$E_{out}(g) \leq E_{in}(g) + \text{Constant}$$

- If k is a break point for H, i.e., $m_H(N) = O(N^{k-1})$
 $$E_{out}(g) \leq E_{in}(g) + O\left(\sqrt{(k - 1) \frac{\ln N}{N}}\right)$$
Discussion on the VC Theory
All models are wrong but some are useful

George E.P. Box
Discussion on the VC Theory

• VC Bound

\[E_{out}(g) \leq E_{in}(g) + O\left(\sqrt{d_{VC}} \frac{\ln N}{N}\right) \]

• Built on top of the i.i.d. data assumption

• The bound is “loose”
 • Depends only on \(H \) and \(N \)
 • The analysis is loose in many places

• However, it qualitatively characterizes the practice reasonably well
 • (the bound is roughly equally loose for every \(H \))
\[E_{out}(g) \leq E_{in}(g) + O\left(\sqrt{d_{VC} \frac{\ln N}{N}}\right) \]

- **Goal of learning:** Minimize \(E_{out}(g) \)

- **How to achieve that**
 - Minimize \(E_{in}(g) \)
 - Choose a hypothesis set with large \(d_{VC} \) (complex hypothesis likely fit data better)
 - Minimize **generalization error**
 - Choose a hypothesis with small \(d_{VC} \)
 - Have a lot of data points to train on (\(N \) is large)

- Think about the high-level tradeoff of choosing \(d_{VC} \) and its dependency on \(N \)
Discussion on the VC Theory

• It establishes the feasibility of learning for infinite hypothesis set.
• It provides nice intuitions on what’s happening underneath ML.
 • A single parameter to characterize complexity of H

$$E_{out}(g) \leq E_{in}(g) + O\left(\sqrt{d_{VC} \frac{\ln N}{N}}\right)$$
Discussion on the VC Theory

- It establishes the feasibility of learning for infinite hypothesis set.
- It provides nice intuitions on what’s happening underneath ML.
 - A single parameter to characterize complexity of H

$$E_{out}(g) \leq E_{in}(g) + O\left(\sqrt{d_{VC} \frac{\ln N}{N}}\right)$$
Sample Complexity

• Sample complexity:
 • Analogy to time/space complexity
 • How many data points do we need to achieve generalization error less than ϵ with prob $1 - \delta$?

• Recall the (full) VC Bound:

 With prob at least $1 - \delta$, \(E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4(2N)^{d_{vc}+1}}{\delta}} \)

• How to determine the sample complexity?
 • Set \(\sqrt{\frac{8}{N} \ln \frac{4(2N)^{d_{vc}+1}}{\delta}} \leq \epsilon \)
 • We get \(N \geq \frac{8}{\epsilon^2} \ln \left(\frac{4(1+(2N)^{d_{vc}})}{\delta} \right) \)

• $N \propto 1/\epsilon^2$
• $N = O(d_{vc} \ln N)$
 • In practice, roughly, $N \propto d_{vc}$
Test Set

- Goal of learning: Minimize $E_{out}(g)$

- Can we estimate E_{out} directly?
 - Reserve a test set (D_{test}) before learning
 - Ensure D_{test} is not used at all in any way for learning
 - For D_{test}, g is a “fixed” hypothesis and standard Hoeffding’s inequality is valid
 - Let $E_{test}(g)$ be the error in the test set

$$P\{|E_{test}(g) - E_{out}(g)| > \epsilon\} \leq 2e^{-2\epsilon^2 N_{test}} \text{ where } N_{test} = |D_{test}|$$
Test Set

• Test set is great: we can obtain an unbiased estimate of E_{out}

• At what cost?
 • We have a finite amount of data
 • Data points in test set cannot be involved in learning at all
 • More points in test set
 • Better estimate of E_{out}
 • Less data points in training set \rightarrow often leads to worse learned hypothesis

• Practical rule of thumb (i.e., a common heuristic, not really a gold rule)
 • 80% for training, 20% for testing