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Abstract

There is an ubiquitous use of algorithms to
inform decisions nowadays, from student eval-
uations, college admissions, to credit scoring.
These decisions are made by applying a de-
cision rule to individual’s observed features.
Given the impacts of these decisions on in-
dividuals, decision makers are increasingly
required to be transparent on their decision
making to offer the “right to explanation.”
Meanwhile, being transparent also invites po-
tential manipulations, also known as gaming,
that individuals can utilize the knowledge to
strategically alter their features in order to
receive a more beneficial decision.

In this work, we study the problem of ro-
bust decision-making under strategic behavior.
Prior works often assume that the decision
maker has full knowledge of individuals’ cost
structure for manipulations. We study the
robust variant that relaxes this assumption:
The decision maker does not have full knowl-
edge but knows only a subset of the individ-
uals’ available actions and associated costs.
To approach this non-quantifiable uncertainty,
we define robustness based on the worst-case
guarantee of a decision, over all possible ac-
tions (including actions unknown to the deci-
sion maker) individuals might take. A deci-
sion rule is called robust optimal if its worst
case performance is (weakly) better than that
of all other decision rules. Our main contribu-
tions are two-fold. First, we provide a crisp
characterization of the above robust optimal-
ity: For any decision rules under mild condi-
tions that are robust optimal, there exists a
linear decision rule that is equally robust op-
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timal. Second, we explore the computational
problem of searching for the robust optimal
decision rule and demonstrate its connection
to distributionally robust optimization. We
believe our results promote the use of sim-
ple linear decisions with uncertain individual
manipulations.

1 Introduction

Algorithms have been increasingly engaged in making
consequential decisions across a variety of sectors in
our society. Examples include judges using defendant
risk scores to set bail decisions and banks evaluating
individuals’ profiles to make loan decisions. In these
scenarios, the decision maker aims to determine a deci-
sion rule (or a model), which takes a set of individual’s
observed behavior or features as input, and output
decisions that maximize some given utility function1.

Given the consequential impacts to individuals, there is
an increasing demand to make the decision rule trans-
parent to offer “right to explanation” (Goodman and
Flaxman, 2017). Transparency not only allows the pub-
lic to audit models to mitigate potential fairness con-
cerns but also enables the participants to understand
what decisions they might receive if they have different
features (See, for example, “right to recourse” (Ustun
et al., 2019)). However, on the flip side, transparency
simultaneously creates opportunities for individuals to
strategically respond to the deployed model. Specif-
ically, if individuals understand how their observed
features affect decisions, they may strategically alter
their features to obtain a more favorable decision.

In response to this strategic behavior, there has been a
recent flurry of work in studying decison making under
strategic behavior (Brückner et al., 2012; Brückner and
Scheffer, 2011; Hardt et al., 2016; Kleinberg and Ragha-
van, 2019; Alon et al., 2020). To make the analysis

1Throughout the work, we address the decision maker
as “she” and the individual as “he”. We also use the terms
individual and agent interchangeably.
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tractable, almost all the works explicitly assume the
decision maker has the full knowledge of agents’ action
space and the corresponding costs for agents to manip-
ulate their features. The above knowledge enables a
game theoretic analysis that characterizes agents’ best
responses when offered a particular decision rule.
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(b)
Figure 1: An instance of student evaluation problem.

However, the “full information” assumption is often
not true in practice. Consider an example of student
evaluation in Fig. 1 (Kleinberg and Raghavan, 2019;
Alon et al., 2020). The student’s observed features
are their exam score (x1) and homework score (x2).
The student can choose to either study (a1) or copy
homework answers (a2) to alter their features. Studying
improves both exam score (x1) and homework score
(x2), while copying homework only improves homework
score. The teacher evaluates the student through a final
score, which is a function of x1 and x2, and students are
assumed to aim to maximize their final score minus the
cost of the actions. If the teacher knows the actions a1

and a2, and they are indeed the only actions the student
can take, the teacher can design a decision rule (a final
score as a function of x1 and x2) that maximizes some
given objective by considering students’ best responses.
However, in practice, the teacher might not be aware
of the full set of actions the student can take. For
instance, the student might consider taking action a0

unknown to the teacher (in Fig. 1b), such as hiring
a tutor or working with other students. With this
incomplete knowledge of the student’s actions, how
should the teacher design her evaluation rule?

In this work, we answer the above question by studying
the design of robust optimal decision rules with strate-
gic agent, where we relax the assumption of complete
knowledge over agent actions. We define the robust-
ness notion as used in robust contract design (Carroll,
2015): Evaluate the worst-case guarantee of a decision,
over all possible actions (including actions unknown to
the decision maker) agents might take. More formally,
the decision maker only knows a subset of actions (de-
noted by Ad) among all the actions available to the
the agent (denoted by Aa). Let Vd(f |Aa) be the utility
the decision maker obtains with decision rule f when
the agent’s action space is Aa. The decision maker’s
goal is to maximize her worst-case performance Vd(f)
over all possible actions the agent may have access to

(Aa ⊇ Ad):

max
f

Vd(f) = max
f

inf
Aa⊇Ad

Vd(f |Aa). (1)

A decision rule f∗ is robust optimal if it achieves the
maximum of the above worst-case utility.

Our contribution Our contributions are two-fold.
First, we formalize the problem of robust strategic
decision-making and characterize the robust optimal
decision rules. We show that under mild conditions, for
any robust optimal decision rule, there exists a linear
one that is equally robust optimal. Our result implies
that, to find robust optimal decision rules, it suffices to
search over the space of linear decision rules. Second,
we explore the computational problem of searching for
the robust optimal f∗. While the problem is NP-hard
in general (since non-robust strategic decision-making
is only solvable in restricted settings but is generally
NP-hard (Kleinberg and Raghavan, 2019)), we investi-
gate the additional complexity introduced by our ro-
bustness desiderata, through adapting techniques from
distributionally robust optimization (Delage and Ye,
2010). Our results inform efficient algorithms especially
in settings when non-robust strategic decision-making
problem is efficiently solvable.

1.1 Related Work

Our problem closely connects to the recent literature
in machine learning in the presence of strategic ma-
nipulation (Hardt et al., 2016; Brückner et al., 2012;
Brückner and Scheffer, 2011). Hardt et al. (2016) study
the design of optimal classification when the agents can
incur costs to manipulate their features. Motivated
by fairness concerns, Hu et al. (2019) and Milli et al.
(2019) consider settings in which the costs for manipula-
tion differ for different groups and explore the societal
impacts. There are also works directly utilizing the
decision rule as an incentive device to induce desired
behavior (Kleinberg and Raghavan, 2019; Alon et al.,
2020; Haghtalab et al., 2020; Ball, 2020; Dong et al.,
2018; Tabibian et al., 2019; Miller et al., 2019). Among
theses works, Kleinberg and Raghavan (2019) is closest
to our work: they introduce a graphic model to cap-
ture the known agent’s available actions and show that
simple linear mechanisms suffice for a single known
agent. Alon et al. (2020) then extend the discussion
to multiple agents. Our work departs from the above
works in the sense that the decision maker only has
incomplete knowledge of the agent’s cost structure or
his available actions.

Our formulation resembles the principal-agent problem
in contract theory (Grossman and Hart, 1992; Shavell,
1979; Holmstrom and Milgrom, 1987), which studies the
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strategic interplay between two parties with misaligned
interests. Our characterization of robust decision rule
follows the works on robust contract design (Carroll,
2015; Dai and Toikka, 2017; Miao and Rivera, 2016;
Carroll and Segal, 2019; Carroll, 2017; Diamond, 1998;
Hansen and Sargent, 2012; Chassang, 2013) in which
robustness is defined as the worst-case optimal mech-
anisms. Our work differs from this line of research
in that the decision maker determines a decision rule
(instead of a “contract” in contract theory) that is multi-
dimensional and could take arbitrary forms. Moreover,
we do not restrict the decision maker’s utility to be in
additive form (reward minus the payment). We gener-
alize the utility to be arbitrary function that satisfies
some mild conditions. Other computational approaches
to contract design in computer science community can
be found in the work by Dütting et al. (2019); Babaioff
et al. (2006); Ho et al. (2016); Babaioff et al. (2010).
Our work also shares similar flavor for max-min analy-
sis in worst-case algorithmic analysis (Azar et al., 2013;
Bandi and Bertsimas, 2014). In all of these works, the
setting and the formulation are different from the ones
we consider in the present work.

Our work complements a recent literature on discussing
the effects of linear models in social stratification. For
example, Wang et al. (2018) extend the notion of in-
terpretability to credibility and discuss the credibility
in a linear setting. Fawzi et al. (2018) analyze the
robustness of linear classifiers to adversarial pertur-
bations. Ustun and Rudin (2014) and Ustun et al.
(2019) discuss the interpretability and right to recourse
in linear classification. Our work promotes the usage
of linear models: In addition to interpretability and
good generalization, linear models are also robust to
unknown strategic manipulation.

2 A Model of Robust Strategic
Decision-making

In this section, we formalize our model for robust strate-
gic decision-making. Agent features are represented
by a vector x = (x1, . . . , xn), which takes value in a
bounded compact set X ⊆ Rn. The agent can take
actions to alter the features. An action of the agent can
be represented by the outcome (i.e., the distribution
of agent features after the action) and the cost of the
action. We use a pair (P, c) ∈ ∆(X )×R+ to denote an
action, where P is the outcome, i.e., the distribution of
the agent features after action, and c is the associated
cost. The decision maker cannot observe the agent’s
action but can only observe the features, the realized
outcome of the action.

Action set We define two important action sets Aa
and Ad. In particular, Aa ⊆ ∆(X )× R+ is the set of
all possible actions that the agent can take, and Ad
is the set of action that the decision maker is aware
of. While the decision maker only knows Ad and not
Aa, she knows that Ad ⊆ Aa. The decision maker’s
unquantifiable uncertainty of Aa is the key conceptual
element of this work. Informally, using the student
evaluation example, the available actions to the student
Aa could be (studying, cheating, hiring tutors). The
teacher only knows Ad, (studying, cheating), a subset
of Aa but aims to design a decision rule that is robust
to this uncertainty.

Decision rule A decision rule f : X → R≥0 is a map-
ping from the agent’s features to a decision, where the
decision domain of f is normalized to be non-negative
and directly represents the value of the decision to the
agent. The decision rule f is contingent only on the
observable features, but not on the actions that are not
observable to the decision maker.

The decision maker aims to maximize her utility func-
tion h : X → R≥0. This function characterizes the
utility that the agent brings to the designer. For exam-
ple, it could be a qualification function, assuming the
decision maker aims to increase the chance that the
agent passes the qualification, and the agent’s effort in
changing their features may lead to self-improvement,
thus in their true qualifications. Assume that there’s an
upper bound C̄ > 0 of f(x) for any x ∈ X . In addition,
we define the following simple class of decision rules:

Definition 1 (Linear decision rule). A decision rule
f is linear if f is a linear function of the feature2, i.e.,
f(x) = ω>x + β for ω ∈ Rn and β ∈ R. Let Glin ={

(ω, β) ∈ Rn × R : f(x) = ω>x + β ∈ [0, C̄],∀x ∈ X
}

be the space of parameter pair (ω, β).

The interaction between the decision maker and the
agent goes as follows: (1) the decision maker publishes
a decision rule f based on the knowledge of Ad; (2)
the agent, knowing Aa, chooses action (P, c) ∈ Aa to
respond to f ; (3) the agent features are then moved
to x ∼ P; (4) the decision maker derives utility of h(x)
and the agent derives utility of f(x)− c.

Robustness of decision making under strategic
behavior We first characterize the agent’s behavior.
Given the decision rule f and his available action set
Aa, the agent obtains expected utility EP[f(x)]− c for
taking action (P, c). Let A∗a(f |Aa) be the set of actions
that maximize the agent’s utility, and Va(f |Aa) be the

2More precisely, it is an affine decision rule with the
form of ω>x+ β.
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corresponding utility:

A∗a(f |Aa) = arg max
(P,c)∈Aa

(EP[f(x)]− c) ,

Va(f |Aa) = max
(P,c)∈Aa

(EP[f(x)]− c) .

When there are multiple maximizers of the agent’s
objective, the agent may choose the action that is the
most beneficial to the decision maker. The expected
utility of the decision maker, given decision rule f and
the action set available to the agent Aa is

Vd(f |Aa) = max
(P,c)∈A∗a(f |Aa)

EP[h(x)].

The decision maker only knows Ad but not Aa. There-
fore, she cannot optimize Vd(f |Aa) directly. To address
this nonquantifiable uncertainty, we define Vd(f) as the
worst case utility the decision maker obtains over all
possible actions sets Aa that are supersets of Ad:

Vd(f) = inf
Aa⊇Ad

Vd(f |Aa). (2)

We define the robust optimal decision rule f∗ as the
one that maximizes Vd(f), since it is robust to any
action (even unknown to the decision maker) the agent
might take:

f∗ ∈ arg max
f

Vd(f) = arg max
f

inf
Aa⊇Ad

Vd(f |Aa). (3)

3 Linear Model is Robust Optimal
Under Strategic Behavior

In this section, we establish our main result that there
exists a linear decision rule that is robust optimal.
Theorem 1. There exists a decision rule f that
maximizes Vd(f) and is linear, namely: f ∈
arg maxVd(f),where f(x) = β + ω>x, for some ω ∈
Rn, β ∈ R.

The above theorem characterizes the robust optimal
decision rule defined in (3). The key implication of
the theorem is that, when aiming to find the robust
optimal model against strategic responses, it suffices
to only consider linear models.

In the following, we provide the proof sketch and use
an example to demonstrate our results. Our result
and analysis extend the work of robust contract de-
sign (Carroll, 2015) to deal with situations in which
both the decision rule and the utility of the decision
maker can take more general function forms (instead of
restricting to one-dimensional contract as decision rule,
and additive utility for decision maker). The proof
consists of three main steps. We first characterize the
properties of the worst case utility Vd(f) for a given de-
cision rule f ; we then show that any nonlinear decision

rule can be (weakly) improved by a linear decision rule
in terms of the worst case utility. Finally, we wrap up
by showing the existence of an optimal linear decision
rule in the linear decision space.

3.1 Characterize the worst-case utility Vd(f)

Before we move to the main analysis, consider a trivial
case that the decision maker chooses to post no decision
rule (i.e., f(x) = 0,∀x). Since this is also a linear
decision rule, if the robust optimal decision rule is to
post no decision rule, Theorem 1 is trivially correct.
In the following discussion, we focus the discussion on
the cases in which the decision maker can benefit from
posting some decision rule (otherwise, she can choose
to post no decision rules). In particular, we define
rational decision rules as follows.

Definition 2 (Rational decision rule). A decision
rule f is rational for the decision maker if Vd(f) >
Vd(0),where Vd(0) represents the utility of the decision
maker when she publishes no decision rules.

We first characterize the worst-case utility guarantee
for any given rational decision rule.

Lemma 1. Let f be any rational decision rule. Define
a set Γ = {P ∈ ∆(X ) : EP[f(x)] ≥ Va(f |Ad)}. Then
one of the following two cases occurs:

(i) Vd(f) = min
P∈Γ

EP[h(x)]; (4)

or (ii) max
P∈∆(X )

EP[f(x)] = Va(f |Ad). (5)

Moreover, for P attaining the minimum in (4), the
inequality in Γ will reduce to equality at P.

The key message of this lemma is that, we can replace
the definition of Vd(f) in (2), that depends on unknown
Aa, with an expression that depends only on variables
known to the decision maker. In particular, in case (i),
this is given by identifying P which is constrained by
Va(f |Ad) using the designer’s knowledge Ad. In case
(ii), we know that the best response from the agent is
indeed in Ad, so again the designer can focus on the
action space she is aware of.

Proof Sketch. The full proof is in Appendix 6, and we
provide a sketch here. For any action set Aa ⊇ Ad
the agent has, and any optimal action (P, c) he chooses
under Aa and the rational decision rule f , the expected
utility the agent gets from f must satisfy:

EP[f(x)] ≥ EP[f(x)]− c = Va(f |Aa) ≥ Va(f |Ad).

Here the second inequality holds because Aa contains
Ad, and having more actions available can only make
the agent better off. Thus, for any decision rule f ,
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the agent will only take the actions that guarantee
himself a utility that is at least Va(f |Ad), these action
actually formulates the set Γ. Furthermore, the decision
maker’s utility Vd(f |Aa) = EP[h(x)] is at the least the
minimum given by Eqn. (4). Thus, we have Vd(f) ≥
minP∈Γ EP[h(x)]. To show this is actually tight, we then
prove the other direction. To achieve that, we construct
some worst case action set Aa to guarantee that Vd(f)
cannot exceed minP∈Γ EP[h(x)]. Case (ii) is simply the
boundary case in which the agent’s best action under
any possible actions sets is already included in Ad.

3.2 Improve nonlinear rule to a linear one

Having characterized the worst-case utility guarantee
of decision maker, we can now show that any nonlinear
decision rule can be (weakly) improved by a linear
decision rule in terms of its Vd(f).

Lemma 2. Fix any h and any (nonlinear) rational
decision rule f , there exists a linear one f ′ such that:
Vd(f

′) ≥ Vd(f).

Proof Sketch. The full proof is in Appendix 7. At a
very high-level, we show that for every decision rule f ,
we can construct two convex sets, with one containing
information about the agent and one about the decision
maker. We then show that the two convex sets are
disjoint, and therefore there exists a hyperplane that
separates the two convex sets. Then it turns out that
separating hyperplane is the linear decision rule that
weakly improves on f .

In more detail, given a decision rule f , consider a point
(EP[x],EP[f(x)]) generated by any possible action (P, c).
This point will be in the convex hull of (x, f(x)). We
define S to be the convex hull of all pairs (x, f(x)),
for x ∈ X . To construct another convex set, we sepa-
rately consider the two cases in Lemma 1. For case (i),
we define t(x) = max{Va(f |Ad), h(x) + f(x)− Vd(f)}.
Intuitively, t(x) is constructed to accommodate the
constraint in the set Γ for Eqn. (4). We define T as the
convex hull of all pairs (x, z) that x lies in the convex
hull of X , and z > t(x). By utilizing the results in
Lemma 1, we can show that the two convex sets are
disjoint (details in Appendix). By hyperplane separa-
tion theorem, we can find a hyperplane f ′ separating
S and T . f ′ has two advantages: First it gives the
agent the same incentive as f . Second, it gives a weakly
greater guarantee to the decision maker. For case (ii),
we change the set T to be the set of all (x, z) with
x in the convex hull of X and z > Va(f |Ad). Similar
arguments in case (i) still apply here.

3.3 Wrapping up

We have shown that any rational decision rule f can
be (weakly) improved to a linear one. We now wrap up
our analysis by showing the existence of an optimum
within the class of linear decision rules.
Lemma 3. There exists a robust optimal linear deci-
sion rule.

Recall our definition of Glin in Definition 1. The proof
reduces to show that Vd(f) is upper semi-continuous
w.r.t. (ω, β) ∈ Glin, this guarantees that Vd(f) has
a maximum over the compact set Glin. We defer the
proof to Appendix 8.

3.4 Illustrating example: Student evaluation

We now use the example of student evaluation to demon-
strate the intuitions of our results and analysis. We
first illustrate the application of Lemma 2: For a par-
ticular nonlinear decision rule, we show how to find
an improved linear decision rule. Then, we compute
the worst case utility for both decision rules according
to Lemma 1. Finally, we return to the environment
with student being able to take actions unknown to
the teacher, as depicted in Fig. 1b to discuss how these
two decision rules perform.

We first specify the environment details of our example.
Suppose each feature is a binary variable in {0, 1} (e.g.,
x1: pass or fail the exam, x2 : whether the homework
is qualified or not). Assume the cost of actions are the
same, the student needs to decide a distribution over
the actions. Using the terminology by Kleinberg and
Raghavan (2019), we say the student needs to allocate
their effort budget of 1 to two actions, with ej denoting
the effort of (i.e., the probability of choosing) action
aj . The effort-feature conversion obeys the following
rule: Pr(xi = 1) =

∑
j wj,i · ej , where wj,i ∈ [0, 1] is

the weight on how the student’s effort ej ∈ [0, 1] on
action aj contributes to the value of feature xi. For
example, a student may study for the exam and still
fail with some (small) probability. The effort-feature
conversion weights are detailed in Fig. 2a.

Suppose for a moment the student’s available actions
are {a1, a2}. The teacher wants to incentivize the
student to invest all their efforts on studying (namely,
the action a1). This could correspond to the teacher
setting her utility function as h(x) = ω>h x + βh, where
ωh = (1, 0) and βh is a small positive value3. One
(nonlinear) decision rule that maximizes h(x) is f(x) =
max{x1, x2}. It is easy to verify that this decision rule
results in the student to invest all his effort to action
a1 (i.e., e1 = 1), and leads to the teacher’s utility of p.

3βh can be used to guarantee the decision rules are
rational.
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Note that f is a (non-robust) optimal decision rule for
maximizing h. We now show that by leveraging the
constructive proof in Lemma 2, we can find a linear rule
that weakly improves the worst-case utility. In partic-
ular, upon defining the convex sets S and T for f , we
can find one hyperplane f ′(x) = x1 +x2 that separates
these two sets, as illustrated in Fig. 2b. From Lemma 2,
f ′ weakly improves over f in terms of worst-case utility.
Below we compute the worst-case utility for f ′ and
f for confirmation. For f ′, by Eqn. (4) in Lemma 1,
Vd(f

′) = minP∈∆(X ) EP[h(x)] = minP∈∆(X ) EP[x1] + β,
where P satisfies EP[f ′(x)] = EP[x1 + x2] ≥ Va(f ′|Ad).
Observe that, when the student’s available action set
Ad is depicted as in Fig. 2a, Va(f ′|Ad) = 2p. Since
when P attains the minimum of Vd(f ′), the inequality
must bind. Thus, we have minP∈∆(X ) EP[x1] = 2p− 1,
which gives us Vd(f ′) = 2p− 1 + βh. However, follow
the same analysis, one can compute that Vd(f) = βh,
which is smaller than Vd(f ′).
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Figure 2: (a): p ∈ (0.5, 1) is the weight parameter.
(b): Construct S and T when f(x) = max{x1, x2}.
The gray shaded region is the set T (we actually plot
the convex hull of all points (x, t(x))), while the light
sky blue is the set S. The color hyperplane is exactly
f ′(x) = x1 + x2.

Moreover, f ′ does outperform f for our example with
the student being able to take one action unknown
to the teacher, as introduced in Fig. 1b. Suppose the
student has one more action a0 available to accomplish
his course responsibilities (where w0,1 = p − ε and
w0,2 = p + ε for some ε ∈ (0, 1 − p)). The teacher is
not informed by this change and may only be aware
of the original student’s available actions (which is
{a1, a2}) and has to design her decision rule based on
this restricted knowledge (see Ad and Aa in Table 1)
Facing this uncertainty, it is easy to see that the linear
one f ′ can guarantee teacher’s maximal utility p, while
f can only ensure a utility of p− ε to the teacher (since
in this case, the student will deviate to invest all effort
to action a0), which is smaller than p.

4 The Complexity for Computing
Robust Optimal Decision Rule

Having shown that a robust optimal decision rule f∗
is linear, one may wonder whether it is possible to
efficiently compute such f∗. Note that our analysis
for robust optimality is constructive, and it establishes
an algorithmic procedure to compute the optimal f∗.
Below we show that computing f∗ is generally hard.

Theorem 2. We state the computation complexity for
computing f∗:

1. Computing the linear f∗ is at least as hard as solving
the corresponding strategic decision making problem
without robustness concern (under the linear decision
space Glin).

2. In general, computing f∗ is NP-hard since its corre-
sponding strategic decision making problem without
robustness concern (under the linear decision space
Glin) is generally NP-hard.

3. When X is finite, if there is a polynomial-time al-
gorithm for solving the corresponding strategic de-
cision making problem without robustness concern
(under the linear decision space Glin), then there is
a polynomial-time algorithm for computing f∗.

The proof and the description of a procedure for com-
puting f∗ are included in Appendix 10. The key idea
is to first formulate the problem of computing f∗ as
an optimization problem. We then demonstrate that it
can be further decomposed into two optimization prob-
lems, with one to be the same as solving (non-robust)
optimal decision rule with strategic behavior (under
the linear decision space Glin), and the other being a
linear program with equality constraint.

More formally, let a linear decision rule be in the form
of f(ω,β) ≡ ω>x + β, where (ω, β) ∈ Glin (see Def-
inition 1). We use SO to denote the corresponding
(non-robust) strategic decision making problem (under
linear decision space Glin) where the agent’s available
action set is exactly Ad (matching the knowledge of
the decision maker):

arg max
(ω,β)∈Glin

EP[h(x)], (SO)

s.t. (P, c) ∈ arg max
(P,c)∈Ad

EP[f(ω,β)(x)]− c, (6)

where EP[·] is the expectation taken with respect to the
random vector x given that it follows the probability
distribution P. Note that while there exist efficient
algorithms to solve this (non-robust) decision making
under uncertainty (SO) in restricted cases, the problem
is known to be NP-hard in general (Hansen et al., 1992;
Kleinberg and Raghavan, 2019). Therefore, instead of
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investigating the complexity of solving the robust vari-
ant, we aim to understand the additional complexity of
requiring robustness in (non-robust) decision making
under uncertainty.

With slight abuse of notation, for any (ω, β) ∈ Glin,
we use (Pω, cω) ∈ Ad to denote the solution to the
constraint (6) in SO and let Cω = EPω [f(ω,β)(x)]− cω.
Then according to Lemma 1, we can compute f∗ by
solving:

arg max
(ω,β)∈Glin

min
P∈P

EP[h(x)], (R-SO)

where P can be expressed as follows:

P ≡

P ∈ ∆(X )

∣∣∣∣∣∣∣
x ∼ P,
EP[ω>x] = Cω − β,
Pr(x ∈ X ) = 1

. (7)

Different from the problem in SO, after identifying
the agent’s best response (Pω, cω) ∈ Ad under f(ω,β),
our problem in R-SO will have an additional layer of
optimization over the set P. It is easy to see that this
is a linear program with equality constraint, where
the decision variables are a probability simplex over X .
Therefore, the computation of R-SO can be decomposed
into the computation of SO and a linear program. This
decomposition enables us to complete the proof.

4.1 Solving R-SO when X is Infinite

So far, we demonstrate that the additional complexity
of solving robust decision making under uncertainty
(R-SO) compared with the non-robust version (SO) can
be characterized by a linear program. When the space
of agent features X is finite, this additional complexity
is polynomial. However, in some applications, the space
of agent features could be infinite, e.g., with real-valued
features. In this subsection, we investigate the situation
when X is infinite, through adapting the techniques
from distributional robust optimization (Delage and
Ye, 2010; Jiang and Guan, 2016; Ben-Tal et al., 2013).

To highlight the additional complexity of requiring ro-
bustness, in the following discussion, we assume that
there exists an oracle that can provide agent’s best
response (Pω, cω) and compute the value Cω for any
(ω, β) ∈ Glin in time polynomial in n. Equipped with
such an oracle, the problem defined in R-SO resembles
the spirit of distributionally robust optimization (in
short DRO), which aims to evaluate optimal solutions
under the worst-case expectation with respect to a fam-
ily of probability distributions of the uncertain param-
eters. The key concept in DRO is the ambiguity set, a
family of measures consistent with the prior knowledge
about uncertainty. In our formulation, the ambiguity
set P is specified via a hyperplane (see Eqn. (7)).

While our discussion so far applies for arbitrary utility
functions h(·), analyzing the additional complexity of
R-SO is challenging when the agent feature space X is
infinite. Therefore, in the rest of this subsection, we
focus on a general set of concave and piecewise utility
functions as defined below.

h(x) = min
k∈[K]

hk(x). (8)

Note that this set of utility functions is general since
many commonly-seen utility functions are concave
and can usually be approximated using simple piece-
wise functions, such as the piecewise linear functions:
hk(x) = a>k x + bk, where for all k ∈ [K], ak ∈ Rn
and bk ∈ R and the piecewise quadratic functions:
hk(x) = mink∈[K] x

>Akx + b>k x + ck where for all
k ∈ [K], Ak � 0 and Ak ∈ Rn×n,bk ∈ Rn and ck ∈ R.
Theorem 3. Given that X is ellipsoidal, i.e., X =
{x : (x − x0)>Θ(x − x0) ≤ 1}, where Θ has at least
one strictly positive eigenvalue, the objective of the
problem R-SO is the same as the optimal value of the
following optimization problem:

When h(·) is a piecewise linear function:

arg min
(ω,β)∈Glin,α,λ,τ

α+ λ(Cω − β) (9)

s.t.

[
τkΘ

λ·ω+ak−2τkx>0 Θ
2

λ·ω>+a>k −2τkΘx0

2 α+bk+τk(x>0 Θx0−1)

]
�0,∀k

α ∈ R, λ ∈ R, τk ≥ 0,∀k ∈ [K].

When h(·) is piecewise quadratic function, the first
constraint will be replaced by the following[

Ak
λ·ω+bk

2
λ·ω>+b>k

2 α+ ck

]
� −τk

[
Θ −Θx0

−x>0 Θ x>0 Θx0 − 1

]
,∀k

Proof. To solve R-SO, we first reformulate it as a mini-
mization problem:

min
(ω,β)∈Glin

max
P∈P

EP

[
max
k∈[K]

−hk(x)

]
. (10)

For every (ω, β) ∈ Glin, let ρ(ω, β) denote the inner
supremum problem in (10) over P:

ρ(ω, β) ≡ max
P∈P

EP

[
max
k∈[K]

−hk(x)

]
. (11)

We can now recast the inner supremum problem
ρ(ω, β) as a minimization problem, which can be per-
formed jointly with the outer minimization over Glin. In-
troducing dual variables α, λ that correspond to the re-
spective probability and expectation constraints in (7),
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we have the following dual of ρ(ω, β)

ρdual(ω, β) ≡ min
α,λ

α+ λ(Cω − β) (12)

s.t. α+ λ · ω>x ≥ −h(x),∀x ∈ X
α ∈ R, λ ∈ R,

which provides an upper bound on ρ(ω, β). Indeed,
consider any P ∈ P and any feasible solution (α, λ)
in problem (12); the robust counterpart in the dual
implies that

EP[−h(x)] ≤ EP
[
α+ λ · ω>x

]
= α+ λ(Cω − β).

Thus, we have that weak duality holds: ρ(ω, β) ≤
ρdual(ω, β). Furthermore, the strong duality also holds
since the problem (11) is a linear optimization prob-
lem (with respect to P). Having established the dual
of (11) and its strong duality, we can formulate the
problem (11) via a min-min operation that can be
performed jointly over the constraint involving h(x)
decomposes.

min
(ω,β)∈Glin,α,λ

α+ λ(Cω − β) (13)

s.t. α+ λ · ω>x + hk(x) ≥ 0,∀x ∈ X , k ∈ [K] (14)
α ∈ R, λ ∈ R.

Note that when X has infinite elements, i.e., P is a mea-
sure with infinite support over X , there will be infinite-
many constraints in (14). However, with our assump-
tion on function h(·) and leveraging the geometry of
X , we can reduce the above optimization problem with
infinite-many constraints to the problem with tractable
finite number of constraints. In particular, when X is
ellipsoidal, i.e., X = {x : (x − x0)>Θ(x − x0) ≤ 1},
and Θ has at least one one strictly positive eigenvalue,
we can apply S-Lemma (cf., Theorem 2.2 in Pólik and
Terlaky (2007)) for any given k ∈ [K] to replace Con-
straint (14), which enforces that

@x ∈ Rn s.t. α+ λ · ω>x + hk(x) < 0
∧

(x− x0)>Θ(x− x0) ≤ 1
(15)

with the equivalent constraint that

∃τk ≥ 0 s.t. ∀x ∈ Rn, α+ λ · ω>x + hk(x) ≥
−τk

(
(x− x0)>Θ(x− x0)− 1

)
.

(16)

When hk(x) = a>k x + bk, then one can further use
Schur’s complement to replace Constraint (14) by an
equivalent linear matrix inequality for any k ∈ [K]:[

τkΘ
λ·ω+ak

2 − τkx>0 Θ
λ·ω>+a>k

2 − τkΘx0 α+ bk + τk(x>0 Θx0 − 1)

]
� 0.

The problem can therefore be reformulated as:

min
(ω,β)∈Glin,α,λ,τ

α+ λ(Cω − β)

s.t.

[
τkΘ

λ·ω+ak

2 − τkx>0 Θ
λ·ω>+a>k

2 − τkΘx0 α+ bk + τk(x>0 Θx0 − 1)

]
α ∈ R, λ ∈ R, τk ≥ 0,∀k ∈ [K]

where τ = (τ1, . . . , τK). When hk(x) =
mink∈[K] x

>Akx + b>k x + ck where for all k ∈ [K],
Ak � 0 and Ak ∈ Rn×n,bk ∈ Rn and ck ∈ R. We
then have following equivalent linear matrix inequality
for Constraint (14) for any k ∈ [K]:[

Ak
λ·ω+bk

2
λ·ω>+b>k

2 α+ ck

]
� −τk

[
Θ −Θx0

−x>0 Θ x>0 Θx0 − 1

]
.

The problem can therefore be reformulated as:

min
(ω,β)∈Glin,α,λ,τ

α+ λ(Cω − β)

s.t.

[
Ak

λ·ω+bk

2
λ·ω>+b>k

2 α+ ck

]
� −τk

[
Θ −Θx0

−x>0 Θ x>0 Θx0 − 1

]
α ∈ R, λ ∈ R, τk ≥ 0,∀k ∈ [K]

where τ = (τ1, . . . , τK).

In both linear and quadratic hk(x), we show that we
can reformulate the original problem R-SO to the prob-
lem with a finite number of tractable linear matrix
inequalities, instead of infinitely many constraints with
X . This formulation provides a tool for us to ana-
lyze the additional complexity of R-SO compared with
SO. For example, the problem in (9) could be possi-
bly efficiently solvable when Cω of the agent’s best
response exhibits nice behaviors to retain a convexity
of the objective in (9), e.g., when Cω is a linear form
of ω, then (9) is a semi-definite program. Then it is
known that an interior point algorithm can be used to
solve the above SDP with the polynomial time, i.e., the
above problem can be solved to any precision ε in time
polynomial in log(1/ε) and the sizes of the problem.
We leave the full characterization of conditions for the
problem to be efficiently solvable for future work.

5 Discussions and Future Work

Linear models, one of the “white-box” models (contrary
to the black-box models such as neural networks), have
several desired properties such as nice generalizability,
interpretability, transparency, and right to recourse. In
this work, we further show that it is robust to unknown
strategic manipulations when being used for making
decisions. This is another dimension that is worth
taking into account when deciding on which models to
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deploy. While we demonstrate that finding the robust
optimal decision rule is generally hard, our analysis in
decomposing the problem could provide directions in
figuring out efficient solvers in special cases.

There are still a number of open questions. In particu-
lar, our robustness notion could be overly pessimistic,
considering the worst-case scenario over all possible
unknown actions. One natural future direction is to
explore Bayesian approaches, i.e., incorporating prior
beliefs over all possible agent’s action sets, to model
and quantify these uncertainties. Secondly, our work
has focused on dealing with a single agent (or more
broadly, a set of homogeneous agents: The decision-
maker knows the common subset of all agents’ available
actions). It would be interesting to extend the discus-
sion to heterogeneous agents or a distribution of agents.
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6 Proof for Lemma 1

Proof. Let us first fix an arbitrary action set Aa ⊇ Ad, and a rational decision rule f . We must have that the
agent’s utility is at least Va(f |Ad), that is, any action (P, c) the agent would chose under the decision rule f must
satisfy:

EP[f(x)] ≥ EP[f(x)]− c = Va(f |Aa) ≥ Va(f |Ad).

Thus, the decision maker’s utility Vd(f |Aa) = EP[h(x)] is at the least the minimum given by the (4). This implies
the following guarantee of worst-case utility Vd(f):

Vd(f) ≥ min
P∈∆(X )

EP[h(x)] s.t. EP[f(x)] ≥ Va(f |Ad). (17)

We now show that (17) is tight. Let supp(P) denote the support of distribution P. Let P0 be a distribution
attaining the minimum in (4) and also satisfying the constraint. We consider following two cases:
Case 1: supp(P0) 6⊂ arg maxx f(x). Then let P1 be a distribution which achieves a higher value of EP[f(x)].
Let P′ be a mixture distribution P′ = (1 − ε)P0 + εP1, with a small positive ε. Then we have EP′ [f(x)] =
(1− ε)EP0

[f(x)] + εEP1
[f(x)] > EP0

[f(x)]. Now take A′a = Ad ∪ {(P′, 0)}, then the agent’s unique optimal action
under A′a is (P′, 0). This brings the decision maker with utility of Vd(f |A′a) = (1− ε)EP0

[h(x)] + εEP1
[h(x)]. Since

Vd(f |A′a) ≥ Vd(f), we further have

Vd(f) ≤ Vd(f |A′a) = (1− ε)EP0
[h(x)] + εEP1

[h(x)]. (18)

When ε→ 0, the RHS in (18) will converge to EP0
[h(x)].This implies Vd(f) ≤ EP0

[h(x)] when ε→ 0. Recall our
definition of P0, and together with the lower bound we have shown for Vd(f) in (17), we can conclude our results
in (4) for this case.

Case 2: supp(P0) ⊂ arg maxx f(x). For this case, we discuss following two situations.
(i): EP0 [f(x)] > Va(f |Ad), we now consider action set A′a = Ad ∪ {(P0, 0)}. Since EP0 [f(x)] > Va(f |Ad), then the
agent will uniquely chose action (P0, 0) for f under the action set A′a. This brings the decision maker with the
utility of Vd(f |A′a) = EP0

[h(x)]. Again, with the fact that Vd(f |A′a) ≥ Vd(f) and the definition of P0, we have
now proved (4).
(ii): EP0

[f(x)] = Va(f |Ad) = max f(x), this situation can only be satisfied when Ad contains some action of the
form (P′, 0) with supp(P′) ⊂ arg max f(x). Thus, we define

G := {(P′, 0) ∈ Ad : supp(P′) ⊂ arg max f(x)} 6= ∅.

Then, under action set Ad, the agent will choose an action in G which would benefit decision maker (according to
the tie-breaking assumption, when there are multiple optimal actions for agent, agent will choose the one which
maximizes decision maker’s utility.), leading the decision maker’s utility Vd(f |Ad) = max(P,0)∈G EP[h(x)] ≥ Vd(f).
In this scenario, the unique optimal action for the agent under any action set A ⊇ Ad is some (P, 0) ∈ G. However,
the agent would stick to the same action even under zero decision rule (recall our tie-breaking assumption),
leading the decision maker’s utility Vd(0|A) = max(P,0)∈G EP[h(x)] = Vd(0). This implies Vd(0) ≥ Vd(f), which
contradicts our rationality assumption.
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Now we establish the equality claims. Without loss of generality, we may assume the agent has a costless action
(δx, 0) in Ad where h(x) = 0.4 Recall that we have EP0 [h(x)] = Vd(f) > Vd(0) > 0 by our assumption on
P0 and DM’s rationality. If we have EP0

[f(x)] > Va(f |Ad) strictly, then replace P0 by a mixture distribution
P′ = (1 − ε)P0 + εδx for small ε. Consider A′a = Ad ∪ {(P′, 0)}, then the agent’s utility by taking the action
(P′, 0) is given by Va(f |A′a) = (1− ε)EP0

[f(x)] + εf(x), then one can always find a small ε such that Va(f |A′a)
is strictly larger than Va(f |Ad). As a result, this brings the decision maker with a utility of Vd(f |A′a) =
(1 − ε)EP0 [h(x)] + εh(x) = (1 − ε)EP0 [h(x)]. Since Vd(f |A′a) ≥ Vd(f), given any positive ε, this implies that
Vd(f) ≤ (1−ε)EP0 [h(x)] < EP0 [h(x)], which contradicts the minimality of P0. Thus we have EP0 [f(x)] = Va(f |Ad).
Finally, if P0 ∈ arg maxP∈∆(X ) EP[f(x)], and EP0

[f(x)] = Va(f |Ad), then we have (5).

After finishing the proof, we would like to give following explanation on our construction of worst-case action set
in the proof.

Remark 1. The above proof relies on a construction of agent’s worst case action set by adding an arbitrary
action of the form (P, 0). It may seem unrealistic to allow the agent to arbitrarily manipulate himself at zero cost.
However, we note that the zero cost is not a substantive assumption: the logic can be carried over to more realistic
models that can explicitly incorporate the effort costs as a function of expected manipulated feature. Then the
equivalent step consists of adding an action to the action set that produces P at the lowest allowable cost.

7 Proof for Lemma 2

Proof. Our proof structure is similar to Carroll (2015), with the key difference on how to define the two disjoint
convex sets. Suppose that the convex hull of X is a full-dimensional set in Rn. Now fix any nonlinear decision
rule f , our proof will hinge on the discussion of two cases we have shown in Lemma 1.

Case 1. We first define

t(x) = max{Va(f |Ad), h(x) + f(x)− Vd(f)}.

Now we define two sets in Rn+1 = Rn × R: Let S be the convex hull
of all pairs (x, f(x)), for x ∈ X , let T be the convex hull of all pairs
(x, z) that x lies in the convex hull of X , and z > t(x). We note that T
is then a convex set. A graph illustration of our proof is presented in
Figure 3.
We now claim that S and T are disjoint. To see this, suppose S and
T are not disjoint, then there exists a distribution P ∈ ∆(X ) such that
EP[f(x)] > EP[t(x)]. In particular, we have

EP[f(x)] > Va(f |Ad),

and also

EP[f(x)] > EP[h(x)] + EP[f(x)]− Vd(f)

⇒ Vd(f) > EP[h(x)].

This is a direct contradiction to our statement of (4) in Lemma 1.
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Figure 3: Illustrate S and T when
n = 1. The blue line is f(x) and its as-
sociated convex hull in blue shaded re-
gion (the top blue triangle is the set Γ).
Black line is t(x). The black shaded
region is the convex hull for all points
(x, z) where z > t(x). The red line is
the hyperplane to separate S and T .

The disjointness and convexity of S and T enable us to apply the separating hyperplane theorem: There exists a

4This assumption is merely an additive normalization of the decision maker’s utility and it can be relaxed to a more
general scenario where our reulsts still hold (see our discussion at the end of the Appendix 7). Earlier works also make
similar assumption (Carroll, 2015; Dütting et al., 2019): The agent can always exert no effort, namely, the zero-cost action,
to produce a minimum output (denote by 0); this corresponds to assuming (δ0, 0) ∈ Ad.
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vector λ = (λ1, . . . , λn) and constants µ, v such that∑
i

λixi + µz ≤ v, ∀(x, z) ∈ S (19)∑
i

λixi + µz ≥ v, ∀(x, z) ∈ T (20)

and λ is a non-zero vector. Note that (19) and (20) implies µ ≥ 0. To see this, fix a point x ∈ X , then for
(x, z) ∈ S and (x, z′) ∈ T we have∑

i

λixi + µz′ ≥
∑
i

λixi + µz ⇒ µz′ ≥ µz,

by earlier argument on the disjointness of S and T , we can conclude that µ ≥ 0. We now also show that µ is
a positive constant. Suppose µ = 0, then (19) gives

∑
i λixi ≤ v and (20) gives

∑
i λixi ≥ v, which leads to∑

i λixi = v. Since not all λi are zero, this contradicts the full-dimensionality of X .
Now we can rewrite (19) as following

f(x) ≤ v −∑i λixi
µ

, ∀x ∈ X .

This motivates us to define following linear decision rule

f ′(x) =
v −∑i λixi

µ
, ∀x ∈ X . (21)

Note that we have f ′(x) ≥ f(x) pointwise.

Now we are ready to check that Vd(f ′) ≥ Vd(f). Let (P0, c0) be the action that the agent would like to choose
under f and action set Ad. Consider any action set Aa ⊇ Ad, as we have shown before, we must have

Va(f ′|Aa) ≥ Va(f ′|Ad) ≥ Va(f |Ad). (22)

Let (P, c) be the action that the agent chooses under f ′ and action set Aa. Then (20) implies

EP[t(x)] ≥ v −∑i λiEP[xi]

µ

= EP[f ′(x)] (23)
= Va(f ′|Aa) + c

≥ Va(f ′|Aa) (c ∈ R+)
≥ Va(f |Ad). (by (22))

It is worthy noting that if above inequality is strict, then according to our definition of t(x), we must have

EP[t(x)] = EP[h(x)] + EP[f(x)]− Vd(f). (24)

So we have

Vd(f
′|Aa) = EP[h(x)] = EP[t(x)]− EP[f(x)] + Vd(f)

≥ EP[t(x)]− EP[f ′(x)] + Vd(f) (by definition of f ′)
≥ Vd(f). (by 23)

On the other hand, if EP[t(x)] = Va(f |Ad). This implies all the inequalities in the stacked chain above are
equalities. In particular, we will have

Va(f ′|Aa) = Va(f ′|Ad) = Va(f |Ad).

Since the agent now does at least as well as Va(f |Ad) by taking action (P0, c0), this action is in his choice set
under f ′ and Aa, as a result, the decision maker gets at least the corresponding utility: Vd(f ′|Aa) ≥ EP0

[h(x)] =
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Vd(f |Ad) ≥ Vd(f), where the first inequality is due to the tie-breaking assumption of the agent (when there are
multiple maximizers, the agent will chose the most beneficial one for the decision maker).

Thus, in either case, we have Vd(f ′|Aa) ≥ Vd(f), this holds for any Aa ⊇ Ad, thus we have Vd(f ′) ≥ Vd(f).

Case 2. In this case, we define S to be the convex hull of all pairs (x, f(x)), and T to be the set of all (x, z) with
x in the convex hull of X and z > Va(f |Ad). We still claim both of S and T are convex, and disjoint: otherwise,
there exists P such that

EP[f(x)] > Va(f |Ad).
This contradicts our statement (5) in Lemma 1. Using the same arguments as in case 1, we find a vector
λ = (λ1, . . . , λn) and constants µ, v such that (19) and (20) hold, and we can still guarantee that µ > 0. Again,
we define a linear decision rule f ′ by (21); from (19) we know that f ′ ≥ f pointwise. Consider the agent’s behavior
under decision rule f ′, for any action (P, c) chosen by the agent under any possible action set, we have

EP[f ′(x)]− c = f ′(EP[x])− c ≤ Va(f |Ad). (by (20))

This means that the agent cannot earn a higher expected utility than Va(f |Ad). On the other hand, the agent
can always earn at least this much, since Va(f ′|Aa) ≥ Va(f

′|Ad) ≥ Va(f |Ad). This means we have equality
Va(f ′|Aa) = Va(f ′|Ad) = Va(f |Ad). From here, the argument finishes just as at the end of case 1, and we have
Vd(f

′) ≥ Vd(f).

Extensions: General cost lower bounds As mentioned in Remark 1, our analysis relies on the construction
of worst case action sets, using actions, that produce an undesirable distribution P, at costs of zero. This
zero-cost action assumption (together with the assumption in Footnote 6) is not substantial and one natural
relaxation is that the decision maker knows a lower bound on the cost of any available actions, or of producing
any given level of expected output. Our analysis and results will go through for this scenario. Specifically,
suppose the known lower bound cost is denoted by c > 0, then our Lemma 1 can be accordingly changed to:
Vd(f) = minP∈∆(X ) EP[h(x)], s.t. EP[f(x)] − c ≥ Va(f |Ad) or maxP∈∆(X ) EP[f(x)] − c = Va(f |Ad). To get the
analogous result in Lemma 2, one can change the function t(x) as t(x) = max{Va(f |Ad) + c, h(x) + f(x)−Vd(f)},
then all the analysis can be carried over here.

8 Proof for Lemma 3

Proof. We prove Theorem 1 via showing the existence of an optimum within the class of linear decision rules,
and this decision rule will then be optimal among all decision rules. Note that for any rational decision rule
f(x), the value of f(x) that it assigns to x is bounded within (0, C̄]. Let a linear decision rule be the form
of f(ω,β)(x) = ω>x + β. Then it suffices to show that the guaranteed worst-case utility Vd(f) is an upper
semi-continuous function of (ω, β) ∈ Glin. Now fix a sequence (ω1, β1), (ω2, β2), . . . in Glin converging to some
(ω∞, β∞) in Glin. Then it suffices to show that Vd(f(ω∞,β∞)) ≥ lim supk Vd(f(ωk,βk)). To prove this, first note
that by replacing the sequence ((ωk, βk)) with a subsequence along which Vd(f((ωk, βk))) converges to its lim
sup on the original sequence, thus, we can assume that Vd(f(ωk,βk)) converges to lim supk Vd(f(ωk,βk)). Now for
any action set Aa, and let (Pk, ck) be the agent’s chosen action under Aa and the decision rule f(ωk,βk). Then
if necessary, by extracting a further subsequence, we can assume that the sequence (Pk, ck) converges to some
(P∞, c∞) ∈ Aa. Since the agents’ utility are continuous in (ω, β), then (P∞, c∞) is an optimal action for the
agent under f(ω∞,β∞), and its utility to the decision maker is the limit of the corresponding utility of (Pk, ck)
under f(ωk,βk). We thus have

Vd(f(ω∞,β∞)|Aa) ≥ EP∞ [h(x)] = lim
k

EPk [h(x)] = lim
k
Vd(f(ωk,βk)|Aa) ≥ lim

k
Vd(f(ωk,βk)).

Since Aa ⊇ Ad is arbitrary, then we have Vd(f(ω∞,β∞)) ≥ limk Vd(f(ωk,βk)).

9 Missing Table in Section 3.4

Given the student’s efforts e invested to each action, we can enumerate all possible induced distributions over X
in Ad and Aa (see Table 1). Note that since the student can now also invest efforts to action a0, Aa contains
more availabilities compared to Ad.
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x = (x1, x2) P in Ad P in Aa
Pr(x = (1, 1)) e1p

2 (e1p+ (p− ε)e0)(p+ εe0)
Pr(x = (1, 0)) e1p(1− p) (e1p+ (p− ε)e0)(1− p− εe0)
Pr(x = (0, 1)) (1− e1p)p (1− e1p− (p− ε)e0)(p+ εe0)
Pr(x = (0, 0)) (1− e1p)(1− p) (1− e1p− (p− ε)e0)(1− p− εe0)

Table 1: All possible distributions P in Ad and Aa induced by student’s effort e = (e0, e1, 1− e0 − e1). e1, e0 are
the efforts decided by the student for actions a1 and a0, and e1 + e0 ∈ [0, 1].

10 Missing proof and the Algorithm for Theorem 2

Algorithm 1 Find the optimal robust decision rule

1: Input: Decision maker’s knowledge Ad, linear decision space Glin, objective function h.
2: Initial f∗ ∈ Glin arbitrarily and Vd(f∗) = 0.
3: for every (ω, β) ∈ Glin do
4: Let (P0, c0) ∈ arg max(P,c)∈Ad

EP
[
ω>x + β

]
− c;

5: Solve the set P =
{
P : ω> (EP0

[x]− EP[x]) = c0,P ∈ ∆(X )
}
;

6: Compute Vd
(
f(ω,β)

)
= minP∈P EP[h(x)];

7: if Vd
(
f(ω,β)

)
> Vd(f

∗) then
8: f∗ ← ω>x + β.
9: end if
10: end for
11: Output Robust optimal decision: f∗.

Proof. According Lemma 1, given f(ω,β), for any distribution P attaining the minimum in (4), we know that the
inequality in Γ must bind at P. Let (Pω, cω) ∈ Ad be the solution to the constraint in SO. Then we can compute
f∗ by solving:

arg max
(ω,β)∈Glin

min
P∈P

EP[h(x)], (R-SO)

s.t. P =
{
P′ : EP′ [f(ω,β)(x)] = ω>EPω [x]− cω = Cω,P′ ∈ ∆(X )

}
, (25)

where we refer to the set P, as the worst-action set, since we choose the worst action among it to minimize
the expected utility EP[h(x)]. Different from the problem in SO, after identifying the agent’s best response
(Pω, cω) ∈ Ad under f(ω,β), our problem in R-SO first turns to characterizing a worst-action set P. Then
the searching of f∗ will hinge on maximizing EP[h(x)] in each P over Glin. This implies that to make our
problem tractable, one may first need to guarantee the corresponding strategic decision-making problem tractable.
Furthermore, given a linear f(ω,β), the additional computational complexity in R-SO is due to the robustness
concern in minimizing EP[h(x)] over set P. It is easy to see that this is a linear programming with equality
constraint, where the decision variables are a probability simplex over X .

min
P∈P

EP[h(x)], s.t. P =
{
P′ : ω>EP′ [x] = Cω − β,P′ ∈ ∆(X )

}
. (26)

Inside the optimization, for every (ω, β) ∈ Glin, our problem R-SO has one more induced Linear programming to
solve compared with the standard problem SO.

As it will in general be hard to optimize arbitrary non-concave functions, we may consider assuming a concave
h. However, as pointed out by other studies (Kleinberg and Raghavan, 2019; Alon et al., 2020), there exist
concave functions h that are NP-hard to solve the problem SO (via a reduction from the maximum independent
set problem), which naturally leads the hardness of our problem. In particular, back to our student evaluation
setting, let P(e) be the induced feature distribution if the agent’s effort profile is e. As a result, the decision
maker’s goal on maximizing h(x) can be reduced to maximizing h(P(e)). When h(P(e)) = ‖e‖0, solving the
problem SO is then NP-hard.
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