
Low-Cost Learning via Active Data Procurement

Jacob Abernethy*, Yiling Chen**, Chien-Ju Ho***, and Bo Waggoner**

*University of Michigan
**Harvard SEAS

***UCLA

May 2015

Abstract

We design mechanisms for online procurement of data held by strategic agents for
machine learning tasks. We study a model in which agents cannot fabricate data, but
may lie about their cost of furnishing their data. The challenge is to use past data to
actively price future data in order to obtain learning guarantees, even when agents’
costs can depend arbitrarily on the data itself. We show how to convert a large class
of no-regret algorithms into online posted-price and learning mechanisms. Our results
parallel classic sample complexity guarantees, but with the key resource constraint
being money rather than quantity of data available. With a budget constraint B, we
give robust risk (predictive error) bounds on the order of 1/

√
B. In many cases our

guarantees are significantly better due to an active-learning approach that leverages
correlations between costs and data.

Our algorithms and analysis go through a model of no-regret learning with T arriving
pairs (cost, data) and a budget constraint of B, coupled with the “online to batch
conversion”. Our regret bounds for this model are on the order of T/

√
B and we give

lower bounds on the same order.

1 Introduction

The rising interest in the field of Machine Learning (ML) has been strongly driven by
the potential to generate economic value. Firms seeking revenue optimizations can gather
abundant data at low cost, apply a set of inexpensive algorithmic tools, and produce high-
accuracy predictors that can massively improve future decision making. The extent of the
potential value that can be created by leveraging data for prediction is apparent in the
multi-million dollar competition bounties offered by companies like Netflix and the Heritage
Health Foundation, but perhaps even more so in the aggressive hiring of many ML experts
by companies like Google and Facebook.

1

ar
X

iv
:1

50
2.

05
77

4v
2

 [
cs

.G
T

]
 6

 J
un

 2
01

5

Much of the theoretical results in ML aim to measure, at least implicitly, the economic
efficiency of learning problems. For example, in certain settings we have a reasonably thorough
understanding of sample complexity [1] which gives us the precise tradeoff between n, the
quantity of data at our disposal, and the error or loss rate we want to achieve. Reducing error
is always beneficial, of course, but must be weighed against the marginal cost of increasing n.

The measures of efficiency in ML have broadened in recent years, in particular because
gathering data is typically orders of magnitude cheaper than labeling it. This has led to
the emergence of the active learning paradigm [2–4, 12, 17]. Here, we imagine an interface
between the learner and the label provider, where the learner may make label queries on data
points in an online fashion. By sequentially choosing which data to label, the learner can
greatly reduce the number of labels required to learn [12].

A problem that has received little attention in the learning theory literature is the
monetary efficiency of learning when data have differing costs. Indeed, real-world prediction
tasks often require obtaining examples held by self-interested, strategic agents; these agents
must be incentivized to provide the data they hold, and they have heterogeneous costs for
doing so.

In this vein, the present paper seeks to address the following question:

In a world where data is held by self-interested agents with heterogeneous costs
for providing it, and in particular when these costs may be arbitrarily correlated
with the underlying data, how can we design mechanisms that are incentive-
compatible, have robust learning guarantees, and optimize the cost-efficiency
tradeoffs inherent in the learning problem?

This question is relevant to many real-world scenarios involving financial and strategic
considerations in data procurement. Here are two examples:

1. In the development of a certain drug, a pharmaceutical company wishes to train a disease
classifier based on data obtained by hospitals and stored in patients’ medical records.
These data are not public, yet the company can offer hospital patients financial incentives
to contribute their private records. We note the potential for cost heterogeneity: the
compensation required by patients may be correlated with the content of their medical
data (e.g. if they have the disease).

2. Online retailers generally hope to know more about website visitors in order to better
target products to customers. A retailer can offer to buy customers’ demographic and
social data, say in the form of access to their Facebook profile. But again, customers’
willingness to sell may covary with their demographics data in an unknown way.

From sample complexity to budget efficiency

The classical problem in statistical learning theory is the following. We are given n datapoints
(examples) z1, . . . , zn ∈ Z sampled from some distribution D. Our goal is to select a hypothesis
h ∈ H which “performs well” on unseen data from D. We can specify performance in terms

2

of a loss function `(h, z), and we write L(h), known as the risk of h, to be the expectation of
`(h, z) on a random draw z from D. The goal is to produce a hypothesis h̄ whose risk is not
much more than that of h∗, the optimal member of H. For example, in binary classification,
each data point consists of a pair z = (x, y) where x encodes some “features” and y ∈ {−1, 1}
is the label; a hypothesis h is a function that predicts a label for a given set of features; and
a typical loss function, the “0-1 loss”, is defined so that `(h, (x, y)) = 0 when h(x) = y and
`(h, (x, y)) = 1 otherwise.

Research in statistical learning theory attempts to characterize how well such tasks can be
performed in terms of the resources available and the inherent difficulty of the problem. The
resource is usually the quantity of data n. In binary classification, for instance, the difficulty
or richness of the problem is captured by the “VC-dimension” d, and a famous result [19] is
that there is an algorithm achieving the bound

L(h̄) ≤ L(h∗) +O

(√
d log n

n

)
, (1)

with very high probability over the sample z1, . . . , zn.
In the present work we consider an alternative scenario: the learner has a fixed budget

B and can use this budget to purchase examples. More precisely, on round t of a sequence
of T rounds, agent t arrives with data point zt, sampled i.i.d. from some D, and a cost
ct ∈ [0, 1]. This cost ct is known only to the agent and can depend arbitrarily on zt. The
learning mechanism may offer a (possibly randomized) menu of take-it-or-leave-it prices
πt : Z → R+, with a possibly different price πt(z) for each data point z. The arriving agent
observes the price πt(zt) offered for her data and accepts as long as πt(zt) ≥ ct, in which case
the mechanism pays the agent πt(zt) and learns (ct, zt).

1 Our goal is to actively select prices
to offer for different datapoints, subject to a budget B, in order to minimize the risk of our
final output h̄.

At a high level, our main result parallels the classical statistical learning guarantee in (1),
but where the limited resource is the budget B instead of the sample size n.

Main Result 1 (Informal). For a large class of problems, there is an active data purchasing
algorithm A that spends at most B in expectation and outputs a hypothesis h̄ satisfying,

EL(h̄) ≤ L(h∗) +O

(√
γT,A
B

)
,

where γT,A ∈ [0, 1] is an algorithm-dependent parameter of the (cost, data) sequence capturing
the monetary difficulty of learning and the expectation is over the algorithm’s internal
randomness.

This bound depends on the quantity γT,A which captures the monetary difficulty of the
problem at hand. (We also need as prior knowledge a rough estimate of γT,A.) This is in

1We will discuss the interaction model further in Sections 2 and 8.

3

Online learning algorithm
(e.g. Multiplicative Weights,
Online Gradient Descent)

Classic
regret bound

Mechanism to
purchase data for
regret minimization

Mechanism to
purchase data for
statistical learning

Regret bound
(Section 4)

Risk bound
(main result)

Figure 1: Algorithmic and analytic approach. First, we convert Follow-the-Regularized-
Leader online no-regret algorithms into mechanisms that purchase data for a regret-minimization
setting that we introduce for purposes of analysis. Then, we convert these into mechanisms to solve
our main problem, statistical learning. The mechanisms interact with the online learning algorithms
as black boxes, but the analysis relies on “opening the box”.

rough analogy with VC-dimension in classical bounds such as Equation 1. Similarly, the key
resource constraint is now the budget B rather than the quantity of data n.

It is important to note that γT,A depends on the choice of algorithm A. However, our
results also include simpler, algorithm-independent bounds. For instance, replace γT,A by

√
µ,

where µ is the mean of the arriving costs, and Main Result 1 continues to hold (and the only
prior knowledge required is a rough estimate of µ). But γT,A can be significantly smaller than√
µ when there are particular correlations between the costs and the examples; indeed, we

can have γT,A → 0 even as µ stays constant. This indicates a case in which the average cost
of data is high, but due to beneficial correlations between costs and data, our mechanism can
obtain all the data it needs for good learning very cheaply. We give a thorough discussion of
γT,A in Section 4.4.

Overview of Techniques

Our general idea for attacking this problem is to utilize online learning algorithms (OLAs)
for regret minimization [6]. These algorithms output a hypothesis or prediction at each step
t = 1, . . . , T , and their performance is measured by the summed loss of these predictions over
all the steps. The idea is that the hypotheses produced by the OLA at each step can be used
both to determine the value of data during the procurement process and to generate a final
prediction.

In Section 3, we lay out the tools we need for a pricing and learning mechanism to interact
with OLAs. The first high-level problem is that, because of the budget constraint, our OLA
will only see a small subset of the data sequence. We use the tool of importance-weighting to
give good regret-minimization guarantees even when we do not see the entire data sequence.
The second problem is how to aggregate the hypotheses of the OLA and convert its regret
guarantee into a risk guarantee for our statistical learning setting. This is achieved with the
standard “online-to-batch” conversion [7].

4

Given the tools of Section 3, the key remaining challenge is to develop a pricing and
learning strategy that achieves low regret. We address this question in Section 4. We formally
define a model of online learning for regret minimization with purchased data, in which the
mechanism must output a hypothesis at each time step and perform well in hindsight against
the entire data sequence, but only has enough budget to purchase and observe a fraction of
the arriving data. We defer until later our detailed analysis of this setting, derivation of a
pricing strategy, and lower bounds. At this point, we present our pricing strategy and regret
guarantees for this setting.

In Section 5, we give our main results: risk guarantees for a learner with budget B and
access to T arriving agents. These bounds follow directly by using the tools in Section 3 and
regret-minimization results in Section 4.

In Section 6, we develop a deeper understanding of the regret minimization setting. We
derive our pricing strategy from an in-depth analysis of a more analytically tractable variant
of the problem, the “at-cost” setting, where the mechanism is only required to pay the cost
of the arriving data point rather than the price posted. For this setting, we are able to
derive the optimal pricing strategy for minimizing the regret bound of our class of learning
algorithms subject to an expected budget constraint.

We also complement our upper bounds by proving lower bounds for data-purchasing
regret minimization. These show that our mechanisms for the easier at-cost setting have
an order-optimal regret guarantee of T√

B
γT,A. There is a small gap to our mechanisms for

the main regret minimization setting, in which our guarantee is on the order of T√
B

√
γT,A

(recall that γT,A ∈ [0, 1], so this is a weaker guarantee). The dependence T/
√
B approaches

the classic
√
T regret bound when B is large (approaching T). When B is small but still

superconstant, we observe the perhaps counterintuitive fact that we can achieve o(1) average
regret per arrival while only observing an o(1) fraction of the arriving data; in other words,
we have “no data, no regret.”

Related Work

For “batch” settings in which all agents are offered a price simultaneously, pricing schemes for
obtaining data have appeared in recent work, especially Roth and Schoenebeck [16], which
considered the design of mechanisms for efficient estimation of a statistic. However, this work
and others in related settings [8, 10, 14] consider offline solutions, e.g. drawing a posted price
independently for all data points. We focus on an active approach in which the marginal
value of individual examples is estimated according to the current learning progress and
budget. A data-dependent approach to pricing data does appear in Horel et al. [13], but that
paper focuses on a quite different learning setting, a model of regression with noisy samples
with a budget-feasible mechanism design approach.

Another difference from the above papers is that we prove risk and regret bounds rather
than trying to minimize e.g. a variance bound, and we also consider a broader class of
learning problems.

5

Other related work. Other works such as Dekel et al. [9], Ghosh et al. [11], Meir et al.
[15] focus on a setting in which agents may misreport their data (also see the peer-prediction
literature). We suppose that agents may misreport their costs but not their data.

Many of the ideas in the present work draw from recent advances in using importance
weighting for the active learning problem [4]. There is a wealth of theoretical research into
active learning, including Balcan et al. [2], Beygelzimer et al. [5], Hanneke [12] and many
others.

“Budgeted Learning” is a somewhat related area of machine learning, but there the budget
is not monetary. The idea is that we do not see all of the features of the data points in our
set, but rather have a “budget” of the number of features we may observe (for instance, we
may choose any two of the three features height, weight, age).

2 Statistical Learning with Purchased Data

In this section, we formally define the problem setting. The body of the paper will then
consist of a series of steps for deriving mechanisms for this setting with provable guarantees,
which will finally appear in Section 5.

We consider a statistical learning problem described as follows. Our data points are
objects z ∈ Z. We are given a hypothesis class H which we will assume is parameterized
by vectors Rd but more broadly can be any Hilbert space endowed with a norm ‖ · ‖; for
convenience we will treat elements h ∈ H as vectors which can be added, scaled, etc. We are
also given a loss function ` : H×Z → R that is convex in H. We assume throughout the
paper that the loss function is 1-Lipschitz in h; that is, for any z ∈ Z and any h, h′ ∈ H we
have |`(h, z)− `(h′, z)| ≤ ‖h− h′‖.

In many common scenarios, Z is the space of pairs (x, y) from the cross product X × Y ,
with x the feature input and y the label, though in our setting Z can be a more generic object.
For example, in the canonical problem of linear regression, we have that Z = X ×Y = R

d×R,
the hypothesis class is vectors H = R

d, and the loss function is defined according to squared
error `(h, (x, y)) := (h>x− y)2.

The data-purchasing statistical learning problem is parameterized by the data
space Z, hypothesis space H, loss function `, number of arriving data points T , and expected
budget constraint B. A problem instance consists of a distribution D on the set Z and a
sequence of pairs (c1, z1), . . . , (cT , zT) where each zt is a data point drawn i.i.d. according to
D and each ct ∈ [0, 1] is the private cost associated with that data point. The costs may be
arbitrarily chosen, i.e. we consider a worst-case model of costs. (For instance, if costs and
data are drawn together from a joint, correlated distribution, then this is a special case of
our setting.)

In this problem, the task is to design a mechanism implementing the operations “post”,
“receive”, and “predict” and interacting with the problem instance as follows.

• For each time step t = 1, . . . , T :

6

1. The mechanism posts a pricing function πt : Z → R, where πt(z) is the price
posted for data point z.

2. Agent t arrives, possessing (ct, zt).

3. If the posted price πt(zt) ≥ ct, then agent t accepts the transaction: The mechanism
pays πt(zt) to the agent and receives (ct, zt). If πt(zt) < ct, agent t rejects the
transaction and the mechanism receives a null signal.

• The mechanism outputs a prediction h̄ ∈ H.

Note that the mechanism is given the parameters Z, H, `, T , and B, but the problem instance
is completely unknown to the mechanism prior to to the arrivals. The design problem of
the mechanism is how to choose the pricing function πt to post at each time, how to update
based on receiving data, and how to choose the final prediction. The risk or predictive error
of a hypothesis is

L(h) = E
z∼D

`(h, z)

and the goal of the mechanism is to minimize the risk L(h̄) of its final hypothesis h̄. The
benchmark is the optimal hypothesis in the class, h∗ = arg minh∈H L(h).

The mechanism must guarantee that, for every input sequence (c1, z1), . . . , (cT , zT), it
spends at most B in expectation over its own internal randomness.

Agent-mechanism interaction. The model of agent arrival and posted prices contains
several assumptions. First, agents cannot fabricate data; they can only report data they
actually have to the mechanism. Second, agents are rational in that they accept a posted
price when it is higher than their cost and reject otherwise. Third, we have an implementation
of the mechanism that can obtain the agent’s cost ct when the transaction occurs.

We emphasize that the purpose of this paper is not focused on the implementation of such
a setting, but instead on developing active learning and pricing techniques and guarantees.
This is also intended as a simple and clean model in which to begin developing such techniques.
However, we briefly note some possible implementations.

In the most straightforward one, the mechanism posts prices directly to the agent who
responds directly. This would be a weakly truthful implementation, as agents have no
incentive to misreport costs after they choose to accept the transaction.

One strictly truthful implementation uses a trusted third party (TTP) that can facilitate
the transactions (and guarantee the validity of the data if necessary). For example, we could
imagine attempting to learn to classify a disease, and we could rely on a hospital to act as the
broker allowing us to negotiate with patients for their data. Then the TTP/agent interaction
could proceed as follows:

1. Learning mechanism submits the pricing function πt to the TTP;

2. Agent provides his data point zt and cost ct to the TTP;

7

3. TTP determines whether πt(zt) ≥ ct and, if so, instructs the learner to pay πt(zt) to
the agent and then provides the pair (zt, ct) to the learner.

Other possibilities for strictly truthful implementation include using a bit of cryptography
(see Section 8).

3 Tools for Converting Regret-Minimizing Algorithms

In this section we begin with the classic regret-minimization problem and a broad class of
algorithms for this problem. We then show how to apply techniques that convert these
algorithms into a form that will be useful for solving the statistical learning problem with
purchased data. The only missing ingredient will then be a price-posting strategy, which will
be presented in Section 4.

3.1 Recap of Classic Regret-Minimization

In the classic regret-minimization problem, we have a hypothesis class H with the same
assumptions as stated in Section 2. At each time t = 1, . . . , T the algorithm posts a hypothesis
ht ∈ H. Nature (the adversary, the environment, etc.) selects a 1-Lipschitz convex loss
function ft : H → R.2 The algorithm observes ft and suffers loss ft(ht).

The loss and regret of the algorithm on this particular input sequence are

LossT =
T∑
t=1

ft(ht). (2)

RegretT = LossT − min
h∗∈H

T∑
t=1

ft(h
∗). (3)

The regret objective is what one typically studies in adversarial settings, where we want to
discount the loss incurred by the algorithm by the loss suffered by the best possible h∗ chosen
with knowledge of the sequence of ft’s. As we often consider randomized algorithms, we will
generally consider expected loss and regret, where the expectation is over any randomness
in the algorithm not over the (possibly-randomized) input sequence of loss functions. An
algorithm is said to guarantee regret R(T) if the latter provides an upper bound on regret
for every sequence of loss functions f1, . . . , fT .

We utilize the broad class of Follow-the-Regularized-Leader (FTRL) online algorithms
(Algorithm 1) [18, 20]. Special cases of FTRL include Online Gradient Descent, Multiplicative
Weights, and others. Each FTRL algorithm is specified by a convex function G : H → R

which is known as a regularizer and is usually strongly convex with respect to some norm.
For example, Multiplicative Weights follows by using the negative entropy function as a

2This definition of “loss function” is a departure from our main setting which involved `(·, ·). But we will
use this somewhat more general setup by choosing ft(h) ∝ `(h, zt) for the datapoint zt.

8

regularizer, which is strongly-convex with respect to `1 norm [6]. Online Gradient Descent
follows by using the regularizer G(h) = 1

2
‖h‖2

2, which is strongly-convex with respect to `2

norm. These special cases have efficient closed-form solutions to the update rule for computing
ht+1.

ALGORITHM 1: Follow-the-Regularized-Leader (FTRL).

Input: learning parameter η, convex regularizer G : H → R

for t = 1, . . . , T do
post hypothesis ht, observe loss function ft;

update ht+1 = infh∈H

{∑
t′≤t ft′(h) + ηG(h)

}
;

end

It is well-known (and indeed follows as a special case of Lemma 3.1) that, under the
assumptions on our setting, FTRL algorithms guarantee an expected regret bound of O(

√
T),

and this is tight with respect to T .

3.2 Importance-Weighting Technique for Less Data

As a starting point, suppose we wish to design an online learning algorithm that does not
observe all of the arriving loss functions, but still performs well against the entire arrival
sequence.

Because the arrival sequence may be adversarially chosen, a good algorithm should
randomly choose to sample some of the arrivals. In this section, we abstract away the decision
of how to randomly sample. (This will be the focus of Section 4.) In this section, we suppose
that at each time t, after posting a hypothesis ht, a probability qt > 0 is specified by some
external means as a (possibly random) function of the preceding time steps. With probability
qt, we observe ft; with probability 1− qt, we observe nil.

Our goal is to modify the FTRL algorithm for this setting and obtain a modified regret
guarantee. Notice crucially that the definition of loss and regret (3) are unchanged: We still
suffer the loss ft(ht) regardless of whether we observe ft.

The key technique we use is importance weighting. The idea is that, if we only observe
each of a sequence of values xi with probability pi, then we can get an unbiased estimate of
their sum by taking the sum of xi

pi
for those we do observe. To check this fact, let 1i be the

indicator variable for the event that we observe i and note that the expectation of our sum is

E
[∑

i 1i
xi
pi

]
=
∑

i xi. This is called importance-weighting the observations (and is a specific

instance of a more general machine learning technique). Furthermore, if each xi
pi

is bounded
and observed independently, we can expect the estimate to be quite good via tail bounds.

The importance-weighted modification to an online learning algorithm is outlined in
Algorithm 2. The importance-weighted regret guarantee we obtain is given in Lemma 3.1.
It depends on the following key notation. Our analysis and algorithm require a given norm
‖ · ‖, and we recall the definition of the dual norm ‖z‖? := supx;‖x‖≤1 x · z.

9

Definition 3.1. Given h ∈ H, and convex loss f : H → R, let ∆h,f := ‖∇f(h)‖?.
We can informally think of ∆h,f both as the “difficulty” of arrival f when the current

hypothesis is h, and as the “value” of observing f . This interpretation is explored in Section
4 when we define the parameter γT,A.

ALGORITHM 2: Importance-Weighted Online Learning Algorithm.

Input: access to Online Learning Algorithm (OLA)
for t = 1, . . . , T do

post hypothesis ht ← OLA; observe sampling probability qt;
toss qt-weighted coin (Bernoulli sample) εt ;

if εt =

{
1 input importance-weighted loss function f̂t(·) = ft(·)

qt
→ OLA

0 input zero function f̂t(·) ≡ 0→ OLA

end

Lemma 3.1. Assume we implement Algorithm 2 with nonzero sampling probabilities q1, . . . , qT .
Assume the underlying OLA is FTRL (Algorithm 1) with regularizer G : H → R that is
strongly convex with respect to ‖ · ‖. Then the expected regret, with respect to the loss sequence
f1, . . . , fT , is no more than

R(T) =
β

η
+ 2η E

[∑T
t=1

∆2
ht,ft

qt

]
,

where β is a constant depending on H and G, η is a parameter of the algorithm, and the
expectation is over any randomness in the choices of ht and qt.

We can recover the classic regret bound as follows: Take each qt = 1, and note by the
Lipschitz assumption that each ∆ht,ft ≤ 1. Then by setting η = Θ(1/

√
T), we get an expected

regret bounded by O(
√
T).

3.3 The “Online-to-Batch” Conversion

So far so good: We can convert an online regret-minimization algorithm to use smaller
amounts of data, and we postpone the question of how to price data till Section 4. We now
address the statistical learning problem, which is how to generate accurate predictions based
on the online learning process.

We address this with a standard tool known as the “online-to-batch conversion,” where
we may leverage an online learning algorithm for use in a “batch” setting. A sketch of this
technique is as follows, and further details can be found in, e.g., Shalev-Shwartz [18]. Given
a batch of i.i.d. data points, feed them one-by-one into the no-regret algorithm. Because the
algorithm has low regret, its hypotheses predicted well on average. But since each data point
was drawn i.i.d., this means that these hypotheses on average predict well on an i.i.d. draw
from the distribution. Thus it suffices to take the mean of the hypotheses to obtain low risk.

10

Lemma 3.2 (Online-to-Batch [7]). Suppose the sequence of convex loss functions f1, . . . , fT
are drawn i.i.d. from a distribution F and that an online learning algorithm with hypotheses
h1, . . . , hT achieves expected regret R(T). Let L(h) = Ef∼F f(h) and h∗ = arg minh∈H L(h).

For h̄1:T = 1
T

∑T
t=1 ht, we have

E
f1,...,fT ,

alg

L(h̄1:T) ≤ L(h∗) +
1

T
R(T).

We note that this conversion will continue to hold in the data-purchasing no-regret setting
we define next, since all that is required is that the algorithm output a hypothesis ht at each
step and that there is a regret bound on these hypotheses.

4 Regret Minimization with Purchased Data

In this setting, we define the problem of regret minimization with purchased data. We will
design mechanisms with good regret guarantees for this problem, which will translate via
the aforementioned online-to-batch conversion (Lemma 3.2) into guarantees for our original
problem of statistical prediction.

The essence of the data-purchasing no-regret learning setting is that an online algorithm
(“mechanism”) is asked to perform well against a sequence of data, but by default, the
mechanism does not have the ability to see the data. Rather, the mechanism may purchase
the right to observe data points using a limited budget. The mechanism is still expected to
have low regret compared to the optimal hypothesis in hindsight on the entire data sequence
(even though it only observes a portion of the sequence).

4.1 Problem Definition

The data-purchasing regret minimization problem is parameterized by the hypothesis
space H, number of arriving data points T , and expected budget constraint B. A problem
instance is a sequence of pairs (c1, f1), . . . , (cT , fT) where each ft : H → R is a convex loss
function and each ct ∈ [0, 1] is the cost associated with that data point. We assume that the
ft are 1-Lipschitz, and let F be the set of such loss functions.

In this problem, we design a mechanism implementing the operations “post” and “receive”
and interacting with the problem instance as follows.

• For each time step t = 1, . . . , T :

1. The mechanism posts a hypothesis ht and a pricing function πt : F → R, where
πt(f) is the price posted for loss function f .

2. Agent t arrives, possessing (ct, ft).

3. If the posted price πt(ft) ≥ ct, then agent t accepts the transaction: The mechanism
pays πt(ft) to the agent and receives (ct, ft). If πt(ft) < ct, agent t rejects the
transaction and the mechanism receives a null signal.

11

Note the key differences from the statistical learning setting: We must post a hypothesis ht
at each time step (and we do not output a final prediction), and data is not assumed to come
from a distribution.

The goal of the mechanism is to minimize the loss, namely
∑

t ft(ht). The definition of
regret is also the same as in the classical setting (Equation 3). Note that we suffer a loss ft(ht)
at time t regardless of whether we purchase ft or not. The mechanism must also guarantee
that, for every problem instance (c1, f1), . . . , (cT , fT), it spends at most B in expectation over
its own internal randomness.

4.2 The Importance-Weighting Framework

Recall that, in Section 3.2, we introduced the importance-weighting technique for online
learning. This gave regret guarantees for a learning algorithm when each arrival ft is observed
with some probability qt.

Our general approach will be to develop a strategy for randomly drawing posted prices πt.
This will induce a probability qt of obtaining each arrival ft.

Therefore, the entire problem has been reduced to choosing a posted-price strategy at
each time step. This posted-price strategy should attempt to minimize the regret bound
while satisfying the expected budget constraint.

A brief sketch of the proof arguments is as follows. After we choose a posted price strategy,
each qt will be determined as a function of ht, ct, and ft. (qt is just equal to the probability
that our randomly drawn price exceeds the agent’s cost ct.) Thus, we can apply Lemma
3.1, which stated that for these induced probabilities qt, the expected regret of the learning
algorithm is

β

η
+ 2η E

∑
t

∆2
ht,ft

qt
,

where β is a constant and η is a parameter of the learning algorithm to be chosen later.
After we choose and apply such a strategy, the general approach to proving our regret

bounds is to find an a priori bound M such that 2E
∑

t

∆2
ht,ft

qt
≤M . Then the regret bound

becomes β
η

+ ηM . If we know this upper-bound M in advance using some prior knowledge,

then we can choose η = Θ(1/
√
M) as the parameter for our learning algorithms. This gives a

regret guarantee of O(
√
M).

4.3 A First Step to Pricing: The “At-Cost” Variant

The bulk of our analysis of the no-regret data-purchasing problem actually focuses on a
slightly easier variant of the setting: If the arriving agent accepts the transaction, then the
mechanism only has to pay the cost ct rather than the posted price πt(ft). We call this
the “at-cost” variant of the problem. This setting turns out to be much more analytically
tractable: We derive optimal regret bounds for our mechanisms and matching lower bounds.
We then take the key approach and insights derived from this variant and apply them to

12

produce a solution to the main no-regret data purchasing problem. In order to keep the story
moving forward, we summarize our results for the “at-cost” setting here and explore how
they are obtained in Section 6.

In the at-cost setting, we are able to solve directly for the pricing strategy that minimizes
the importance-weighted regret bound of Lemma 3.1. We first define one important quantity,
then we state the strategy and result in Theorem 4.1.

Definition 4.1. For a fixed input sequence (c1, f1), . . . , (cT , fT), ∆h,f in Definition 3.1, and
a mechanism outputting (possibly random) hypotheses h1, . . . , hT , define

γT,A = E
1

T

∑
t

∆ht,ft

√
ct

where the expectation is over the randomness of the algorithm. Note that γT,A lies in [0, 1]
by our assumptions on bounded cost and Lipschitz loss.

Now we give the main result for the at-cost setting.

Theorem 4.1. There is a mechanism for the “at-cost” problem of data purchasing for regret
minimization that interfaces with FTRL and guarantees to meet the expected budget constraint,
where for a parameter γT,A ∈ [0, 1] (Definition 4.1),

1. The expected regret is bounded by O
(

max
{

T√
B
γT,A ,

√
T
})

.

2. This is optimal in that no mechanism can improve beyond constant factors.

3. The pricing strategy is to choose a parameter K = O
(
T
B
γT,A

)
and draw πt(f) randomly

according to a distribution such that Pr[πt(f) ≥ c] = min
{

1 ,
∆ht,f

K
√
c

}
.

The only prior knowledge required is an estimate of γT,A up to a constant factor.

4.4 Interpreting the Quantity γT,A

Several of our bounds rely heavily on the quantity γT,A which measures, in a sense, the
“financial difficulty” of the problem. We now devote some discussion to understanding γT,A
by answering four questions.

(1) How to interpret γT,A?
γT,A is an average, over time steps t, of ∆ht,ft ·

√
ct. Here, ∆ht,ft intuitively captures

both the “difficulty” of the data ft and also the “value” or “benefit” of ft. To explain the
difficulty aspect, by examining the regret bound for FTRL learning algorithms (e.g. the
importance-weighted regret bound of Lemma 3.1 with all qt = 1), one observes that if each
∆ht,ft is small, then we have an excellent regret bound for our learning algorithm; the problem
is “easy”. To explain the value aspect, one can for concreteness take the Online Gradient
Descent algorithm; the larger the gradient, the larger the update at this step, and ∆ht,ft

13

is the norm of the gradient. And in general, the higher ∆ht,ft , the more likely we are to
purchase arrival ft.

Thus, γT,A captures the correlations between the value of the arriving data and the cost
of that data. If either the mean of the costs or the average benefit ∆ht,ft of the data is
converging to 0, then γT,A → 0 and in these cases we can learn with high accuracy very
cheaply, as may be expected. More interestingly, it is possible to have both high average
costs, and high average data-values, and yet still have γT,A → 0 due to beneficial correlations.
In these cases we can learn much more cheaply than might be expected based on either the
economic side or the learning side alone.

(2) When should we expect to have good prior knowledge of γT,A?
Although in general γT,A will be domain-specific, there are several reasons for optimism.

First, γT,A compresses all information about the data and costs into a single scalar parameter
(compare to the common mechanism-design assumption that the prior distribution of agents’
values is fully known). Second, we do not need very exact estimates of γT,A (e.g. we do not
need to know γT,A ± ε): For order-optimal regret bounds, we only need an estimate within a
constant factor of γT,A. Third, γT,A is directly proportional to K, which is a normalization
constant in our pricing distribution: If we increase K, the probability of obtaining a given data
point only decreases, and vice versa. In fact, the best choice of K is the normalization constant
so that we run out of budget precisely when the last arrival leaves. Thus, K (equivalently,
γT,A) can be estimated and adjusted online by tracking the “burn rate” (spending per unit
time) of the algorithm. In simulations, we have observed success with a simple approach of
estimating K based on the average correlation so far along with the burn rate, i.e. if the
current estimated γT,A is ˆγT,A and there are T̂ steps remaining with B̂ budget remaining to

spend, set K = ˆγT,AT̂ /B̂.

(3) What can we prove without prior knowledge of γT,A?
It turns out that, if we only have an estimate of c̄ = 1

T

∑
t

√
ct, respectively µ = 1

T

∑
t ct,

then this suffices for regret guarantees on the order of T c̄/
√
B, respectively T

√
µ/
√
B. This

“graceful degradation” will continue to be true in the main setting. The idea is that we can
follow the optimal form of the pricing strategy while choosing any normalization constant
K ≥ T

B
γT,A. It may no longer be optimal, but it will ensure that we satisfy the budget and

give guarantees depending on the magnitude of K. So all we need is an approximate estimate
of some value larger than γT,A. Both c̄ and µ are guaranteed to upper-bound on γT,A, so
both can be used to pick K while satisfying the budget.

To recap, knowledge of only a simple statistic such as the mean of the arriving costs
suffices for good learning guarantees, with better knowledge translating to better guarantees.

(4) γT,A depends on the algorithm—what are the implications?
We first note that γT,A can be upper-bounded by, for instance,

√
µ where µ is the average

of the arriving costs. So a bound containing γT,A does imply nontrivial algorithm-independent
bounds. The purpose of γT,A is to capture cases where we can do significantly better than
such bounds because the algorithm is a good fit for the problem. To see this, note that
running the FTRL algorithm on the entire data sequence (with no budget constraint) gives a

14

regret bound of β
η

+ η
∑T

t=1 ∆2
ht,ft

. The worst case has each ∆ht,ft equal to 1, producing a
√
T

regret bound. But in a case where the algorithm has a small average ∆ht,ft and the algorithm
enjoys a better regret bound, we may also hope that this improvement is reflected in γT,A.

However, one might hope for an algorithm-independent quantity that, in analogy with
VC-dimension, captures the “difficulty” of the purchasing and learning problem instance.
This leads to the question:

(4a) Can we remove the algorithm-dependence of the bound? One might hope to achieve
a bound depending on an algorithm-independent quantity that captures correlations between
data and cost. A natural candidate is γ∗T,A := 1

T

∑
t ∆h∗,ft

√
ct. In general, there are difficult

cases where one can not achieve a bound in terms of γ∗T,A. However, in nicer scenarios we
may expect γT,A to approximate γ∗T,A. For instance, suppose `(h, z) = φ(h>z) where φ is
a differentiable convex function whose gradient is 1-Lipschitz — commonly-used examples
include the squared hinge loss and the log loss. Under this condition, where again we are
using ft(·) := `(·, zt), we can show that

∆ht,ft

√
ct −∆h∗,ft

√
ct = ‖∇`(ht, zt)‖?

√
ct − ‖∇`(h∗, zt)‖?

√
ct

≤ ‖(φ′(h>t zt)− φ′(h∗>zt))zt‖?
≤ |φ(h>t zt)− φ(h∗>zt)| = |`(ht, zt)− `(h∗, zt)|.

By the regret guarantee of our mechanism when run with a good algorithm, even initialized
with very weak knowledge, this difference in losses per time step is o(1), implying that
γT,A → γ∗T,A. A deeper investigation of this phenomenon is a good candidate for future work.

4.5 Mechanisms and Results for Regret Minimization

In the previous section, we presented our results for the easier “at-cost” variant. We now
apply the approach derived for that setting to the main regret minimization problem.

For this problem, unlike in the “at-cost” variant, we cannot in general solve for the form
of the optimal pricing strategy. This is intuitively because, when we must pay the price we
post, the optimal strategy depends on ct. But the algorithm cannot condition the purchasing
decision directly on ct, as this is private information of the arriving agent.

We propose simply drawing posted prices according to the optimal strategy derived for
the at-cost setting, namely,

Pr[πt(f) ≥ c] = min

{
1 ,

∆ht,f

K
√
c

}
, (4)

but with a different choice of normalization constant K. We note that there is a pricing
distribution that accomplishes this:

Observation 1. For any K and ∆ht,f , there exists a pricing distribution on πt(f) that
satisfies Equation 4. Letting c∗ = ∆2

ht,f
/K2, the CDF is given by F (π) = Pr[πt(f) ≤ π] = 0

if π ≤ c∗, F (π) = 1−∆ht,f/K
√
π if c∗ ≤ π ≤ 1, and F (π) = 1 if π > 1.

15

0 c∗ 1
price π

0

1/c∗

P
D

F

(a) Probability density function of the pricing dis-
tribution. The price π(f) = 1 with probability
min {1,∆ht,f/K}. On the interval (c∗, 1) the den-
sity function is x 7→ ∆ht,f/2Kx

3/2.

0 c∗ 1
price π

0

1−∆ht,f/K

1

C
D

F

(b) Cumulative distribution function of the pricing
distribution. Equal to zero for π ≤ c∗, then equal to
1−∆ht,f/K

√
π on (c∗, 1), then equal to 1 at cost 1.

Figure 2: The pricing distribution. Illustrates the distribution from which we draw our posted
prices at time t, for a fixed arrival f . The quantity ∆ht,f captures the “benefit” from obtaining f .
K is a normalization parameter. The distribution’s support has a lowest price c∗, which has the
form c∗ = ∆2

ht,ft
/K2.

The pricing distribution is given in Figure 2. This strategy gives Mechanism 3.
As in the known-costs case, our regret bounds depend upon the prior knowledge of the

algorithm. It will turn out to be helpful to have prior knowledge about both γT,A and the
following parameter, which can be interpreted as γT,A with all costs ct = 1:

γmax
T,A = E

1

T

∑
t

∆ht,ft .

Theorem 4.2. If Mechanism 3 is run with prior knowledge of γT,A and of γmax
T,A (up to a

constant factor), then it can choose K and η to satisfy the expected budget constraint and
obtain a regret bound of

O

(
max

{
T√
B
g ,
√
T

})
,

where g =
√
γT,A · γmax

T,A (by setting K = T
B
γmax
T,A). Similarly, knowledge only of γT,A, respec-

tively c̄ = 1
T

∑
t

√
ct, respectively µ = 1

T

∑
t ct suffices for the regret bound with g =

√
γT,A,

respectively g =
√
c̄, respectively g = µ1/4.

We can observe a quantifiable “price of strategic behavior” in the difference between the
regret guarantees of Theorems 4.2 (this setting) and Theorem 4.1 (the “at-cost”) setting:

T√
B

√
γT,A · γmax

T,A vs
T√
B
γT,A.

Note that γmax
T,A ≥ γT,A, and they approach equality as all costs approach the upper bound 1,

but become very different as the average cost µ→ 0 while the maximum cost remains fixed
at 1.

16

Mechanism 3: Mechanism for no-regret data-purchasing problem.

Input: parameters K, η, access to online learning algorithm (OLA)
set OLA parameter η;
for t = 1, . . . , T do

post hypothesis ht ← OLA;

post prices πt(f) drawn randomly such that Pr[πt(f) ≥ c] = min
{

1 ,
∆ht,f

K
√
c

}
;

if we receive (ct, ft) then
let qt = Prπt [πt(ft) ≥ ct];

let importance-weighted loss function f̂t(·) = ft(·)
qt

;

send f̂t → OLA;

else
send 0 function → OLA;

end

end

Comparison to lower bound. Our lower-bound for the data purchasing regret minimiza-

tion problem is Ω
(

T√
B
γT,A

)
(follows from the lower bound for the at-cost setting, Theorem

6.2). So the difference in bounds discussed above, a factor of
√
γmax
T,A versus

√
γT,A, is the only

gap between our upper and lower bounds for the general data purchasing no regret problem.
The most immediate open problem in this paper is close this gap. Intuitively, the lower

bound does not take advantage of “strategic behavior” in that a posted-price mechanism may
often have to pay significantly more than the data actually costs, meaning that it obtains less
data in the long run. Meanwhile, it may be possible to improve on our upper-bound strategy
by drawing prices from a different distribution.

5 Results for Statistical Learning

In this section, we give the final mechanism, Mechanism 4, for the data purchasing statistical
learning problem. The idea is to simply run the regret-minimization Mechanism 3 on the
arriving agents. At each stage, Mechanism 3 posts a hypothesis ht. We then aggregate these
hypothesis by averaging to obtain our final prediction.

Mechanism 4: Mechanism for statistical learning data-purchasing problem.

Input: parameters K, η, access to OLA
identify each data point z with the loss function f(·) = `(·, z);
run Mechanism 3 with parameters η,K and access to OLA;
let h1, . . . , hT be the resulting hypotheses;
output h̄ = 1

T

∑
t ht;

17

Theorem 5.1. Mechanism 4 guarantees spending at most B in expectation and

EL(h̄) ≤ L(h∗) +O
(

max
{

g√
B
,
√

1
T

})
,

where g =
√
γT,A · γmax

T,A , assuming that γT,A and γmax
T,A are known in advance up to a constant

factor.
If one assumes approximate knowledge respectively of γT,A, of c̄ = 1

T

∑
t

√
ct, or of

µ = 1
T

∑
t ct, then the guarantee holds with respectively g =

√
γT,A, g =

√
c̄, or g = µ1/4.

Proof. By Theorem 4.2, Mechanism 3 guarantees an expected regret ofO
(

max
{

T√
B
g ,
√
T
})

when run with the specified prior knowledge for the specified values of g. Therefore, the
online-to-batch conversion of Lemma 3.2 proves the theorem.

The statement of Main Result 1 is the special case where only γT,A is known and g =
√
γT,A.

A detailed discussion of γT,A is in Section 4.4.

6 Deriving Pricing and the “at-cost” Variant

In Section 4.3, we stated our results for the easier at-cost variant of the regret minimization
with purchased data problem. This included the posted-price distribution that we use for our
main results. In this section, we show how these results and this distribution are derived.
The “at-cost” variant is formally defined in exactly the same way as the main setting, except
that when πt ≥ ct and the transaction occurs, the mechanism only pays the cost ct rather
than the posted price πt.

We first show how our posted-price strategy is derived as the optimal solution to the
problem of minimizing regret subject to the budget constraint. The resulting upper bounds
for the “at-cost” variant were given in Theorem 4.1. Then, we give some fundamental lower
bounds on regret, showing that in general our upper bounds cannot be improved upon here.
These lower bounds also hold for the main no-regret data purchasing problem, where there is
a small gap to the upper bounds.

6.1 Deriving an Optimal Pricing Strategy

We begin by asking what seems to be an even easier question. Suppose that for every pair
(ct, ft) that arrives, we could first “see” (ct, ft), then choose a probability with which to obtain
(ct, ft) and pay ct. What would be the optimal probability with which to take this data?

Lemma 6.1. To minimize the regret bound of Lemma 3.1, the optimal choice of sampling
probability is of the form qt = min {1 , ∆ht,ft/K

∗√ct} . The normalization factor K∗ ≈ T
B
γT,A.

The proof follows by formulating the convex programming problem of minimizing the
regret bound of Lemma 3.1 subject to an expected budget constraint. It also gives the form of

18

the normalization constant K∗, which depends on the input data sequence and the hypothesis
sequence.

The key insight is now that we can actually achieve the sampling probabilities dictated by
Lemma 6.1 using a randomized posted-price mechanism. Notice that these optimal sampling
probabilities are decreasing in ct. In general, when drawing a price from some distribution,
the probability that it exceeds c will be decreasing in c. So it only remains to find the
posted-price distribution that actually induces the sampling probabilities that we want for all
c simultaneously. That is, by randomly drawing posted prices according to our distribution,
we choose to purchase (ct, ft) with exactly the probability qt stated in Lemma 6.1, for any
possible value of ct and without knowing (ct, ft).

Thus, our final mechanism for the at-cost variant is to simply apply Mechanism 3, but
only pay the cost of the arrival rather than the price we posted. We set K = T

B
γT,A. Note

that this choice of normalization constant K is different from the main setting because we
on average pay less in the at-cost setting; this leads to the difference in the regret bounds.
Our main bound for the at-cost variant was given in Theorem 4.1. An open problem for this
setting is whether one can obtain the same regret bounds without any prior knowledge at all
about the arriving costs and data.

6.2 Lower Bounds for Regret Minimization

Here, we prove lower bounds analogous to the classic regret lower bound, which states that
no algorithm can guarantee to do better than O(

√
T). These lower bounds will hold even in

the “at-cost” setting, where they match our upper bounds. An open problem is to obtain a
larger-order lower bound for the main setting where the mechanism pays its posted price.
This would show a separation between the at-cost variant and the main problem.

First, we give what might be considered a “sample complexity” lower bound for no-regret
learning: It specializes our setting to the case where all costs are equal to one (and this
is known to the algorithm in advance), so the question is what regret is achievable by an
algorithm that observes B of the T arrivals.

Theorem 6.1. Suppose all costs ct = 1. No algorithm for the at-cost online data-purchasing
problem has regret better than O(T/

√
B); that is, for every algorithm, there exists an input

sequence on which its regret is Ω(T/
√
B).

Proof Idea: We will have two coins, with probabilities 1
2
± ε of coming up heads. We will

take one of the coins and provide T i.i.d. flips as the input sequence. The possible hypotheses
for the algorithm are {heads, tails} and the loss is zero if the hypothesis matches the flip and
one otherwise. The cost of every data point will be one.

The idea is that an algorithm with regret much smaller than Tε must usually predict
heads if it is the heads-biased coin and usually predict tails if it is the tails-biased coin.
Thus, it can be used to distinguish these cases. However, there is a lower bound of Ω

(
1
ε2

)
samples required to distinguish the coins, and the algorithm only has enough budget to gain
information about O(B) of the samples. Setting ε = 1/

√
B gives the regret bound.

19

We next extend this idea to the case with heterogeneous costs. The idea is very simple:
Begin with the problem from the label-complexity lower bound, and introduce “useless” data
points and heterogeneous costs. The worst or “hardest” case for a given average cost is
when cost is perfectly correlated with benefit, so all and only the “useful” data points are
expensive.

Theorem 6.2. No algorithm for the non-strategic online data-purchasing problem has expected

regret better than O
(
γT,AT/

√
B
)

; that is, for every γT,A, for every algorithm, there exists

a sequence with parameter γT,A on which its regret is Ω
(
γT,AT/

√
B
)

. Similarly, for c̄ =

1
T

∑
t

√
c and µ = 1

T

∑
t ct, we have the lower bounds Ω

(
T c̄/
√
B
)

and Ω
(
T
√
µ/
√
B
)

.

7 Examples and Experiments

In this section, we give some examples of the performance of our mechanisms on data. We
use a binary classification problem with feature vector x ∈ Rd and label y ∈ {−1, 1}. The
dataset is described in Figure 3.

(a) Visualizing the classification problem
without costs.

(b) A brighter green background corre-
sponds to a higher-cost data point.

Figure 3: Dataset. Data points are images of handwritten digits, each data point consisting of a
feature vector x of grayscale pixels and a label y, the digit it depicts. We use the MNIST handwritten
digit dataset (http://yann.lecun.com/exdb/mnist/). The algorithm is asked to distinguish between
two “categories” of digits, where “positive” examples are digits 9 and 8 and “negative” examples
are 1 and 4 (all other digits are not used). The number of training examples is T = 8503. This task
allows us to adjust the correlations by drawing costs differently for different digits.

The hypothesis is a hyperplane classifier, i.e. vector w where the example is classified as
positive if w · x ≥ 0 and negative otherwise; the risk is therefore the error rate (fraction of
examples misclassified). For the implementation of the online gradient descent algorithm, we
use a “convexified” loss function, the well-known hinge loss: `(w, (x, y)) = max{0, 1−y(w ·x)}
where y ∈ {−1, 1}.

In our simulations, we give each mechanism access to the exact same implementation of
the Online Gradient Descent algorithm, including the same parameter η chosen to be 0.1/c

20

0 500 1000 1500 2000

Budget
0.00

0.05

0.10

0.15

0.20

0.25

0.30

ris
k
L(
h̄

)

Naive
Ours
Baseline

(a) A comparison of mechanisms. “Naive” offers a
maximum price of 1 to every arrival until out of
budget. “Ours” is Mechanism 4, with K initialized to
0 and then adjusted online according to the estimated
average γT,A on the data so far. “Baseline” obtains
every data point (has no budget constraint). Costs
are distributed uniform (0, 1) independently. Each
datapoint is an average of 4000 trials, with standard
error of at most 0.0002.

0 50 100 150 200 250 300 350

Budget

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ris
k
L(
h̄

)

Naive
Ours (larger γ)
Ours (smaller γ)
Baseline

(b) An illustration of the role of cost-data correlations.
The marginal distribution of costs is 1 with probability
0.2 and free otherwise, but the correlation of cost and
data changes. The performance of Naive and the
Baseline do not change with correlations. The larger-
γT,A case has high-cost points consisting of only 4s
and 9s, while γT,A is smaller when costs and data are
independent. Each datapoint is an average of 2000
trials, with standard error of at most 0.0004.

Figure 4: Examples of mechanism performance.

where c is the average norm of the data feature vectors. We train on a randomly chosen half
of the dataset and test on the other half.

The “baseline” mechanism has no budget cap and purchases every data point. The “naive”
mechanism offers a maximum price of 1 for every data point until out of budget. “Ours” is
an implementation of Mechanism 4. We do not use any prior knowledge of the costs at all:
We initialize K = 0 and then adjust K online by estimating γT,A from the data purchased so
far. (For a symmetric comparison, we do not adjust η accordingly; instead we leave it at the
same value as used with the other mechanisms.) The examples are shown in Figure 4.

8 Discussion and Conclusion

8.1 Agent-Mechanism Interaction Model

Our model of interaction, while perhaps the simplest initial starting point, involves some
subtleties that may be interesting to address in the future. A key property is that we need
to obtain both an arriving agent’s data point z and her cost c. The reason is that the cost
is used to importance-weight the data based on the probability of picking a price larger
than that cost. (The cost report is also required by [16] for the same reason.) As discussed
in Section 2, a näıve implementation of this model is incentive-compatible but not strictly
so. Exploring implementations, such as the trusted third party approach mentioned, is an
interesting direction. For instance, in a strictly truthful implementation, the arriving agent
can cryptographically commit to a bid, e.g. by submitting a cryptographic hash of her cost.

21

Then the prices are posted by the mechanism. If the agent accepts, she reveals her data and
her cost, verifying that the cost hashes to her commitment. It is strictly truthful for the
agent to commit to her true cost.

This paper focused on the learning-theoretic aspects of the problem, but exploring the
model further or proposing alternatives is also of interest for future work.

8.2 Conclusions and Directions

The contribution of this work was to propose an active scheme for learning and pricing data
as it arrives online, held by strategic agents. The active approach allows learning from past
data and selectively pricing future data. Our mechanisms interface with existing no-regret
algorithms in an essentially black-box fashion (although the proof depends on the specific
class of algorithms). The analysis relies on showing that they have good guarantees in a
model of no-regret learning with purchased data. This no-regret setting may be of interest in
future work, to either achieve good guarantees with no foreknowledge at all other than the
maximum cost, or to propose variants on the model.

The no-regret analysis means our mechanisms are robust to adversarial input. But in
nicer settings, one might hope to improve on the guarantees. One direction is to assume that
costs are drawn according to a known marginal distribution (although the correlation with
the data is unknown). A combination of our approach and the posted-price distributions of
Roth and Schoenebeck [16] may be fruitful here.

Broadly, the problem of purchasing data for learning has many potential models and
directions for study. One motivating setting, closer to crowdsourcing, is an active problem
where data points consist of pairs (example, label) and the mechanism can offer a price
for anyone who obtains the label of a given example. In an online arrival scheme, such a
mechanism could build on the importance-weighted active learning paradigm [4].

Acknowledgments

The authors thank Mike Ruberry for discussion and formulation of the problem. Thanks to
the organizers and participants of the 2014 Indo-US Lectures Week in Machine Learning,
Game Theory and Optimization, Bangalore.

We thank the support of the National Science Foundation under awards CCF-1301976
and IIS-1421391. Any opinions, findings, conclusions, or recommendations expressed here are
those of the authors alone.

22

References

[1] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations.
Cambridge University Press, 2009.

[2] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning.
In Proceedings of the 23rd International Conference on Machine Learning (ICML-06),
2006.

[3] Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman Vaughan. The true sample
complexity of active learning. Machine learning, 80(2-3):111–139, 2010.

[4] Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. Importance weighted active
learning. In 26th International Conference on Machine Learning (ICML-09), 2009.

[5] Alina Beygelzimer, Daniel Hsu, John Langford, and Tong Zhang. Agnostic active learning
without constraints. In Advances in Neural Information Processing Systems (NIPS-10),
2010.

[6] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. 2006.

[7] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of
on-line learning algorithms. Information Theory, IEEE Transactions on, 50(9):2050–2057,
2004.

[8] Rachel Cummings, Katrina Ligett, Aaron Roth, Zhiwei Steven Wu, and Juba Ziani.
Accuracy for sale: Aggregating data with a variance constraint. In Proceedings of the
2015 Conference on Innovations in Theoretical Computer Science, pages 317–324. ACM,
2015.

[9] Ofer Dekel, Felix Fischer, and Ariel D Procaccia. Incentive compatible regression learning.
In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 884–893. Society for Industrial and Applied Mathematics, 2008.

[10] Arpita Ghosh and Aaron Roth. Selling privacy at auction. In Proceedings of the 12th
ACM Conference on Electronic Commerce (EC-11), 2011.

[11] Arpita Ghosh, Katrina Ligett, Aaron Roth, and Grant Schoenebeck. Buying private
data without verification. In Proceedings of the fifteenth ACM conference on Economics
and computation, pages 931–948. ACM, 2014.

[12] Steve Hanneke. Theoretical foundations of active learning. ProQuest, 2009.

[13] Thibaut Horel, Stratis Ioannidis, and Muthu Muthukrishnan. Budget feasible mechanisms
for experimental design. In Latin American Theoretical Informatics (LATIN-14), 2014.

23

[14] Katrina Ligett and Aaron Roth. Take it or leave it: Running a survey when privacy
comes at a cost. In The 8th Workshop on Internet and Network Economics (WINE-12),
2012.

[15] Reshef Meir, Ariel D Procaccia, and Jeffrey S Rosenschein. Algorithms for strategyproof
classification. Artificial Intelligence, 186:123–156, 2012.

[16] Aaron Roth and Grant Schoenebeck. Conducting truthful surveys, cheaply. In 13th
Conference on Electronic Commerce (EC-12), 2012.

[17] Burr Settles. From theories to queries: Active learning in practice. Active Learning and
Experimental Design W, pages 1–18, 2011.

[18] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and
Trends in Machine Learning, 2012.

[19] Vladimir Vapnik. The nature of statistical learning theory. Springer Science & Business
Media, 2000.

[20] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. 2003.

24

Appendix

A Tools for Converting Regret-Minimizing Algorithms

Lemma A.1 (Lemma 3.1). Assume we implement Algorithm 2 with nonzero sampling
probabilities q1, . . . , qT . Assume the underlying OLA is FTRL (Algorithm 1) with regularizer
G : H → R that is strongly convex with respect to ‖ · ‖. Then the expected regret, with respect
to the loss sequence f1, . . . , fT , is no more than

R(T) =
β

η
+ 2η E

[∑T
t=1

∆2
ht,ft

qt

]
,

where β is a constant depending on H and G, η is a parameter of the algorithm, and the
expectation is over any randomness in the choices of ht and qt.

Proof. Let h∗ = infh∈H
∑

t ft(h). We wish to prove that

E
{ht,qt}

∑
t

ft(ht) ≤
∑
t

ft(h
∗) + R

where {ht, qt} is shorthand for {h1, q1, . . . , hT , qT} and

R =
β

η
+ 2η E

{ht,qt}

[∑
t

∆2
ht,ft

qt

]
.

As a prelude, note that in general these expectations could be quite tricky to deal with. We
consider a fixed input sequence f1, . . . , fT , but each random variable qt, ht depends on the
prior sequence of variables and outcomes. However, we will see that the nice feature of the
importance-weighting technique of Algorithm 2 helps make this problem tractable.

Some preliminaries: Define the importance-weighted loss function at time t to be the
random variable

f̂t(h) =

{
ft(h)
qt

obtain ft

0 o.w.

Let 1t be the indicator random variable equal to 1 if we obtain ft, which occurs with
probability qt, and equal to 0 otherwise. Then notice that for any hypothesis h,

f̂t(h) = 1t
ft(h)

qt

=⇒ E
1t

[
f̂t(h) | qt

]
= ft(h). (5)

To be clear, the expectation is over the random outcome whether or not we obtain datapoint
ft conditioned on the value of qt; and conditioned on the value of qt, by definition we obtain
datapoint ft with probability qt and obtain the 0 function otherwise.

25

Now we proceed with the proof. For any method of choosing q1, . . . , qT and any resulting
outcomes of 1t, Algorithm 2 reduces to running the Follow-the-Regularized-Leader algorithm
on the sequence of convex loss functions f̂1, . . . , f̂T . Thus, by the regret bound proof for
FTRL (Lemma A.2), FTRL guarantees that for every fixed “reference hypothesis” h ∈ H:∑

t

f̂t(ht) ≤
∑
t

f̂t(h) + R̂

where

R̂ =
β

η
+ 2η

∑
t

∆2
ht,f̂t

=
β

η
+ 2η

∑
t

1t

∆2
ht,ft

q2
t

.

(Recall that ∆h,f = ‖∇f(h)‖?.) Now we will take the expectation of both sides, separating
out the expectation over the choice of qt, over ht, and over 1t:∑

t

E
ht,qt

[
E
1t

[
f̂t(ht) | ht, qt

]]
≤
∑
t

E
ht,qt

[
E
1t

[
f̂t(h) | ht, qt

]]
+ E

{ht,qt}

[
E
{1t}

[
R̂ | {ht, qt}

]]
.

Use the importance-weighting observation above (5):

E
{ht,qt}

∑
t

ft(ht) ≤
∑
t

ft(h) + R

where

R =
β

η
+ 2η E

{ht,qt}

[∑
t

∆2
ht,ft

qt

]
.

In particular, because this holds for every reference hypothesis h, it holds for h∗.

Lemma A.2. Let G be 1-strongly convex with respect to some norm ‖·‖. The regret of Follow-
The-Regularized-Leader algorithm with regularizer G and convex loss functions f1, . . . , fT can
be bounded by

β

η
+ 2η

∑
t

∆2
ht,ft ,

where β is the upper bound of G(·).

Proof. We reproduce the standard proof. First, the regret of Follow-The-Regularized-Leader
can be bounded by

1

η
(R(hT)−R(h1)) +

T∑
t=1

(`(ht, ft)− `(ht+1, ft)).

26

Below we show that `(ht, ft)− `(ht+1, ft) ≤ 2η‖∇`(ht, ft)‖2
?.

Define Φt(h) = R(h)/η +
∑t

i=1 `(h, fi). By definition, we know ht = arg minh Φt−1(h).
Since `(·) is convex and R(·) is 1-strongly convex, we know Φt(·) is (1/η)-strongly convex for
all t. Therefore, since ht+1 minimizes Φt, by definition of strong convex, we get

Φt(ht) ≥ Φt(ht+1) +
1

2η
‖ht − ht+1‖2

After simple manipulations, we get

‖ht − ht+1‖2 ≤ 2η(Φt(ht)− Φt(ht+1))

= 2η(Φt−1(ht)− Φt−1(ht+1)) + 2η(`(ht, ft)− `(ht+1, ft))

≤ 2η(`(ht, ft)− `(ht+1, ft))

The last inequality comes from the fact that ht is the minimizer of Φt−1.
Since `(·) is convex, we have

`(ht, ft)− `(ht+1, ft) ≤ (ht − ht+1)∇`(ht, ft)
≤ ‖ht − ht+1‖‖∇`(ht, ft)‖?

The last inequality comes from the generalized Cauchy-Schwartz inequality.
Combining the above two inequalities together, we get

`(ht, ft)− `(ht+1, ft) ≤ ‖∇`(ht, ft)‖?
√

2η(`(ht, ft)− `(ht+1, ft))

By squaring and shifting sides,

`(ht, ft)− `(ht+1, ft) ≤ 2η‖∇`(ht, ft)‖2
?

The proof is completed by inserting the inequality into the regret bound.

B No regret “at-cost” setting

B.1 At-cost upper bounds

Lemma B.1 (Lemma 6.1). To minimize the regret bound of Lemma 3.1, the optimal choice
of sampling probability is of the form qt = min {1 , ∆ht,ft/K

∗√ct} . The normalization factor
K∗ ≈ T

B
γT,A.

Proof. Recall that the regret bound of Lemma 3.1 is

β

η
+ 2η E

∑
t

∆2
ht,ft

qt

where qt is the probability with which we choose to purchase arrival (ct, ft). We will solve for
the choices of qt for each t.

27

Since β is a constant and η a parameter to be tuned later, our problem is to minimize the
summation term in this regret bound. This yields the following optimization problem:

min
qt

∑
t

∆2
ht,ft

qt

s.t.
∑
t

qt · ct ≤ B

qt ≤ 1 (∀t).

The first constraint is the expected budget constraint, as we take each point (ct, ft) with
probability qt and pay ct if we do. The second constrains each qt to be a probability.

To be completely formal, our goal is to minimize the expectation of the summation in
the objective, as each ht and qt are random variables (they depend on the previous steps).
However, our approach will be to optimize this objective pointwise: For every prior sequence
h1, . . . , ht and q1, . . . , qt−1, we pick the optimal qt. Therefore in the proof we will elide the
expectation operators and argument. Similarly, since the budget constraint holds for all
choices of qt that we make, we elide the expectation over the randomness in qt.

The Lagrangian of this problem is

L(λ, {qt, αt}) =
∑
t

∆2
ht,ft

qt
+ λ

(∑
t

qt · ct − B

)
+
∑
t

αt (qt − 1)

with each λ, qt, αt ≥ 0. At optimum,

0 =
∂L

∂qt

= −
∆2
ht,ft

q2
t

+ λct + αt,

implying that

qt =
∆ht,ft√
λct + αt

.

By complementary slackness, αt(qt − 1) = 0 at optimum, so consider two cases. If αt > 0,
then qt = 1. On the other hand, if qt < 1, then αt = 0. Thus we may more simply write

qt = min

{
1 ,

∆ht,ft√
λct

}
.

Therefore, our normalization constant K∗ =
√
λ. To solve for λ, by complementary slackness,

λ (
∑

t qt · ct − B) = 0. If λ = 0, then the form of qt and prior discussion implies that all
qt = 1, and we have

∑
t ct ≤ B; in other words, we have enough budget to purchase every

point. Otherwise, the budget constraint is tight and
∑

t qt · ct = B, so∑
t

ct ·min

{
1 ,

∆ht,ft√
λct

}
= B.

28

Let us call those points that are taken with provability qt = 1 “valuable” and the others “less
valuable”, and let S be the set of less valuable points, S = {t : qt < 1}. Then we can rewrite
as ∑

t6∈S

ct +
∑
t∈S

∆ht,ft

√
ct√

λ
= B,

so

K∗ =
√
λ =

1

B −∑t6∈S ct

∑
t∈S

∆ht,ft

√
ct.

This completes the proof. Let us make several final comments and observations, however.
First, if the budget is small relative to the amount of data, then with Lipschitz loss functions,
no data points will be taken with probability qt = 1, so S will equal all of T . In this case,
the expectation of K∗ is exactly T

B
γT,A, which is the meaning of our informal statement

K∗ ≈ T
B
γT,A.

Second, this K∗ is optimal “pointwise”, in that it includes advance knowledge of which
data points will be taken and which hypotheses will be posted. However, notice that, to
satisfy the budget constraint, it suffices to take the expectation and choose a normalization
constant

K = E

[
1

B −∑t6∈S ct

∑
t∈S

∆ht,ft

√
ct

]
.

Third, as noted above, the extreme case is when all qt < 1 and in this case the above
K = T

B
γT,A exactly. While this will not be “as optimal” for the specific random outcomes of

this sequence, it will suffice to prove good upper bounds on regret. Furthermore, it holds
that any choice of K ≥ T

B
γT,A satisfies the expected budget constraint; and (by setting η as

a function of K) suffices to prove an upper bound on regret.

Theorem B.1 (Theorem 4.1). There is a mechanism for the “at-cost” problem of data
purchasing for regret minimization that interfaces with FTRL and guarantees to meet the
expected budget constraint, where for a parameter γT,A ∈ [0, 1] (Definition 4.1),

1. The expected regret is bounded by O
(

max
{

T√
B
γT,A ,

√
T
})

.

2. This is optimal in that no mechanism can improve beyond constant factors.

3. The pricing strategy is to choose a parameter K = O
(
T
B
γT,A

)
and draw πt(f) randomly

according to a distribution such that Pr[πt(f) ≥ c] = min
{

1 ,
∆ht,f

K
√
c

}
.

The only prior knowledge required is an estimate of γT,A up to a constant factor.

Proof. The lower bound proof appears in Theorem 6.2.
For the upper bound, we will give a more careful argument first, obtaining a more subtle

bound capturing the two extremes in the regret bound as well as the spectrum in between.
We will then simplify to get the theorem statement.

29

First, note as pointed out in the proof of Lemma 6.1 that choosing any K ≥ T
B
γT,A ≥ E[K∗]

satisfies the expected budget constraint, as each probability of purchase qt only decreases.
We now just need to show that if we know γT,A to within a constant factor larger, i.e. set
K = O

(
T
B
γT,A

)
and η appropriately, then we achieve the regret bound.

By Lemma 3.1, for any choices of qt and the learning parameter η, the regret bound
satisfies

Regret ≤ β

η
+ 2η E

∑
t

∆2
ht,ft

qt
(6)

where β is a constant. Our strategy is to set

qt = min

{
1 ,

∆ht,ft

K
√
ct

}
.

Recall from the proof of Lemma 6.1 that in the optimal solution there were in general
“valuable” points for which the probability of purchase was qt = 1 and “less-valuable” points
where qt < 1. We had S = {t : qt < 1}. Thus the summation term in the regret bound
becomes

E
∑
t6∈S

∆2
ht,ft + E

∑
t∈S

∆ht,ft

√
ctK. (7)

Before we prove the theorem statement, let us show how to achieve the more subtle bound.
So for the sake of this argument, let γT,A(S) = 1

|S| E
∑

t∈S ∆ht,ft

√
ct. Let KS approximate the

more precise form derived in the proof of Lemma 6.1; that is,

KS = O

(
|S|

B −∑t6∈S ct
γT,A(S)

)
.

Then the summation term of the regret bound (Expression 7) is at most a constant times∑
t6∈S

∆2
ht,ft +

|S|2
B −∑t6∈S ct

γT,A(S)2

≤ T − |S| + +
|S|2

B −∑t6∈S ct
γT,A(S)2 (8)

as each ∆ht,ft ≤ 1. It remains to select the parameter η to use for the learning algorithm and
plug into the original regret bound, Expression 6. If the algorithm has an accurate estimate
of KS, |S|, and

∑
t6∈S ct, then it can set η equal to the square root of one over Expression

8. (Note this may be achievable by tuning η online as well, perhaps even with a theoretical
guarantee.) In this case, the regret bound is

Regret ≤ O

(√
T − |S| +

|S|2
B −∑t6∈S ct

γT,A(S)2

)
.

Note that as B → 0, |S| → T , and as B →∑
t ct, |S| → 0.

30

Now let us actually prove the Theorem as stated. Let γT,A =
∑

t ∆ht,ft

√
ct and let

K = T
B
γT,A. The summation term in the regret bound, Expression 7, is upper-bounded by

T + (TγT,A)K

= T +
T 2

B
γ2
T,A

using that TγT,A ≥
∑

t∈S ∆ht,ft

√
ct since it is a summation over more (positive) terms. Now

by Expression 7,

Regret ≤ β

η
+ 2η

(
T +

T 2

B
γ2
T,A

)
.

Setting

η = Θ

(
1/max

{√
T ,

T√
B
γT,A

})
gives a regret bound of the order of 1/η.

B.2 At-cost lower bounds

Theorem B.2 (Theorem 6.1). Suppose all costs ct = 1. No algorithm for the at-cost online
data-purchasing problem has regret better than O(T/

√
B); that is, for every algorithm, there

exists an input sequence on which its regret is Ω(T/
√
B).

Proof. Consider two possible input distributions: i.i.d. flips of a coin that has probability
1
2

+ ε of heads, or of one with probability 1
2
− ε.

It will suffice to prove the following:
Claim 1: If there is an algorithm with budget B and expected regret at most Tε/6, then

there is an algorithm to distinguish whether a coin is ε-heads-biased or ε-tails-biased with
probability at least 2/3 using 18B coin flips.

This claim implies the theorem because it is known that distinguishing these coins requires

Ω (1/ε2) coin flips; in other words, it implies that ε ≥ Ω
(

1/
√
B
)

, so the algorithm’s expected

regret must be Ω
(
T/
√
B
)

.

We prove Claim 1 by proving the following two claims:
Claim 2: If an algorithm’s expected regret is at most Tε/6, then under the ε-heads-biased

coin, with probability at least 5/6, it outputs the heads hypothesis more times than the tails
hypothesis. (And symmetrically under the tails-biased coin.)

Claim 3: An algorithm in this coin setting with budget B can, with probability at least
5/6, be simulated for T rounds using at most 18B coin flips – in the sense that its behavior
is identical to its behavior on a full sequence of T coin flips.

Proof of Claim 1 from 2 and 3. We will take an algorithm with budget B and regret Tε
and use it to distinguish the coin using 18B coin flips: Using Claim 3, we can simulate the
algorithm’s behavior for all T rounds using at most 18B coin flips, except with probability
1/6. Then, if the algorithm used the hypothesis heads more times than tails, we guess that

31

the coin is heads-biased, and symmetrically. By Claim 2, our guess is correct except with
probability 1/6. By a union bound, therefore, this procedure correctly distinguishes the coin
except with probability 1/3, proving Claim 1.

Proof of Claim 2. Suppose the coin being flipped is the heads-biased coin; everything that
follows will hold symmetrically for the tails-biased coin. Now, suppose that the algorithm
outputs the hypothesis tails for M of the T rounds. Since each round is an independent coin
toss, if the hypothesis is tails then its expected loss on that round is 1

2
+ ε; if heads, 1

2
− ε.

This gives an expected loss of M
(

1
2

+ ε
)

+ (T −M)
(

1
2
− ε
)

= T
2

+ (2M − T)ε.
Meanwhile, the expected loss of the optimal hypothesis is at most T

(
1
2
− ε
)
, since this is

the expected loss of the heads hypothesis. Therefore, the algorithm’s expected regret, if it
outputs the hypothesis tails M times on average, is at least

T

2
+ (2EM − T)ε− T

(
1

2
− ε
)

= 2EMε.

If the algorithm’s regret is at most Tε/6, then this implies that 2EMε ≤ Tε/6, or
EM ≤ T/12. Thus by Markov’s inequality, the probability that half or more of the
hypotheses are tails is bounded by

Pr[M ≥ T/2] ≤ EM
T/2

≤ 1/6.

.
Proof of Claim 3. Here, we assume that ε < 1/6, or B is larger than a (relatively small)

constant.
On each data point, there are four possible menus: whether to buy or not to buy if

the point is a heads or is a tails.3 If the menu is (don’t buy, don’t buy), then no coin flip
is needed (the behavior of the algorithm is identical whether the coin is actually flipped
or not). Otherwise, the coin must be flipped, but the algorithm buys the data point with
probability at least 1

2
− ε ≥ 1

3
(the lowest probability of the remaining three menus). Thus

the expected number of flips needed before the budget is exhausted is at most 3B, and by
Markov’s inequality, the probability that it exceeds 18B is at most 1/6.

Theorem B.3 (Theorem 6.2). No algorithm for the non-strategic online data-purchasing

problem has expected regret better than O
(
γT,AT/

√
B
)

; that is, for every γT,A, for every

algorithm, there exists a sequence with parameter γT,A on which its regret is Ω
(
γT,AT/

√
B
)

.

Similarly, for c̄ = 1
T

∑
t

√
c and µ = 1

T

∑
t ct, we have the lower bounds Ω

(
T c̄/
√
B
)

and

Ω
(
T
√
µ/
√
B
)

.

3The algorithm may make this a randomized menu, but we can simply consider the outcome of that
random menu.

32

Proof. We reduce to the previous theorem. Consider the following distribution on input
sequences. There are three possible data points: heads, tails, and “no coin”. There are still
two hypotheses, heads and tails. Both have loss 1 on the “no coin” data point.

Now fix any γT,A ∈ [0, 1]. We will first send (1− γT,A)T data points, all of which are “no
coin”. The loss of either hypothesis on all of these points is 1, and the cost of these points is
zero. Then, we will choose either the ε-heads-biased or ε-tails-biased coin, with ε = 1/

√
B,

and send T ′ = γT,AT coin flips, just as in the previous proof.
Because the first (1−γT,A)T points are irrelevant to the regret, the regret of any algorithm

is simply its regret on these final T ′ data points, which by the previous proof is at least on
the order of T ′ε = T ′/

√
B = γT,AT/

√
B.

Now to check that the parameter γT,A chosen above really is the γT,A value of the
data sequence, note that the convexified hypothesis space for this problem is the space of
distributions p ∈ R2 on {heads, tails}, with loss 1−p·(1, 0) if the coin is heads or 1−p·(0, 1) if
the coin is tails. The gradient of the loss on either point for all p is (1, 0) or (0, 1) respectively,
and both have norm 1. So ∆ht,ft = 1 for all “heads” and “tails” data points. Thus we have
that 1

T

∑
t ∆ht,ft

√
ct = T ′

T
= γT,A.

Finally, noting that γT,A = c̄ in this case gives the bound containing c̄. For the lower
bound with µ, take the exact construction in Theorem 6.1 and let each point have ct = µ
instead of ct = 1.

C No regret — main setting

Theorem C.1 (Theorem 4.2). If Mechanism 3 is run with prior knowledge of γT,A and of
γmax
T,A (up to a constant factor), then it can choose K and η to satisfy the expected budget

constraint and obtain a regret bound of

O

(
max

{
T√
B
g ,
√
T

})
,

where g =
√
γT,A · γmax

T,A (by setting K = T
B
γmax
T,A). Similarly, knowledge only of γT,A, respec-

tively c̄ = 1
T

∑
t

√
ct, respectively µ = 1

T

∑
t ct suffices for the regret bound with g =

√
γT,A,

respectively g =
√
c̄, respectively g = µ1/4.

Proof. The proof will proceed by finding a close-to-optimal value K of the normalizing
constant by considering the budget constraint, then plugging this into the regret term to
get a bound. The constant maximum price plays into this proof in a slightly non-obvious
way. Because of this, instead of setting this maximum price equal to 1, we consider the
generalization where costs may lie in [0, cmax].

Consider time t when (ct, ft) arrives. Recall that the approach at time t is to draw a price
for ft from the distribution where

At(c) = Pr[price ≥ c] = min

{
1 ,

∆ht,ft

K
√
c

}
.

33

Consider then the induced posted-price distribution, which is pictured in Figure 2. It has a
point mass at cmax of probability4 ∆ht,ft/K

√
cmax. Otherwise, it is continuous on the interval

[c∗, cmax] with density

−A′t(π) =
∆ht,ft

2Kπ3/2
,

and the lower endpoint c∗ satisfies At(c
∗) = 1, i.e. c∗ = ∆2

ht,ft
/K2.

We first find the bound on K such that the expected budget constraint is satisfied. The
expected amount spent on arrival t can be computed as follows.

cmax Pr[price = cmax] +

∫ cmax

max{ct,c∗}
x (pdf at x) dx

= cmax
∆ht,ft

K
√
cmax

+

∫ cmax

max{ct,c∗}
x

∆ht,ft

2Kx3/2
dx

=
∆ht,ft

K

(√
cmax +

∫ cmax

max{ct,c∗}

1

2
√
x
dx

)
=

∆ht,ft

K

(
2
√
cmax −

√
max{ct, c∗}

)
.

Now let c∗t be the value of c∗ for arrival t (to distinguish its value in different timesteps).
By the budget constraint, we need to pick K so that∑

t

E [spend on arrival (ct, ft)] ≤ B,

so

E
∑
t

∆ht,ft

K

(
2
√
cmax −

√
max{ct, c∗}

)
≤ B.

Now we make a simplification: If we substitute ct in for max{ct, c∗}, then the left-hand side
only increases. Thus, to satisfy the previous inequality, it suffices to choose K to satisfy

E
∑
t

∆ht,ft

K
(2
√
cmax −

√
ct) ≤ B.

Thus, we let

Kmin = E
1

B

∑
t

∆ht,ft (2
√
cmax −

√
ct) .

Recall our definition of the “difficulty-of-the-input” parameter

γT,A = E
1

T

∑
t

∆ht,ft

√
ct,

4If this quantity is greater than 1, then we post a price of cmax for this datapoint, and what follows will
only be a looser upper bound on the amount spent.

34

and let

γmax
T,A = E

1

T

∑
t

∆ht,ft

√
cmax.

Then we have

Kmin =
T

B

(
2γmax

T,A − γT,A
)
.

We now have the setup to quickly derive bounds such as the theorem statements. Note that
any choice of K ≥ Kmin satisfies the expected budget constraint.

For the first regret bound, suppose that we know both γT,A and γmax
T,A up to a constant

factor. Then we can set K = O(Kmin). By Lemma 3.1, the expected regret is bounded by

Regret ≤ β

η
+ η

∑
t

∆2
ht,ft

At(ct)

where β is a constant and η will be chosen later.
As in the known-costs scenario, let us split into those arrivals that we purchase with

probability 1 (this corresponds to ct < c∗t) and the others, letting S = {t : At(ct) < 1}. Then
the summation term in the regret bound is bounded by a constant times∑

t6∈S

∆2
ht,ft +

∑
t∈S

∆ht,ft

√
ctKmin

≤ T +
T 2

B
γT,A

(
2γmax

T,A − γT,A
)

(9)

where we have used the Lipschitz assumption on the loss function ∆ht,ft ≤ 1.
As γmax

T,A ≥ γT,A, we do not lose much by taking the upper bound

M = T + 2
T 2

B
γT,A · γmax

T,A . (10)

Now we can choose η = Θ(1/M) and obtain our regret bound of

Regret ≤ O
(√

M
)

≤ O

(
max

{√
T ,

T√
B

√
γT,A · γmax

T,A .

})
.

The other regret bounds will all follow by (1) upper-bounding γmax
T,A ≤

√
cmax; (2) letting

K = T
B

√
cmax; (3) upper-bounding γT,A; and (4) setting η appropriately. Note that this

can only increase K, so the expected budget constraint is still satisfied. The modifications
simply give a different bound in Expression 10, from which the rest of the argument follows
analogously.

From (1) and (2), Expression 10 becomes

M = T + 2
T 2

B
γT,A
√
cmax.

35

First, if we know γT,A, then picking η = Θ(1/M) gives the corresponding bound.
Second, with only knowledge of c̄ = 1

T

∑
t

√
ct, observe that γT,A ≤ O(c̄) and plug in.

Third, observe that by Jensen’s inequality c̄ ≤ √µ (where µ = 1
T

∑
t ct) and plug in.

36

	1 Introduction
	2 Statistical Learning with Purchased Data
	3 Tools for Converting Regret-Minimizing Algorithms
	3.1 Recap of Classic Regret-Minimization
	3.2 Importance-Weighting Technique for Less Data
	3.3 The ``Online-to-Batch'' Conversion

	4 Regret Minimization with Purchased Data
	4.1 Problem Definition
	4.2 The Importance-Weighting Framework
	4.3 A First Step to Pricing: The ``At-Cost'' Variant
	4.4 Interpreting the Quantity T,A
	4.5 Mechanisms and Results for Regret Minimization

	5 Results for Statistical Learning
	6 Deriving Pricing and the ``at-cost'' Variant
	6.1 Deriving an Optimal Pricing Strategy
	6.2 Lower Bounds for Regret Minimization

	7 Examples and Experiments
	8 Discussion and Conclusion
	8.1 Agent-Mechanism Interaction Model
	8.2 Conclusions and Directions

	A Tools for Converting Regret-Minimizing Algorithms
	B No regret ``at-cost'' setting
	B.1 At-cost upper bounds
	B.2 At-cost lower bounds

	C No regret — main setting

