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ABSTRACT
We study settings where a set of identical, reusable resources must

be allocated in an online fashion to arriving agents. Each arriving

agent is patient and willing to wait for some period of time to be

matched. When matched, each agent occupies a resource for a cer-

tain amount of time, and then releases it, gaining some utility from

having done so. The goal of the system designer is to maximize over-

all utility given some prior knowledge of the distribution of arriving

agents. We are particularly interested in settings where demand for

the resources far outstrips supply, as is typical in the provision of

social services, for example homelessness resources. We formulate

this problem as online bipartite matching with reusable resources

and patient agents.We develop new, efficient nonmyopic algorithms

for this class of problems, and compare their performance with that

of greedy algorithms in a variety of simulated settings, as well as

in a setting calibrated to real-world data on household demand for

homelessness services. We find substantial overall welfare benefits

to using our nonmyopic algorithms, particularly in more extreme

settings – those where agents are unwilling or unable to wait for

resources, and where the ratio of resource demand to supply is

particularly high.
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1 INTRODUCTION
Several important problems arising from the need for institutions

to allocate scarce societal resources are intrinsically online in na-

ture. For example, when organs from deceased donors become

available, they must be quickly matched with recipients on the

waiting list [4, 14], and when households experience homelessness

(or are at imminent risk of homelessness), they become eligible

to receive community-provided homelessness services [5, 13]. In

such situations, the institution typically has an allocation rule (of-

ten attempting to balance efficiency and equity) that governs who
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gets the resource [9]. In such situations, the resources are scarce

– demand typically far outstrips supply – so it is critical to make

reasonable decisions among many eligible recipients.

We focus on online problems where the institution strives for

efficient allocation of resources among an eligible population. This

defers equity considerations to a prior stage, where eligibility for

the resource is determined, and instead focuses on the problem of

how to allocate available resources among an eligible population

given knowledge of the utility from each match of an agent (e.g.

a household experiencing homelessness) to a resource (e.g. space

in a shelter). We consider a setting in which there are a number

of identical resources. Agents arrive over time; when they arrive,

the system becomes aware of the utility of matching that agent

with any of the available resources, and the maximum period of

time that agents would wait – if that period of time elapses without

them being matched, they leave, and the system attains no utility.

On the other hand, if they are matched with a resource, the system

realizes that utility, and the resource ends up being occupied by

that agent (and hence unavailable to others) for a certain period of

time. The tradeoff is then between committing a resource into the

future versus not (immediately) realizing the available utility.

With the above framing, this work extends standard online bi-

partite matching to scenarios in which online agents are patient,

i.e., agents are willing to wait for some period of time to be matched,

and offline resources are reusable, i.e., resources will be released in

some period of time after being allocated. These two considerations

are practical in nature but relatively under-explored in the online

matching literature. Below we summarize our main contributions

towards addressing these questions.

• We formulate the problem of online bipartite matching with

reusable resources and patient agents (henceforth OM-RR-PA).

• We analyze the performance of greedy algorithms for OM-RR-PA

and show that greedy algorithms are sub-optimal in situations

where (i) resource scarcity is very high, and (ii) agents are un-

willing or unable to wait for very long.

• We construct linear programs (LP) for OM-RR-PA under known

adversarial distribution [2, 3] that lead to valid upper bounds on

the expected offline optimal. We then propose an online algo-

rithm that achieves a competitive ratio of
1

2
− 𝜖 for any 𝜖 .

• Under the additional assumption that the resource occupation

time and agent waiting time are exponentially distributed, we

formulate OM-RR-PA as aMarkov decision process (MDP).When

agents are impatient, we show that the optimal online algorithm



is tractable; When the agents are patient, we propose to utilize

reinforcement learning to approximate the optimal policy.

• We evaluate the proposed algorithms both on simulated data

and on a real-world dataset that predicts the effects of two dif-

ferent homelessness interventions on future outcomes (return

to homelessness) over several years in a major US metro. The

experimental results demonstrate that our proposed algorithms

perform substantially better than the greedy algorithm and other

baselines, especially in regimes with impatient agents and ex-

treme resource scarcity. In addition, our MDP-based algorithms

outperform the LP-based algorithms when the exponential dis-

tribution assumptions are approximately satisfied.

1.1 Related Work
Online bipartite matching has been extensively studied in the lit-

erature, and one promising direction is to formulate the problem

using linear programs (LP) and design algorithms accordingly. This

approach has been adopted to solve problems in various application

domains, including online ad auctions [6, 7], task assignment in

crowdsourcing markets [10, 11], and organ transplantation [14]. In

these works, online arriving agents are often assumed to be impa-

tient and need to matched upon arrival, and the offline resources

are assumed to be disposable (gone when used). However, in many

real-world applications, resources might be re-usable and agents

might be patient and willing to wait to be matched. Our work dif-

fers from the above works by considering these two practical but

under-explored aspects in online matching.

One relevant work in this line of research is by Dickerson et al.

[8], who consider reusable resource settings for online bipartite

matching. They formulate a linear program with novel constraints

that generate feasible probabilities of assigning edges at every time

step. They developMonte-Carlo simulation-based online algorithms

that use the optimal solution of the proposed linear program. How-

ever, in their work, online agents are still assumed to be impatient

and need to be matched upon arrival. Our LP-based approaches

extend their work to incorporate patient agents.

Since onlinematching is essentially a sequential decision-making

problem, formulating the problem as a Markov decision process

(MDP) [17] and solving the optimal policy for online matching is

another natural approach. When the environment is complex and

exactly solving for the optimal policy is hard, reinforcement learn-

ing (RL) [12] is commonly used to approximate the optimal policy.

Our MDP-based approaches explore the usage of this approach

under certain distributional assumptions. Our formulation shares

similarities with work on trade execution problems[15, 16], which

formulates the problem as an MDP, with the action space being the

limit order prices at which to reposition all remaining inventory,

and the state being represented by various statistics of order books.

Our formulation is similar in that the wait list in our problem plays

a similar role to the order book in the trade execution problem. In

the domain of online bipartite matching, Stein et al. [18] apply re-

inforcement learning approaches to design a matching mechanism

that is strategyproof and individually rational for online bipartite

matching with reusable resources and impatient agents.

2 SETTING AND PRELIMINARIES
We first formalize the problem of online matching with reusable

resources and patient agents (OM-RR-PA). In OM-RR-PA, the policy

designer is given as input a bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸), where𝑈
and 𝑉 respectively represent the set of offline reusable resources

and the set of online agents in the matching system. For each edge

𝑒 = (𝑢, 𝑣) ∈ 𝐸, we define weight𝑤𝑒 to denote the utility that could

be obtained by matching 𝑣 and 𝑢. We use 𝑁 = |𝑈 | to denote the

number of resources and 𝑇 = |𝑉 | to denote the number of arriving

agents. At each time step, an agent 𝑣 from 𝑉 arrives. A patient
agent will wait for 𝐷𝑣 time steps and leave if not matched. When

reusable resource 𝑢 is allocated to agent 𝑣 , it will be released after

𝐾𝑒 (𝑒 = (𝑢, 𝑣)) time steps. We assume that both {𝐷𝑣} and {𝐾𝑒 } are
bounded. Below we discuss the additional assumptions we make in

this paper.

Distributional Assumptions on {𝐷𝑣} and {𝐾𝑒 }. In this paper,

we first discuss the general setting that 𝐷𝑣 and 𝐾𝑒 can follow any

known distributions and propose LP-based methods (Section 3)

for this setting. We then consider the scenario in which both the

resource occupation time 𝐾𝑒 and agent waiting time 𝐷𝑣 are expo-

nentially distributed. More formally, 𝐾𝑒 and 𝐷𝑣 are assumed to be

realizations of i.i.d. random variables drawn from exponential distri-

butions with parameters 𝜆𝑘 and 𝜆𝑑 respectively. This corresponds

to a natural scenario in which an agent who occupies a resource

keeps the resource with a fixed probability every round, and an

agent who is waiting for resources keeps waiting with a fixed prob-

ability every round. We discuss how we can utilize MDP-based

approaches with this assumption (Section 4).

KnownAdversarial Distribution (KAD) for Agents. In our set-
ting, the agent distribution is characterized by the utilities {𝑤𝑒 }.
We assume the choice of the distribution could be adversarial but

the agents’ arrival sequence is stochastic and drawn from the dis-

tribution. We denote the PDF and CDF of the utility distribution

as 𝑓 and 𝐹 . We also assume the distribution is known to the policy

designer. This knowledge assumption might be (approximately)

satisfied in practice if the designer has access to historical data.

KAD is introduced in prior works[2, 3, 8] and is also known as

Prophet Inequality matching. For OM-RR-PA with 𝑇 rounds and

an input graph 𝐺 = (𝑈 ,𝑉 , 𝐸), at each time 𝑡 ∈ 𝑇 , an agent 𝑣 ∈ 𝑉 is

sampled from a known distribution {𝑝𝑣,𝑡 } such that

∑
𝑣∈𝑉 𝑝𝑣,𝑡 ≤ 1.

Moreover, once we set 𝑝𝑣,𝑡 =
1

|𝑉 | , the KAD model is equivalent to

a KIID (Known IID) input model.

2.1 Analysis of the Greedy Algorithm
We first analyze the performance of the (myopic) greedy algorithm

which assigns any available resource to the agent who gains the

most immediate utility, without taking into account future arrivals.

Such greedy allocation is common. For example, when a space in

a homeless shelter becomes available, the agency may offer it to

the household ranked as being in the highest need; when deceased

donor livers become available, they are offered first to those who are

medically matched and with the highest MELD scores, a measure

of need.

Theorem 2.1. In OM-RR-PA with N identical resources, when 𝐷𝑣
and 𝐾𝑣 are constant such that 𝐷𝑣 = 𝑑 , 𝐾𝑣 = 𝑘 , and 𝑤𝑒 is bounded



within the range [𝐿,𝑈 ], under the worst case agent arrival, the asymp-
totic competitive ratio of the myopic (greedy) algorithm 𝐶𝑅𝐺𝑟𝑒𝑒𝑑𝑦
can be characterized as follows:

𝐶𝑅𝐺𝑟𝑒𝑒𝑑𝑦 =


1 𝑘 ≤ 𝑁

1 𝑑 → ∞
𝑈
𝐿

𝑘 ≥ 2𝑁 + 𝑑

The theorem implies that when we have an abundant amount of

resources (i.e., the occupation time 𝑘 for each resource is smaller

than the number of resources 𝑁 , since arrivals are fixed to one

per unit time), greedy performs optimally since every agent is

getting resources. When agents are patient and are willing to wait

for a long period of time (i.e., 𝑑 is large), greedy also works well.

However, when neither of these are true (i.e., we do not have enough

resources, and agents can only be allocated resources within a short

time frame after arrival), the performance of the greedy algorithm

could degrade significantly compared with offline optimal, and thus

designing non-myopic online allocation algorithms could bring

benefits.

2.2 Overview of Our Approaches
In this paper, we design non-myopic online allocation algorithms.

In Section 3, we first extend online bipartite matching problem to

settings that combines reusable resources and patient agents. We

assume the resource occupation time and agent waiting time are

known but can follow any distribution. We formulate the problem

as linear programs and develop algorithms accordingly. In Section 4,

we consider settings in which the resource occupation time and

patient waiting time are exponential distributed. With this assump-

tion, we can formulate the problem as a Markov decision process

(MDP) due to the memorylessness property of the exponential dis-

tribution. We also discuss the design of online matching algorithms

with this formulation.

3 LP-BASED ALGORITHMS FOR OM-RR-PA
In this section, we formulate the linear programming (LP) formu-

lations for OM-RR-PA and discuss the design of online matching

algorithms when both resource occupation time and agent waiting

time can follow any known distributions. While the focus of this

paper is on settings with identical resources, since LP formulations

can naturally handle the situation with non-identical resources,

in the following discussion, we first discuss the formulation with

non-identical resources (denoted by LP-NID) in Section 3.1 and then

demonstrate how to design more efficient algorithms for the formu-

lation with identical resources (denoted by LP-ID) in Section 3.2.

3.1 OM-RR-PA with Non-Identical Resources
LP-NID Formulation. Let a bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) be the
input to OM-RR-PA with 𝑁 non-identical resources. Suppose that

the online matching problem has a horizon of𝑇 , and {𝐷𝑣} is upper
bounded by 𝑑 . In this formulation, both 𝐷𝑣 and 𝐾𝑒 are random

variables with known distribution, and 𝐸𝑣 (𝐸𝑢 ) denotes the set of

edges incident to agent vertex 𝑣 (resource vertex 𝑢). For a potential

assignment 𝑒 = (𝑢, 𝑣), we use variable 𝑥𝑒,𝑡,𝑛 to denote the assign-

ment decision, where 𝑥𝑒,𝑡,𝑛 represents the probability that (agent) 𝑣

arrives at time 𝑡 and is assigned to (resource) 𝑢 at 𝑛 steps after the

arrival. For notation simplicity, we set 𝐷𝑒 =𝐷𝑣 if 𝑒 = (𝑢, 𝑣), since
we assume the waiting time of online agent is irrelevant to offline

resources. LP-NID can then be formulated as follows. Note that our

formulation of LP-NID and the corresponding algorithm design

introduced later is an extension of the work by Dickerson et al.

[8] to include the consideration of patient agents while they only

consider impatient agents.

max

∑
𝑒∈𝐸

∑
𝑡∈𝑇

𝑑∑
𝑛=0

Pr(𝐷𝑒 ≥𝑛)𝑥𝑒,𝑡,𝑛𝑤𝑒 (1)

s.t.

∑
𝑒∈𝐸𝑣

𝑑∑
𝑛=0

𝑥𝑒,𝑡,𝑛 ≤ 𝑝𝑣,𝑡 ∀(𝑡, 𝑣) (2)

∑
𝑡
′≤𝑡

∑
𝑒∈𝐸𝑢

min(𝑑,𝑡−𝑡′ )∑
𝑛=0

𝑥
𝑒,𝑡

′
,𝑛
Pr(𝐷𝑒 ≥𝑛) Pr(𝐾𝑒 ≥ 𝑡−𝑡

′−𝑛) ≤ 1 ∀(𝑡,𝑢) (3)

0 ≤𝑥𝑒,𝑡,𝑛 ≤ 1 ∀(𝑒, 𝑡,𝑢) (4)

Corollary 3.1. The optimal value of LP-NID provides an upper
bound on the expected overall utility of OM-RR-PA with non-identical
resources.

Claim 3.2. Linear program for online matching with reusable
resources and impatient agents (as discussed in Dickerson et al. [8]) is
a special case of LP-NID by setting the upper bound 𝑑 to be 0.

Let us interpret the above linear program. First of all, for the

objective, let Ω𝑒,𝑡 be the event that assignment 𝑒 = (𝑣,𝑢) gets as-
signed and agent 𝑣 arrives at time 𝑡 . The conditional probability

of Ω𝑒,𝑡 under the condition that the occupation time is 𝐷𝑒 can

be computed as: 𝑃𝑟 (Ω𝑒,𝑡 |𝐷𝑒 ) =
∑𝑑
𝑛=0 𝑥𝑒,𝑡,𝑛𝐼 (𝑛 ≤ 𝐷𝑒 ), where 𝐼 (∗)

is the indicator function. Let 𝑓𝐷 (∗) be the PDF of random vari-

able 𝐷𝑒 , then we get the unconditional probability of Ω𝑒,𝑡 such

that 𝑃𝑟 (Ω𝑒,𝑡 ) =
∫ ∑𝑑

𝑛=0 𝑥𝑒,𝑡,𝑛𝐼 (𝑛 ≤ 𝐷𝑒 ) 𝑓𝐷 (𝐷𝑒 ) 𝑑𝐷𝑒 . Therefore,
𝑃𝑟 (Ω𝑒,𝑡 ) =

∑𝑑
𝑛=0 𝑃𝑟 (𝐷𝑒 ≥𝑛)𝑥𝑒,𝑡,𝑛 , leading to the expected match-

ing utility as computed in the objective. Constraint (2) guarantees

the probability of assigning 𝑣 arrives at time 𝑡 be no larger than the

the probability that 𝑣 arrives at 𝑡 in all cases. Constraint (3) guaran-

tees the probability that resource𝑢 is used up at time 𝑡 to be smaller

than 1. The formulation extends the one in previous work [8] by

incorporating patient agents. In particular, we use the law of total

expectation to incorporate patient agents in the objective as well

as constraints that generate feasible probabilities of the potential

assignments.

LP-Based Online Algorithm. We design online adaptive algo-

rithm, Algorithm 1: OAA-NID(𝜙), using optimal solutions {𝑥∗𝑒,𝑡,𝑛}
of LP-NID and Monte-Carlo simulations. Let 𝛼𝑒,𝑡 be the probabil-

ity that assignment 𝑒 is available at time 𝑡 . As discussed in prior

work [1, 8], 𝛼𝑒,𝑡 could be approximated with arbitrarily small error.

Under the condition that 𝑣 arrives at time 𝑡 with a waiting time of

𝐷𝑣 and 𝑒 is available at 𝑡 ∈ Σ, where Σ ⊆ {𝑡, 𝑡 +1, .., 𝑡 +𝐷𝑣}, the con-
ditional probability that OAA-NID(𝜙) assigns edge 𝑒 = (𝑢, 𝑣) at time

𝑡+𝑛 ∈ Σ is

𝜙𝑥∗𝑒,𝑡,𝑛
𝛼𝑒,𝑡+𝑛𝑝𝑣,𝑡

𝐼 (𝑛<𝐷𝑣), leading to an unconditional probabil-

ity of 𝛼𝑒,𝑡+𝑛𝑝𝑣,𝑡
∫ 𝜙𝑥∗𝑒,𝑡,𝑛
𝛼𝑒,𝑡+𝑛𝑝𝑣,𝑡

𝐼 (𝑛 <𝐷𝑣) 𝑓𝐷 (𝐷𝑣) 𝑑𝐷𝑣 =𝜙𝑥∗𝑒,𝑡,𝑛 Pr(𝐷𝑒 >



𝑛). As an extension to the prior result [8], OAA-NID(𝜙) achieves a

competitive ratio of 𝜙 once 𝜙 ≤ 𝛼𝑒,𝑡 for any 𝑒 and 𝑡 .

Algorithm 1 OAA-NID(𝜙): Online Adaptive Algorithm for Non-

Identical Resources

1: For each time 𝑡 , let 𝑣 and PAD denote the agent arriving at time

𝑡 and a set of previous allocation decisions.

2: Choose 𝑛 and 𝑒 = (𝑢, 𝑣) such that 𝑛 ≤ 𝐷𝑣 and 𝑛 ∈ Σ with

probability

𝜙𝑥∗𝑒,𝑡,𝑛
𝛼𝑒,𝑡+𝑛𝑝𝑣,𝑡

, and add allocation decision (𝑒, 𝑡 + 𝑛) into
PAD.

3: for allocation decision (𝑒 ′, 𝑡 ′) in PAD do
4: if 𝑒 ′ is free at time t and 𝑡 ′ = 𝑡 then
5: Match 𝑒 ′ at time 𝑡

6: end if
7: end for

Theorem 3.3. In OM-RR-PA with non-identical resources, OAA-
NID(𝜙) achieves a competitive ratio of 1

2
− 𝜖 for any 𝜖 > 0.

3.2 OM-RR-PA with Identical Resources
We now discuss the setting with identical resources. While LP-NID

and the corresponding algorithms can still be applied, we can adjust

LP-NID to a more efficient linear program (LP-ID) for OM-RR-PA

with identical resources.

LP-ID Formulation and Corresponding Online Algorithm.
We use variable 𝑥𝑣,𝑡,𝑛 to denote the assignment decision, i.e., it

represent the probability that agent 𝑣 arriving at time 𝑡 is matched

𝑛 time steps after the arrival (since the resources are identical, we do

not need to index the resources.) The corresponding linear program

is formulated as LP-ID. Compared with LP-NID, LP-ID has less

variables and constraints and is therefore more computationally

efficient. As previously discussed, we could design Algorithm 2

OAA-ID(𝜙) based on simulation results and optimal solution of

LP-ID. In OAA-ID(𝜙), 𝛼𝑡 represents the probability that there are

free resources at time 𝑡 , and 𝜙 is still required to be smaller than 𝛼𝑡 .

max

∑
𝑣∈𝑉

∑
𝑡∈𝑇

𝑑∑
𝑛=0

Pr(𝐷𝑣 ≥𝑛)𝑥𝑣,𝑡,𝑛𝑤𝑣 (5)

𝑠.𝑡 .

𝑑∑
𝑛=0

𝑥𝑣,𝑡,𝑛 ≤ 𝑝𝑣,𝑡 ∀(𝑡, 𝑣) (6)

∑
𝑡
′≤𝑡

∑
𝑣∈𝑉

min(𝑑,𝑡−𝑡′ )∑
𝑛=0

𝑥
𝑣,𝑡

′
,𝑛
Pr(𝐷𝑣 ≥𝑛) Pr(𝐾𝑣 ≥ 𝑡−𝑡

′−𝑛) ≤𝑁 ∀𝑡 (7)

0 ≤ 𝑥𝑣,𝑡,𝑛 ≤ 1 (8)

When agents are impatient, the linear program is a special case

of LP-ID with 𝑑 = 0, thus variables 𝑥𝑣,𝑡,𝑛 degenerate to 𝑥𝑣,𝑡 , and all

𝑃𝑟 (𝐷𝑣 ≥𝑛)=1. In the corresponding online algorithm, we do not

need to consider the set of previous allocation decisions, and the

conditional probability that 𝑣 gets assigned is

𝜙𝑥∗𝑣,𝑡
𝛼𝑡𝑝𝑣,𝑡

.

Algorithm 2 OAA-ID(𝜙): Online Adaptive Algorithm for Identical

Resources

For each time 𝑡 , let 𝑣 and PAD denote the agent arriving at time

𝑡 and a set of previous allocation decisions.

2: Choose 𝑛 such that 𝑛≤𝐷𝑣 and 𝑛 ∈Σ with probability

𝜙𝑥∗𝑣,𝑡,𝑛
𝛼𝑡+𝑛𝑝𝑣,𝑡

,

and add allocation decision (𝑣, 𝑡 + 𝑛) into PAD.

for allocation decision (𝑣 ′, 𝑡 ′) in PAD do
4: if There are free resources and 𝑡 ′ = 𝑡 then

Match 𝑣 ′ with an arbitrary free resource at time 𝑡

6: end if
end for

4 MDP-BASED ALGORITHMS FOR OM-RR-PA
UNDER EXPONENTIAL ASSUMPTION

So far we have introduced LP-based methods in settings where we

do not make distributional assumptions about agent waiting time

and resource occupation time. In this section, we explore settings

where we assume these are exponentially distributed and introduce

MDP-based algorithms. Recall that under these assumptions, agent

waiting time 𝐷𝑣 and resource occupation time 𝐾𝑣 are exponentially

distributed such that 𝐷𝑣 ∼ 𝐸𝑥𝑝𝑜 (𝜆𝑑 ) and 𝐾𝑣 ∼ 𝐸𝑥𝑝𝑜 (𝜆𝑘 ). These
assumptions align well with many applications, as we demonstrate

in analyzing our real-world dataset in Section 5.

4.1 Online Matching with Impatient Agents
We first address a simpler scenario in which agents are impatient

and need to be matched immediately upon arrival. To design an

MDP-based policy, we need to decide on the state representation

of the online matching system and action space in which the pol-

icy designer searches for the optimal matching policy. We also

need to formulate the corresponding reward and state transition

functions.

• State 𝑠 = (𝑛, 𝑡): Each state 𝑠 can be represented by a pair (𝑛, 𝑡),
where 𝑛 ∈ {0, 1, ..., 𝑁 } is the number of resources that are occu-

pied and 𝑡 ∈ {1, ...,𝑇 ] is the time round. The initial state of the

system is 𝑠1 = (𝑛1, 𝑡1) = (0, 1).
• Action space: We consider an action to be represented by choos-

ing a threshold, i.e., an agent is assigned a resource if and only if

the utility for obtaining the resource is higher than the threshold.

We denote the threshold space as Θ, the continuous input space
of the known matching utility distribution.

• Rewards 𝑅((𝑛, 𝑡), 𝑎): The immediate reward the system obtains

by taking action𝑎 at state (𝑛, 𝑡). Recall that 𝑓 is the PDF of the util-
ity distribution. Therefore, we have 𝑅((𝑛, 𝑡), 𝑎) =

∫ ∞
𝑎
𝑥 𝑓 (𝑥) 𝑑𝑥 .

• State transition 𝑇 ((𝑛′, 𝑡 ′) | (𝑛, 𝑡), 𝑎): The probability of transition-

ing to state (𝑛′, 𝑡 ′) by taking action 𝑎 in state (𝑛, 𝑡). Note that 𝑡
is increasing by 1 after each action. Therefore, we can focus on

the transition on 𝑛. For notational simplicity, let 𝐵(𝑛, 𝑛′) denote
the probability that, out of 𝑛 resources, 𝑛′ of them are still oc-

cupied at the next time step. Since resource occupation follows

an exponential distribution, 𝐵(𝑛, 𝑛′) is easy to compute. We also

let 𝐵(𝑛, 𝑛′) = 0 for invalid choices of (𝑛, 𝑛′): they are invalid

when 𝑛′ > 𝑛 or when 𝑛, 𝑛′ ∉ {0, ..., 𝑁 }. Recall that 𝐹 is the



CDF of the utility distribution. Therefore 𝐹 (𝑎) is the probabil-
ity that an arriving agent is not allocated a resource when the

threshold is 𝑎. The probability of transitioning to a state with 𝑛′

is the sum of the probability of allocation and 𝑛′ still occupied
(i.e, (1 − 𝐹 (𝑎))𝐵(𝑛 + 1, 𝑛′)) and the probability of not allocating

and having 𝑛′ resources still occupied (i.e., 𝐹 (𝑎)𝐵(𝑛, 𝑛′)), thus
𝑇 ((𝑛′, 𝑡 ′) | (𝑛, 𝑡), 𝑎) is


𝐹 (𝑎)𝐵(𝑛, 𝑛′) + (1−𝐹 (𝑎))𝐵(𝑛+1, 𝑛′) 𝑛≤𝑁 −1, 𝑡 ′=𝑡+1
𝐵(𝑛, 𝑛′) 𝑛=𝑁 , 𝑡 ′=𝑡+1
0 otherwise

The goal of the system designer is to find a policy 𝜋 (𝑛, 𝑡) that de-
termines a threshold for each state thatmaximizes the total expected

reward over𝑇 rounds. Let 𝑠𝑡 be the state at time 𝑡 assuming the sys-

tem follows policy 𝜋 . The system’s reward for following the policy

𝜋 starting at state 𝑠1 can be written as𝑈 (𝜋, 𝑠1) =
∑𝑇
𝑡=1 𝑅(𝑠𝑡 , 𝜋 (𝑠𝑡 )).

Note that with this finite-horizon MDP formulation, the opti-

mal policy is efficiently solvable using a standard backprojection

algorithm, as introduced next.

Backprojection Algorithm. This MDP can be solved exactly us-

ing backprojection, a dynamic-programming algorithm. Let 𝐴𝑛,𝑡
denote the maximum expected total utility when 𝑛 resources are oc-

cupied at time 𝑡 , and 𝑎𝑛,𝑡 denote the corresponding optimal thresh-

old to choose as the action. Below we describe how to derive the

optimal policy by setting these two values in a backward manner.

First consider the boundary condition in the last round (i.e.,

𝑡 =𝑇 ). When there are remaining resources (i.e., 𝑛 < 𝑁 ), we can

set 𝑎𝑛,𝑡 = 0 (assign resources without conditions) and 𝐴𝑛,𝑡 = (𝑁 −
𝑛)

∫ ∞
0
𝑥 𝑓 (𝑥) 𝑑𝑥 . When there is no available resource (i.e., 𝑛 =𝑁 ),

we set 𝑎𝑛,𝑡 = ∞ (no resource to allocate) and 𝐴𝑛,𝑡 = 0.

For round 𝑡 < 𝑇 , given the knowledge of𝐴𝑛,𝑡+1 and 𝑎𝑛,𝑡+1 for all
𝑛, we can calculate 𝐴𝑛,𝑡 and 𝑎𝑛,𝑡 using standard dynamic program-

ming approaches. We can then obtain the optimal policy through

backpropagation from 𝑡 = 𝑇 to 0.

4.2 Online Matching with Patient Agents
We now consider the more general, complex online matching in

which agents might be willing to wait for some number of rounds.

In this scenario, the system’s decision could depend on the waitlist,

i.e., the list of agents who are waiting to be allocated resources,

in addition to the number of resources. Therefore, the state rep-

resentation needs to take the waitlist into account. Since agents

are heterogeneous (obtaining different utility when being allocated

resources), the state representation is more complicated. As such,

we develop a reinforcement learning algorithm to approximate the

optimal threshold policy.

• State 𝑠 = (𝑤1 ...𝑤𝑁 , 𝑟 , 𝑡): 𝑤1,..𝑤𝑁 are the largest 𝑁 matching

utilities in the waiting list such that 𝑤1 ≥ 𝑤2 .. ≥> 𝑤𝑁 . When

the size of the waiting list (denoted as ℎ) is smaller than 𝑁 , the

last 𝑁 − ℎ of these values are set to be 0; 𝑟 is the number of

used resources and 𝑡 is the current time step. The agent waiting

times 𝐷𝑣 are exponentially distributed, thus only the largest 𝑁

matching utilities in thewaiting list should influence the selection

of threshold due to the memorylessness of the distribution.

• Action space: We again adopt the threshold policy, i.e., the ac-

tion is to select a threshold to match agents in the waiting list

whose utility is larger than the selected threshold. In our pro-

posed algorithm, we use a discrete threshold space of size 𝑀 .

When the matching utility distribution has an upper bound

𝐻𝑢 and a lower bound 𝐻𝑙 , the discrete threshold space can be

formulated as {𝐻𝑙 + 𝑖−1𝑀 (𝐻𝑢 −𝐻𝑙 ) |𝑖 = 0, 1, 2..𝑀 − 1}. When the

matching utility is unbounded, suppose 𝐹 (∗) is the CDF of the
utility distribution, then the threshold space is formulated as

{𝐹−1 ( 𝑖−1
𝑀

) |𝑖 =0, 1, 2..𝑀 − 1}.
The reward and the state transition can then be written down

accordingly based on the above state and action representations.

Note that given the large state space, this MDP is challenging to

solve exactly. Therefore, we propose BQL: Backprojected Q-values

Learning Algorithm, which utilizes reinforcement learning to ap-

proximate the Q-values for all states, which in turn provides an

approximately optimal policy. The BQL algorithm follows a similar

scheme to the RL algorithm for optimal trade execution of Nevmy-

vaka et al. [15]. In particular, we first conduct 𝑁 simulations where

the actions are randomly selected to get 𝑁 training waiting list

sequences. We then train the deep Q network based on 𝑁 waiting

list samples at each time round 𝑡 (from 𝑇 to 0). The returned Q

values can then be used as a representation of the (approximately)

optimal policy.

Algorithm 3 BQL: Backprojected Q-values Learning Algorithm

for 𝑡 = 𝑇 𝑡𝑜 0 do
Current waiting list→𝑤1 ...𝑤𝑁

3: for r = 0 to m do
State 𝑠 = (𝑤1 ...𝑤𝑁 , 𝑟 , 𝑡)
for i = 0 to M-1 do

6: Compute thresholds: 𝑎=𝐻𝑙 + 𝑖−1𝑀 (𝐻𝑢−𝐻𝑙 )
Compute reward 𝑟 based on 𝑎 and 𝑠

Simulate state transition 𝑠 → 𝑠
′

9: if t = T then
Update q value for (𝑠, 𝑎): 𝑟 (𝑠, 𝑎)

else
12: Update q value for (𝑠, 𝑎): 𝑟 +max(𝑞(𝑠′))

end if
end for

15: end for
Fit deep neural network 𝑞

end for

5 EXPERIMENTS
In this section, we evaluate the effectiveness of the proposed LP-

based algorithms and MDP-based algorithms in online matching

problems on both simulations and a real-world dataset. In these

experiments, the arrival model is set as KIID (Known-IID), and

resources are set to be identical. All experimental results are based

on 10,000 evaluation runs.

5.1 Simulations: Impatient Agents
Experimental Setting:We first examine algorithms for OM-RR-

PA with impatient agents using simulations. We set the matching



Figure 1: OM-RR-PA with identical resources and impatient agents: Performance comparison of proposed algorithms: LP-
based algorithm (LP-ID-I), MDP-based algorithm (Back-ALG), greedy baselines and other state-of-art LP-based algorithms
(ALG-SC-LP, ALG-LP)

utility to be uniformly distributed between 0 and 1. We conduct the

experiments in settings with different number of resources 𝑁 and

average resource occupation time 𝜆𝑘 . Inspired by the experimental

setup in prior work [8, 19], we test the following six algorithms.

(1) Back-ALG is an MDP-based algorithm with the backprojection

approach proposed in subsection 4.1; (2) LP-ID-I is the LP-based

algorithm for impatient agents in subsection 3.2. We make the

small modification that an agent 𝑣 that arrives at 𝑡 is matched

with a probability of

𝑥∗𝑣,𝑡
𝑝𝑣,𝑡

when there are free resources at time

𝑡 . 1 (3) The MDP approach formulates an infinite-horizon MDP

with the same state formulation, reward and transition function as

subsection 4.1, then solves the MDP to get the assignment rule for

each state and applies it in the online version. (4) ALG-SC-LP and

ALG-LP are LP-based algorithms in [8]. (5) The greedy algorithm

assigns available resources to agents who gain the most immediate

utility. (6) E(opt) is a valid upper bound on the expected overall

utility (see subsection 3.2).

Results: Figure 1 shows that the proposed threshold-based algo-

rithm Back-ALG significantly outperforms other algorithms in all

settings where agents are impatient. In addition, the improvement

over the greedy algorithm is more substantial when the resource is

scarce (comparing the middle graph and the left graph in Figure 1)

and the resource occupation time is relatively longer (comparing

the middle graph and the right graph in Figure 1). These observa-

tions are consistent with Theorem 2.1. In addition, when agents

are impatient, our proposed LP-based algorithm LP-ID-I always

beats the greedy algorithm and outperforms other state-of-the-art

LP-based algorithms (ALG-LP,ALG-SC-LP).

5.2 Simulations: Patient Agents
Experimental Setting: Now we evaluate the performance of the

proposed algorithms in OM-RR-PA with patient agents. The aver-

age resource occupation time is set to be 20 (i.e., 𝜆𝑘 = 20), and the

average agent waiting time 𝜆𝑘 is selected from the set {1, 2, 4, 8}. 𝜆𝑘
𝜆𝑑

reflects the ratio of resource demand to supply. The matching utility

distribution is selected from the Beta distribution family. We test

four algorithms: (1) LP-ID-P is the LP-based algorithm for patient

1
This modification is for computational efficiency. In practice, the results are similar

without this modification, observed in both our own experiments and prior work [8]

agents in subsection 3.2. We use the modification as LP-ID-I, thus

the allocation decision that agent 𝑣 arrives at time 𝑡 is matched

after 𝑛 time steps is sampled with probability

𝑥∗𝑣,𝑡,𝑛
𝑝𝑣,𝑡

𝐼 (𝑛≤𝐷𝑣), where
𝐼 (∗) is the indicator function. In addition, we assume that the upper

bound of waiting time is 15 (𝑑 = 15), since the exponential distri-

bution is unbounded and setting maximum potential waiting time

𝑑 to be 𝑇 makes solving LP-ID time-consuming. (2) The optimal

solution of LP-ID. Base on the above assumption, the optimal value

of LP-ID is also an approximated value. (3) The BQL algorithm

that first performs exploration under the random assignment rule

and collects samples (sequences of length 𝑁 ), then trains a deep Q

network as in Algorithm 3. (4) The greedy algorithm.

Results: Figures 2 and 3 demonstrate that BQL always outperforms

the greedy algorithm. Moreover, Figure 3 shows that the relative im-

provement of BQL over greedy is more substantial when resources

are scarce and the ratio of resource demand to supply is high. This

again aligns with our theoretical analysis indicating that these are

the most difficult conditions for greedy, and therefore our algorithm

has more room to improve.

In addition, Figure 2 show that BQL attains higher average over-

all utilities than LP-ID-P (e.g. SubGraph4 and SubGraph7) in most

settings.Though the LP-based algorithm LP-ID-P does not use in-

formation from the distribution of occupation time and of waiting

time, it nevertheless improves substantially over the greedy algo-

rithm. In addition, there are occasions when LP-ID-P beats BQL

(e.g. SubGraph1). Since the LP-based algorithms are more compu-

tationally efficient and could be applied in more general settings,

they could have great potential in real-world applications.

5.3 Real-World Dataset Experiment
Finally, we evaluate the LP-based algorithm LP-ID-P and the MDP-

based algorithm BQL on a real-world dataset for homelessness

services. This dataset includes estimated re-entry probabilities for

four different interventions that could be given to homeless house-

holds in a major US metro [13]. These were all households that were

eligible to receive services, but received different levels of interven-

tions. We focus on two of the interventions, transitional housing

(the most intensive one) and emergency shelter, with the idea being

that transitional housing is the scarce resource, and agents who do

not receive it can potentially wait in emergency shelters.



Figure 2: OM-RR-PA with identical reusable resources and patient agents: Performance comparison of proposed LP-based
algorithm (LP-ID-P), proposed MDP-based algorithm (BQL) and greedy baseline

Figure 3: OM-RR-PA with identical reusable resources and patient agents: Relative performance improvement of BQL algo-
rithm over greedy algorithm under different settings

Experimental Setting: Our experiment setting is calibrated using

the real dataset. We use the difference in estimated re-entry proba-

bilities between the two as our measure of utility (that is, the utility

is the decrease in the probability that a household would become

homeless again in the next two years if they were given transitional

housing instead of emergency shelter). We also calibrate the mean

time spent in transitional housing using the real dataset. Transi-

tional housing (TH) is relatively scarce in the data, with less than

20% of households receiving that intervention. The objective is to

maximize the utility over a half year (i.e. 𝑇 = 180).

In addition to greedy and offline optimal, below we describe the

algorithms used in the experiments. (1) In BQL, we use a truncated

gamma distribution Gamma(1.0,0.2) to simulate the matching utility

during the training phase, while the occupation times for resources

are generated by an exponential distribution whose mean is the

same as the average over time spent in TH. Figure 4 measures



Figure 4: Performance of simulators for re-entry probability (matching utility) and occupation time

Figure 5: Real-world homelessness dataset evaluation: Comparison of proposed LP-based algorithm (LP-ID-P), proposedMDP-
based algorithm (BQL) and the greedy baseline as a function of the agent patience parameter

the performance of these simulators. In the testing period, both

matching utilities and resource occupation times are sampled from

the dataset. (2) In LP-ID-P, the edge weights𝑤𝑒 of the input graph

𝐺 = (𝑉 ,𝑈 , 𝐸) and resource occupation time are sampled from the

dataset. We assume the bound on agent waiting time is 20.

Results: Figure 5 shows our main results. First, in the left graph

(SubGraph1) and middle graph (Subgraph2), we compare LP-ID-P

and BQL with the greedy algorithm in significantly different set-

tings. Both LP-ID-P and BQL substantially outperform the greedy

algorithm. In addition, Subgraph 2 shows that the performance of

LP-ID-P is competitive compared with the RL algorithm BQL in

some settings. The fact that LP-based algorithms are more compu-

tationally efficient, combined with the exponential distribution as-

sumption being approximately satisfied inmany real-world settings,

make the case that LP-ID-P could be quite powerful in real-world

applications.

Second, the right graph (SubGraph3) presents the relative per-

formance improvement of BQL over greedy as a function of agent

patience for 3 different possible values of the number of resources

available. It demonstrates BQL clearly outperforming the greedy

algorithm, bringing up to 35%more benefit, especially in the regime

when agents are impatient.

6 CONCLUSION
We study online bipartite matching problems with reusable re-

sources and patient agents. We theoretically characterize regimes

where greedy allocationmechanismsmay not be efficient – typically

when agents in the allocation system are impatient and resource

scarcity is high. We develop online algorithms for performance

improvement using two different techniques - formulating the

problems as linear programs and as Markov decision processes

(MDPs). In the former, we extend prior work to the case of online

patient agents and propose LP-based algorithms with theoretical

performance guarantees. In the latter, with additional distributional

assumptions about resource occupation time and agent waiting

time, we develop an MDP formulation and algorithms for solving

the policy for online matching. Experimental results, based on a

variety of simulated settings as well as a setting calibrated to real-

world data, demonstrate that our algorithms outperform baseline

methods and significantly improve upon the greedy algorithm in

regimes with impatient agents and scarce resources.
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