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Abstract

We study the problem of information design in human-in-the-
loop systems, where the sender (the system) aims to design
an information disclosure policy to influence the receiver (the
user) in making decisions. This problem is ubiquitous in sys-
tems with humans in the loop, e.g., recommendation systems
might choose whether to present others’ reviews to encour-
age users to follow recommendations, online retailers might
choose which set of product features to present to persuade
buyers to make the purchase. Among the flourish literature
on information design, Bayesian persuasion has been one of
the most prominent efforts in formalizing this problem and
has spurred various research studies in both economics and
computer science. While there has been significant progress
in characterizing the optimal information disclosure policies
and the corresponding computational complexity, one com-
mon assumption in this line of research is that the receiver
is Bayesian rational, i.e., the receiver processes the informa-
tion in a Bayesian manner and takes actions to maximize her
expected utility. However, as empirically observed in the lit-
erature, this assumption might not be true in real-world sce-
narios. In this work, we relax this common Bayesian rational
assumption in information design in the persuasion setting. In
particular, we develop an alternative framework for informa-
tion design based on discrete choice model and probability
weighting to account for this relaxation. Moreover, we con-
duct online behavioral experiments on Amazon Mechanical
Turk and demonstrate that our framework better explains real-
world user behavior and leads to more effective information
design policy.

Introduction
We study the problem of information design in human-in-
the-loop systems, in which an informed sender (i.e., the sys-
tem) aims to influence a receiver (i.e., humans in the sys-
tem) in making decisions through designing information dis-
closure strategies. This problem is ubiquitous in our daily
life. For example, online retailers might highlight a sub-
set of product features to influence the buyers to make the
purchases. Recommendation systems might selectively dis-
play other users’ ratings to persuade users to take the rec-
ommendation. Public health officials might decide how to
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present vaccine information to encourage the general pub-
lic to take vaccines to curb the pandemic. There have been
various research efforts devoted to this problem from both
economics (McCloskey and Klamer 1995; Rayo and Se-
gal 2010; Gehlbach and Sonin 2014; Goldstein and Leitner
2018) and computer science (Dughmi and Xu 2019; Emek
et al. 2014). Among the growing literature on the study of
information design, the model of Bayesian persuasion pro-
posed by Kamenica and Gentzkow (2011) is one of the most
prominent ones and has inspired a body of studies. In this
work, we also build on top of the framework of Bayesian
persuasion and aim to relax the restrictive assumptions in
their model.

In Bayesian persuasion, there are two players, a sender
and a receiver.1 The state of nature is randomly drawn from
a distribution, with the prior known to both players. The
sender has access to the realization of the state while the
receiver does not. The sender can utilize the information ad-
vantage and selectively disclose information to the receiver
to influence the receiver. Based on the prior information of
the state and the information revealed by the sender, the
receiver can take an action to maximize her own payoff,
which depends on both the action and the realized state. The
sender’s objective also depends on the receiver’s action, and
the goal of the sender is to choose an information disclosure
policy – which is determined before the state realization and
is known to the receiver – to maximize his objective.

As an illustrative example, consider the scenario in which
an online retailer (the sender) would like to persuade a buyer
(the receiver) to make the purchase. The retailer’s products
are directly coming from the factory, and the product quality
(the state of nature) is drawn from a distribution with known
prior. The buyer’s utility depends on both her purchase deci-
sion and the realized product quality, and the retailer’s utility
depends on the buyer’s purchase decision. In order to per-
suade the buyers to purchase, the retailer can commit to per-
form (noisy) product inspections to reveal some information
of the product quality (e.g., the inspection might signal the
product quality is satisfactory with 80% chance if the quality

1In this paper, we use “he” to denote the sender and “she” to de-
note the receiver. Moreover, this work is motivated by scenarios of
designing information for a population of users. Therefore, we use
the term “receiver” to refer to a population of users, and sometimes
we explicitly use the term “receivers”.



of the product is indeed satisfactory and signal the product
quality is unsatisfactory with 90% chance if the quality is
indeed unsatisfactory). The retailer’s goal is to find the opti-
mal inspection policy to maximize the probability of selling
the product to the buyer.

While Bayesian persuasion provides an elegant frame-
work to address the above information design problem, it
has made some restrictive assumptions. In particular, the re-
ceiver is assumed to be Bayesian rational, i.e., the receiver
is able to form a posterior by incorporating the prior infor-
mation and the signals revealed by the sender in a Bayesian
manner, and then choose the action that maximizes her ex-
pected utility. However, as consistently observed in empir-
ical studies (Axhausen and Gärling 1992; Svenson 1979;
Loewenstein 1996; McFadden 2001), humans often system-
atically deviate from being Bayesian or being rational.

In this work, we explore the problem of information de-
sign with non-Bayesian-rational receiver. We develop an al-
ternative framework to Bayesian persuasion that incorpo-
rates discrete choice model (McFadden 1981; Small 1987;
Train 2009) and probability weighting (Wu and Gonzalez
1996; Rieger and Wang 2006; Prelec 1998) to model non-
Bayesian-rational receiver. We formulate the problem of
solving the optimal information disclosure policy under our
model and characterize the properties of the optimal infor-
mation disclosure policy. To showcase the difference of the
two frameworks, we investigate the information policies de-
rived from both frameworks in a simple baseline setting.
We then conduct behavioral experiments on Amazon Me-
chanical Turk with 400 workers to examine the two frame-
works. Our results demonstrate that our framework better
aligns with the behavior with real-world humans and lead to
a better information disclosure policy.

Related Work
Our work builds on top of the seminal work of Bayesian per-
suasion (Kamenica and Gentzkow 2011), which initiated a
rich theoretical literature on communication game in which
a sender can design information to persuade a receiver to
take certain actions. Their work has inspired an active line
of research in information design. (e.g., see the recent sur-
veys by Kamenica 2019; Bergemann and Morris 2019). In
this work, we extend this line of research on information de-
sign and focus on relaxing the assumption that the receiver
is Bayesian rational through both developing an alternative
framework and empirically examining human behavior.

Human models for decision making. In the problem of
information design, the receiver needs to incorporate the in-
formation provided by the sender and make decisions ac-
cordingly. We can decompose this decision making process
into two stages: 1) belief updating: how the receiver pro-
cesses the information and updates her beliefs, and 2) deci-
sion making under uncertainty: how the receiver makes de-
cisions with the updated belief. Since we are interested in
settings in which receivers are human beings, in the follow-
ing, we discuss existing human models for decision making
in the above two stages.

For belief updating, Bayesian models have been the
prominent model in algorithmic works (Tenenbaum 1999;
Griffiths and Tenenbaum 2006; Chater, Tenenbaum, and
Yuille 2006). However, it has also been consistently and
widely observed in empirical studies that humans often de-
viate from being Bayesian (Kahneman and Tversky 1973;
Tversky and Kahneman 1974; Axhausen and Gärling 1992;
Svenson 1979; Loewenstein 1996; McFadden 2001). While
there have been some alternative models in how humans pro-
cess information to form their beliefs (Morris 1995; Sethi
and Yildiz 2016; Mailath and Samuelson 2020; Wu and
Gonzalez 1996; Rieger and Wang 2006; Prelec 1998), they
are not widely adopted in algorithmic frameworks.

For decision-making under uncertainty, the commonly-
used assumption is expected utility theory (von Neumann
and Morgenstern 1944) which assumes humans take actions
to maximize their expected utility. There is again a sub-
stantial body of work in behavioral economics in study-
ing the systematic deviations of human behavior from ex-
pected utility theory. One important theory that summarizes
these systematic biases is the prospect theory by Kahne-
man and Tversky (1979). Another commonly used theory,
that accounts for the inherent randomness of human decision
making by incorporating noises in the utility, is the discrete
choice model (McFadden 1981; Small 1987; Train 2009).

In this work, to account for the receiver’s deviation
from being Bayesian rational, we adopt probability weight-
ing function (Wu and Gonzalez 1996; Rieger and Wang
2006; Prelec 1998) for belief updating and discrete choice
model (McFadden 1981; Small 1987; Train 2009) for deci-
sion making in our framework. We also examine whether our
framework aligns with real-world human behavior through
behavioral experiments. In addition, there have been some
recent works that aim to incorporate human behavioral mod-
els in the computational framework. For example, Tang and
Ho (2019) incorporate the herding bias during feedback gen-
eration in bandit learning. Kleinberg and Oren (2014) and
Kleinberg, Oren, and Raghavan (2017) study the planning
for time-consistent agents in an environment characterized
by a graphical model. Our work aligns with this line of re-
search that incorporates realistic human behavioral models
in computation.

Behavioral experiments in information design. While
there is a rich line of research on Bayesian persuasion, the
amount of works on empirically investigating human behav-
ior in information design is limited (Au and Li 2018; Aris-
tidou, Coricelli, and Vostroknutov 2019; Fréchette, Lizzeri,
and Perego 2019). Among these works, Au and Li (2018)
incorporate reciprocity into the standard persuasion set-
ting and conduct a laboratory experiment to validate their
model on reciprocity. Aristidou, Coricelli, and Vostroknu-
tov (2019) propose a unified framework to investigate the
theoretical parallelism between information and mechanism
design. Fréchette, Lizzeri, and Perego (2019) empirically ex-
amine different information design methods, including com-
munications via cheap-talk, disclosure of verifiable informa-
tion, and Bayesian persuasion. Our work departs from the



above literature as we investigate the fundamental assump-
tion of Bayesian rationality in human behavior. We create a
decision-making scenario where the receiver is required to
make a decision after seeing a signal realized according to
some information disclosure policy to empirically measure
how humans update their beliefs and make decisions.

Another closely-related work to ours is the one by
de Clippel and Zhang (2019) who also relax the Bayesian
assumption of receiver’s behavior in persuasion. They the-
oretically study how receiver’s mistakes in probabilistic in-
ference impact optimal persuasion and characterize a large
class of belief updating rules that the concavification method
developed by Kamenica and Gentzkow (2011) can still be
applied. However, their work focuses on theoretical charac-
terization and the receiver is still assumed to be an expected
utility maximizer. While in our model, we further relax this
assumption by using a discrete choice model and empirically
examine our models.

Theoretical Framework
In this section, we formalize the frameworks for the informa-
tion design problem. We first describe the standard Bayesian
persuasion framework that assumes Bayesian rational re-
ceiver. We then introduce our framework that relaxes the
Bayesian rational assumption. In the later section, we com-
pare the two frameworks on a simple baseline setting with
two states and binary actions to showcase the differences
of the frameworks. This simple baseline setting also moti-
vates the design of our real-world behavioral experiments
described in our experiment section.

Standard Framework: Bayesian Persuasion
We first describe the standard setting of Bayesian persua-
sion (Kamenica and Gentzkow 2011). In this setting, there
are two players: a sender and a receiver. The goal of the
sender is to design an information disclosure policy to per-
suade the receiver in taking actions to maximize the sender’s
objective.

Let the (payoff-relevant) state of the world be θ, which is
drawn from a finite set Θ according to a prior distribution
µ0 ∈ ∆(Θ). The prior is common knowledge to all play-
ers. The receiver’s utility is characterized by the function
uR(a, θ) which depends on the action she takes a ∈ A from
a compact action set A and the state θ. The sender’s utility
is characterized by the function uS(a, θ) that also depends
on the receiver’s action and the state.

Before observing the realization of the state, the sender
can choose an information disclosure policy (π,Σ), which
consists of a finite signal space Σ and a family of conditional
distributions {π(·|θ)}θ∈Θ over σ ∈ Σ. This information dis-
closure policy is known to the receiver and specifies how
the sender discloses information to the receiver. In particu-
lar, when a state θ ∈ Θ is realized, the sender can observe
the state but the receiver cannot. To influence the receiver’s
decision, the sender sends a signal σ, drawing from the con-
ditional distribution π(·|θ) specified in the information dis-
closure policy, to the receiver. The receiver forms her beliefs
on the state of the world based on the prior and the signal

provided by the sender. She then takes an action to maxi-
mize her own payoff.

In the Bayesian persuasion setting, it is assumed that the
receiver is Bayesian rational, i.e., she updates her beliefs in a
Bayesian manner and is an expected utility maximizer. For-
mally, upon seeing the signal realization σ from the sender,
the receiver updates her belief, denoted by µ ∈ ∆(Θ), by
applying Bayes’ rule:

µ(θ|σ) =
π(σ|θ)µ0(θ)∑

θ′∈Θ π(σ|θ′)µ0(θ′)
. (1)

Given the posterior belief µ, the receiver then chooses
an action a∗ = a∗(µ) that maximizes her expected pay-
off: a∗ ∈ arg maxa∈A

∑
θ∈Θ u

R(a, θ)µ(θ).2 As a key in-
sight by Kamenica and Gentzkow (2011), the above two as-
sumptions on the receiver’s behavior allow the sender to re-
duce the problem of designing information disclosure policy
to choosing a distribution of posterior beliefs that respects
Bayes rule. Furthermore, a distribution τ ∈ ∆(∆(Θ)) of
posteriors can arise if and only if it is Bayes-plausible, i.e.,

Eµ∼τ [µ] = µ0. (2)

Therefore, it is without loss of generality to assume the
set of available information disclosure policy to the sender
is the set of Bayes-plausible distributions of posterior be-
liefs. By formulating the sender’s direct utility uS(a, θ), a
function of the receiver’s action, to an indirect utility ûS(µ),
a function of Bayesian posteriors, the standard concavifica-
tion argument can be applied to derive the optimal informa-
tion design.

Our Framework: Persuading
Non-Bayesian-Rational Receiver
In contrast to the assumptions made in Bayesian persuasion,
the receiver may, in practice, exhibit systematic biases both
in probabilistic inferences and in decision making. In the
following discussion, we first incorporate the discrete choice
model and probability weighting to model non-Bayesian-
rational receiver. We then formulate the optimal information
design problem under this receiver model.

Modeling non-Bayesian-rational receiver. We first relax
the assumption that the receiver is an expected utility max-
imizer but still assume the receiver is Bayesian in updat-
ing the belief. Specifically, we leverage the discrete choice
model (McFadden 2001), a commonly-used alternative of
expected utility theory, to characterize the receiver’s behav-
ior when making her decision.

To provide informal intuitions, in expected utility theory,
the receiver takes an action that maximizes her expected util-
ity. When there is no ties in action utility, this action choice is
deterministic. On the other hand, the discrete choice model
accounts for the inherent randomness in human decision
making and models the decision as a probabilistic process.

2In the persuasion literature, most work consider sender-
preferred Subgame Perfect Equilibrium, where the receiver
chooses the sender-preferred action when there are ties.



Specifically, in the discrete choice model, for each action
a ∈ A the receiver can take, we add noise ε(a) into the re-
ceiver’s utility for taking action a. The receiver then takes an
action that maximizes this noisy version of the utility. This
noise captures several realistic aspects of human decision
making, e.g., when there are additional inherent characteris-
tics in the receiver’s utility estimation that we cannot model,
or when receiver is drawn from a population and individual
differences need to be accounted for.

More formally, let µ ∈ ∆(Θ) denote the receiver’s poste-
rior induced by some signal realization. We define ûR(a|µ)
as the noise-free expected utility for the receiver to choose
action a ∈ A given the posterior belief µ, which can be
written as ûR(a|µ) := Eθ∼µ

[
uR(a, θ)

]
=
∑
θ∈Θ u

R(a, θ) ·
µ(θ). In discrete choice model, the receiver takes actions
based on the noisy version of the utility ũR(a|µ), which can
be written as

ũR(a|µ) := β · ûR(a|µ) + ε(a), (3)

where ε(a) is the added noise and β is a parameter that tunes
the relative strength of observable utility and the noises, e.g.,
when β →∞, the noise is negligible and the discrete choice
model reduces to the standard expected utility theory.

Different choices of distributions of ε(a) lead to different
discrete choice models. In this work, we follow the com-
monly used Multinomial Logit (MNL) (McFadden et al.
1973) and assume that each ε(a) is distributed indepen-
dently, identically extreme value, where the CDF follows
F (ε(a)) = exp(− exp(−ε(a))).
Lemma 1 (McFadden et al. (1973)). Given posterior belief
µ, the probability that receiver chooses action a can then be
derived as

Pr(a|µ) =
exp

(
βûR(a|µ)

)∑
a′ exp (βûR(a′|µ))

. (4)

Proof. Define vR(a|µ) = β · ûR(a|µ). By definition,

Pr(a|µ)

= Pr
(
ũR(a|µ) > ũR(a′|µ), ∀a′ 6= a

)
= Pr

(
ε(a′) < ε(a) + vR(a|µ)− vR(a′|µ), ∀a′ 6= a

)
.

Since the ε’s are independent, this cumulative distribution
over all a′ 6= a is the product of the individual cumulative
distributions:

Pr(a|µ, ε(a))

=
∏
a′ 6=a

exp
(
− exp(−(ε(a) + vR(a|µ)− vR(a′|µ)))

)
.

Since ε(a) is not given, and so the choice probability is the
integral of Pr(a|µ, ε(a)) over all values of ε(a) weighted by
its density

Pr(a|µ)

=

∫ ∏
a′ 6=a

e−e
−(ε(a)+vR(a|µ)−vR(a′|µ))

e−ε(a)e−e
−ε(a)

dε(a).

Finally, by computing the integral over ε(a), we can obtain
the closed-form expression (4).

With the above lemma, we have a closed-form formu-
lation specifying the distribution of actions the receiver
will choose given her posterior belief under discrete choice
model. We now relax the assumption that the receiver might
not be Bayesian in updating her beliefs.

To account for non-Bayesian belief updating, we uti-
lize the ideas of probability weighting and introduce a
non-decreasing prior-specific probability distortion function
ω(·;µ0) : ∆(Θ) → ∆(Θ) to capture the receiver’s final be-
lief on making her decision. This formulation helps explain
the human biases in over-weighting or under-weighting the
prior when performing beliefs updates. Now one can derive
the following choice probabilities by incorporating the dis-
torted posterior ω(·;µ0) into (4):

Pr(a|ω(µ;µ0)) =
exp

(
βûR(a|ω(µ;µ0))

)∑
a′ exp (βûR(a′|ω(µ;µ0)))

. (5)

Many parametric forms of the probability weighting func-
tion have been proposed (Wu and Gonzalez 1996; Rieger
and Wang 2006; Prelec 1998; Tversky and Kahneman
1992). For example, an affine probability distortion func-
tion (Gabaix 2019; Edwards 1968; Tversky and Wakker
1995) specifies a distorted posterior that falls in between
a reference belief µ∗ ∈ ∆(Θ) and Bayesian posterior µ:
ω(µ|µ0) = γµ∗ + (1 − γ)µ where µ∗ is allowed to vary
with µ0 and γ ∈ [0, 1] is a constant.

Optimal information design. With the modeling of the
receiver, we now characterize the sender’s optimal informa-
tion design. To simplify the exposition, we mainly state the
analysis when the receiver’s behavior follows the discrete
choice model defined in (4). The analysis for the model in-
cluding probability weighting is similar. For notation sim-
plicity, let p(a|µ) := Pr(a|µ) denote the the probability for
the receiver to choose action a ∈ A when the posterior µ is
induced. With this expression, we are now ready to charac-
terize the sender’s optimal information design problem:

Theorem 2. Let µ0 be the prior. Assume the receiver’s be-
havior follows (4) when µ is the posterior. The sender’s
problem is equivalent to

max
τ∈∆(∆(Θ))

Eµ∼τ

[∑
θ∈Θ

µ(θ)
∑
a∈A

p(a|µ)uS(a, θ)

]
s.t. Eµ∼τ [µ] = µ0

(6)

Proof. Let ν(µ) = {p(a|µ)}a∈A ∈ ∆(A). Given a pos-
terior µ and the corresponding ν(µ), we can compute the
sender’s indirect expected utility ûS(µ) as a function of µ:

ûS(µ) = Eθ∼µ
[
Ea∼ν(µ)

[
uS(a, θ)

]]
=
∑
θ∈Θ

µ(θ) ·
∑
a∈A

p(a|µ)uS(a, θ). (7)

Given the prior µ0, an information disclosure policy π gen-
erates a distribution τ ∈ ∆(∆(Θ)) over Bayesian posteriors.
It is known that, should the receiver be Bayesian, a distribu-
tion τ of posteriors is feasible iff it is Bayes-plausible (2).



Now the sender’s expected utility can be written as a func-
tion of the receiver’s choices and the probability measure τ ,
we obtain the stated reformulation of the sender’s problem.

Note that the problem (6) can be further simplified when
the sender’s utility is state-independent, i.e., uS(a, θ) =
uS(a),∀θ ∈ Θ, which is a common assumption in
the persuasion literature. Indeed, we have the objective
Eµ∼τ

[∑
a∈A p(a|µ)uS(a)

]
in (6). By writing the sender’s

problem as a function of the induced Bayesian posterior,
then (6) can be addressed using the tools developed by Ka-
menica and Gentzkow (2011). In particular, for an arbitrary
real-valued function u : ∆(Θ) → [0, 1], let ucc be the con-
cave closure of u,

ucc(µ) = sup{z|(µ, z) ∈ co(u)}, (8)

where co(u) is the convex hull of the graph of u.
Proposition 3. The sender’s expected utility under an opti-
mal policy is ûcc(µ0), where û is defined in (7).

The above analysis can also be applied to deal with set-
tings in which the receiver distorts the probabilities through
a probability weighting function. In particular, the results
in Theorem 2 still hold with the only difference being
that the choice probabilities in (6) will accordingly corre-
spond to (5). We can simplify the sender’s problem (6) to
the following optimization problem with a distorted Bayes-
plausibility constraint:
Proposition 4. Let µ0 be the prior, µ be the Bayesian pos-
terior and µR be the receiver’s non-Bayesian posterior. As-
suming the receiver’s behavior follows (5) with the proba-
bility weighting function ω(·|µ0) : ∆(Θ) → ∆(Θ). The
sender’s problem is equivalent to 3

max
τ∈∆(∆(Θ)×∆(Θ))

E(µ,µR)∼τ

∑
θ∈Θ

µ(θ)
∑
a∈A

p
(
a|µR

)
uS(a, θ)


s.t. EµR∼τR

[
ω−1

(
µR|µ0

)]
= µ0,

where τR =
∫
µ
τ(µ, ·)dµ.

Proof. Given the receiver’s belief µR, let ν(µR) =
{p(a|µR)}a∈A ∈ ∆(A). Together with the Bayesian pos-
terior µ, we have the following sender’s indirect utility

ûS(µ, µR) = Eθ∼µ
[
Ea∼ν(µR)[u

S(a, θ)]
]

=
∑
θ∈Θ

µ(θ) ·
∑
a∈A

p(a|µR)µS(a, θ).

Recall that µR is the result of the mapping of probability
weighting function ω(·|µ0) from the Bayesian posterior µ.
As the mapping ω(·|µ0) is invertible and µ satisfies Bayes-
Plausibility, µR must satisfy EµR∼τR

[
ω−1

(
µR|µ0

)]
= µ0.

Thus, we can achieve the above sender’s reformulated opti-
mization problem.

3Including probability weighting in our model is essentially the
same as distorting updated beliefs proposed by de Clippel and
Zhang (2019). We can show that a distorted version of Bayes-
plausibility holds, and therefore the standard concavification tech-
nique to derive optimal information design can be applied.

Similarly, when the sender’s utility is state-
independent, sender’s problem can be further simplified as
maxτ∈∆(∆(Θ)) EµR∼τR

[∑
a∈A p(a|µR)uS(a)

]
with the

distorted Bayesian-plausibility constraint.

A Baseline Setting with
Two States and Binary Actions

In the above section, we formulate the information design
problem for both the standard framework of Bayesian per-
suasion and our framework of persuading non-Bayesian-
rational receiver. To instantiate the discussion and compar-
ison, in this section, we consider a simple setting with two
states and binary actions, a variant of the leading example in
Kamenica and Gentzkow (2011), to demonstrate the differ-
ences of the two frameworks. This setting also motivates our
experiment design as presented in the next section.

Consider a world with two states Θ = {X,Y}, where state
X happens with probability µ0 ∈ [0, 1] and state Y happens
with probability 1 − µ0. The receiver can choose from two
actions A = {aX, aY}. The utility of the sender and the re-
ceiver both depend on the receiver’s action and the realized
state and have been summarized in Table 1.

Payoff State X State Y

Receiver chooses aX Receiver: 1. Sender: 1 Receiver: 0. Sender: 1
Receiver chooses aY Receiver: 0. Sender: 0 Receiver: 1. Sender: 0

Table 1: Payoff structure.

In this payoff structure, the receiver aims to select the ac-
tion that matches the state (i.e., select action aX/aY for state
X/Y), while the sender wishes to persuade the receiver to
select action aX.

Optimal information design with Bayesian-rational re-
ceiver. In the following discussion, we use µ to denote the
posterior probability of state X. If the receiver is Bayesian
rational, whenever the receiver sees a signal that induces a
posterior µ ≥ 0.5, the receiver’s best response is to choose
action aX. In other words, the receiver’s response is a simple
step function in posterior beliefs (the receiver chooses action
aX when µ ≥ 0.5 and action aY when µ < 0.5). Given the
receiver’s behavior, the optimal information disclosure pol-
icy can be achieved with only 2 signals, represented using
{R,B}, and the policy can be specified as below. 4

Proposition 5 (Optimal policy assuming Bayesian rational
receiver (Kamenica and Gentzkow 2011)). When the prior
µ0 < 0.5, an optimal information disclosure policy exists
and satisfies:
• when state X is realized, always sends signal R;

• when state Y is realized, with prob. µ0

1−µ0
sends signal R,

and with prob. 1− µ0

1−µ0
sends signal B.

When µ0 ≥ 0.5, an uninformative information disclosure
policy is the optimal policy.

4We choose {R,B} as signal notations mainly for the consis-
tency of our experiment presentation in our experiment section.



Below is the intuition of the optimal policy. When µ0 ≥
0.5, when deploying an uninformative information policy,
the receiver’s posterior is the same as prior, and she will al-
ways choose action aX, and therefore an uninformative in-
formation policy is the optimal policy. When µ0 < 0.5, re-
call that the goal of the sender is to persuade the receiver
to choose aX when the prior of state Y is larger than half.
In the optimal information policy, when the state is X, the
sender wants to reveal the true information to encourage
the receiver to choose aX. When the state is Y, the sender
wants to make the receiver have indifferent beliefs between
the state to maximize the chance the receiver chooses aX.
The above policy generates two possible posteriors: µ = 0.5
with probability 2µ0 on seeing signal R, and µ = 0 with
probability 1− 2µ0 on seeing signal B.

Optimal information design with non-Bayesian-rational
receiver. When the receiver is not Bayesian rational, the
receiver’s probability of choose aX is not a step-function of
posterior µ as in Proposition 5. Instead, as described in our
framework, it is a smoothed continuous function as below:

p(a = aX|µ) =
exp(βµ)

exp(β(1− µ)) + exp(βµ)
. (9)

We can also derive the sender’s optimal information de-
sign when the receiver follows the model (9). In particu-
lar, since the sender obtains zero utility when the receiver
chooses action aY, the sender’s indirect utility ûS(µ) as a
function of posterior µ is simply ûS(µ) = p(a = aX|µ). A
concavification argument allows us to characterize the fol-
lowing optimal information disclosure policy:

Proposition 6 (Optimal policy assuming non-Bayesian-ra-
tional receiver). Let p(µ) := p(a = aX|µ) and let µ̄ be
the unique solution of µ̄p′(µ̄) = p(µ̄) − p(0). Given prior
µ0 ≤ µ̄, an optimal information disclosure policy exists and
satisfies
• when state X is realized, always sends signal R;

• when state Y is realized, with prob. µ0(1−µ̄)
(1−µ0)µ̄ sends signal

R, and with other prob. sends signal B.
When µ0 > µ̄, an uninformative information disclosure pol-
icy is the optimal policy.

The optimal information policy shares a similar structure
as the one when the receiver is Bayesian rational (Proposi-
tion 5). However, the threshold µ̄, that characterizes when an
uninformative policy is not optimal, and the probability for
sending signal B when the realized state is Y are different
and are influenced by the receiver model. Furthermore, as β
in the receiver model (9) increases, the shape of p(µ), the
probability for the receiver to choose action aX given poste-
rior µ, is more towards a step function with breaking point
at 0.5 and thus µ̄ is smaller. Intuitively, larger β implies that
the impact of unobserved component ε(a) is smaller on the
receiver’s utility, and thus the receiver is more towards an
expected utility maximizer. The above discussion is graphi-
cally illustrated in Figure 1. The analysis when including the
probability weighting is similar.

β 2
β 3.5
β 3.5 w.p. weighting
β 5

0
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(b)

Figure 1: Left: Various shapes of ûS(µ) (or p(µ)) and
ûS(ω(µ)) (or p(ω(µ))) with an affine distorting function ω
where γ = 0.3, µ∗ = 0.5. Right: Red line is the concavifi-
cation ûcc(µ) for ûS(µ).

Real-World Experiment
Our discussion in the previous sections demonstrates the dif-
ferent predictions on the receiver’s behavior and the optimal
information disclosure policy when we consider different re-
ceiver models. In this section, we describe the setup and re-
sults of our real-world behavioral experiments to examine
these predictions. The experiment has been approved by IRB
at Washington University.

In our experiment, we recruit online workers to answer a
series of questions. In each question, workers are asked to
perform a probabilistic-inference and decision-making task.
We design the questions in a way that we can control the
prior and the information structure and then observe work-
ers’ corresponding actions. Moreover, given a prior and a
realized signal from the information policy, we are able to
derive the corresponding induced Bayesian posterior (calcu-
lated using Bayes rule). We are interested in examining the
following two questions:
• Q1: Are workers Bayesian?

To examine whether workers are Bayesian, we can design
two scenarios that lead to the same induced posterior but
have different priors and information policies. If workers
are Bayesian, their decisions should depend only on the
posterior, and we should observe the same worker behav-
ior on the two scenarios.

• Q2: Are workers rational?
To examine whether workers are rational, we can create
scenarios that lead to different posteriors. If workers are
rational, we should observe workers’ behavior follows a
step function over the induced posteriors.

Experiment Setup
We recruited 400 unique workers from MTurk, where each
worker is required to complete 20 questions. We offer a $0.5
base payment, and each worker may also receive a bonus
payment of up to $0.6 (the bonus rule will be explained
shortly). The bonus amount is chosen to be large enough so
workers are motivated to perform well. The average hourly
rate is around $12.15.



Task. Our goal is to evaluate the receiver’s behavior.
Therefore, we play the role of the sender and have all re-
cruited workers play as the receiver. Each worker needs to
complete 20 questions as described below.

Figure 2: The task interface.

In each question, as shown in Figure 2, workers are in-
formed that there are two urns, Urn X and Urn Y. At the be-
ginning of the question, an urn is randomly drawn according
to the prior distribution that is known to the workers. Each
urn contains certain fraction of red balls and blue balls. The
ball composition of each urn is also shown to workers. Af-
ter an urn is realized, we choose a ball uniformly at random
from this realized urn. The color of the drawn ball is then
disclosed to the worker. Upon seeing the color, the worker is
required to make guess on which urn is realized.

This experiment setup is designed to capture human
decision-making process. The two urns represent the world
state. The ball composition is the information disclosure
policy. When seeing the realized ball, the workers update
their prior beliefs (the prior of urn drawing) with addi-
tional information (realized ball drawn according to the
commonly known ball compositions in urns) and make de-
cisions (guessing which is the realized urn).

Bonus rule. For each correct guess (i.e., worker’s guess
matches the realized urn), worker receives a bonus of $0.03,
thus each subject will receive at most $0.6 in the game. The
bonus for correct guess on Urn X and Urn Y is the same to
match the setting in section about our baseline setting.

Treatment design. To answer our research questions, we
conducted a randomized behavioral experiment. The ex-
periment consists of two treatments, which differ in the
prior distribution of the state. In the high prior treatment,
we fixed the prior to be (0.4, 0.6), while in the low prior
treatment, the prior is fixed as (0.2, 0.8). We then design

eight ball compositions in urns (corresponding to informa-
tion disclosure policies) such that, conditional on the real-
ization of a red ball draw, the Bayesian posterior would be
(0.2, 0.3, . . . , 0.9) for both treatments. The detailed setup of
our ball composition is included in Table 2. For each arriv-
ing worker, she is randomly assigned to one of the treat-
ments and needs to answer 20 questions. Each question cor-
responds to a ball composition. Each ball composition is re-
peated 2 to 3 times and the order of the question and the
options are all randomized to alleviate any potential position
bias.

This treatment design enables us to answer both research
questions Q1 and Q2. Since we control the ball composi-
tions so that both treatments lead to the same set of Bayesian
posteriors (conditional on red ball draw), by comparing the
worker behavior between the two treatments, we can answer
Q1. Since the prior is fixed in each treatment, by examin-
ing the behavior with different induced posterior in the same
treatment, we can answer Q2.

Experiment Results
Among the 400 recruited workers, 199 workers were ran-
domly assigned to the high prior (0.4, 0.6) treatment and 201
workers were randomly assigned to the low prior (0.2, 0.8)
treatment. For the self-reported population demographic for
the participants, there are 41.5% female, 71.25% under 40
years old, and over 90% of the participants reported to have
at least college degrees.

Receiver’s behavior. We first report the receiver’s behav-
ior on both treatments. Note that if workers are Bayesian
rational, we should expect to see workers taking the same
actions for any fixed posterior no matter which treatment
they are in. In addition, workers’ behavior should follows a
step function within each treatment, with workers choosing
urn X when the posterior is larger than 0.5 and choosing urn
Y otherwise.

The results, as shown in Figure 3, show that worker be-
havior has significantly deviated from the model of Bayesian
rationality. In particular, the differences between the two
treatments demonstrate that workers are not updating their
beliefs in a Bayesian manner. The sigmoid-shape curve in
workers’ behavior demonstrates that worker behavior aligns
better with the discrete choice model instead of the expected
utility theory (which leads to a step function).

Fitting receiver behavior to our framework. Next we
examine how well our framework explains the empirical
worker behavior by fitting the empirical observations to
our model as described in Equation (5). For the probabil-
ity weighting function ω, we choose a simple but an intu-
itive affine probability weighting function. In addition, since
the data quality by online workers have known to be incon-
sistent (Jagabathula, Subramanian, and Venkataraman 2017;
Ipeirotis, Provost, and Wang 2010), when fitting the data to
models, we consider the case that there is a (1− α) fraction
of workers who might always be random guessing (choosing
urn X with 0.5 chance).



ball composition prior (0.2, 0.8) prior (0.4, 0.6)

posterior (0.2, 0.8) (100%, 0%, 100%, 0%) (37%, 63%, 100%, 0%)
posterior (0.3, 0.7) (100%, 0%, 58%, 42%) (64%, 36%, 100%, 0%)
posterior (0.4, 0.6) (100%, 0%, 37%, 63%) (100%, 0%, 100%, 0%)
posterior (0.5, 0.5) (100%, 0%, 25%, 75%) (100%, 0%, 67%, 33%)
posterior (0.6, 0.4) (100%, 0%, 17%, 83%) (100%, 0%, 44%, 56%)
posterior (0.7, 0.3) (100%, 0%, 11%, 89%) (100%, 0%, 29%, 71%)
posterior (0.8, 0.2) (100%, 0%, 6%, 94%) (100%, 0%, 17%, 83%)
posterior (0.9, 0.1) (100%, 0%, 3%, 97%) (100%, 0%, 7%, 93%)

Table 2: Ball compositions for different prior and different posterior on seeing red ball. In each cell, the first two numbers
correspond to the fraction of red balls and blue balls in Urn X, and the last two numbers correspond to the fraction of red balls
and blue balls in Urn Y.
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Figure 3: The solid lines represent the percentage of work-
ers that choose Urn X conditional on a red ball realization.
Shaded regions correspond to the regions of plus/minus one
standard error. Dashed lines correspond to fitted models in
our framework.

The fitted curves are also included in Figure 3. Compared
with the step function as predicted with the Bayesian ratio-
nality assumption, our model aligns better with real-world
human behavior.

Details on the model evaluation. Recall that our model,
after including an affine probability distorting function
ω(·|µ0) and α-fraction random workers, is defined as fol-
lows

p(a = aX|ω(µ|µ0))

=
α exp(βω(µ|µ0))

exp(β(1− ω(µ|µ0))) + exp(βω(µ|µ0))
+ (1− α)0.5,

where ω(µ|µ0) = γµ∗ + (1 − γ)µ, α, γ ∈ [0, 1], β > 0
and µ∗ is a reference belief that may depend on the prior
information. Using non-linear least squares, we jointly opti-
mize the parameters of function p(a = aX|ω(µ|µ0)), while

ensuring parameters (α, β, γ) to be the same for both treat-
ments and allowing µ∗ ∈ [0, 1] to vary with the prior,
to be fitted to the data of both treatments. To assure for
fair comparisons, we also include the prediction if we as-
sume α fraction of workers are Bayesian rational (see gray
dashed line in Figure 3). Recall that in Proposition 5, the
response of Bayesian rational workers is a step function
p(a = aX|µ) = 1{µ ≥ 0.5}. Thus, with (1 − α) fraction
random workers, the prediction should be characterized by
p(a = aX|µ) = α1{µ ≥ 0.5}+ (1− α)0.5.

To evaluate how well each model fits the data, we use 5-
fold cross-validation to estimate the out-of-sample predic-
tion error of the model. In particular, we split the available
data randomly into 5 equally-sized disjoint subsets. In each
iteration, we choose one subset as the test data and the re-
maining subsets as training data to find out the model pa-
rameters. The out-of-sample performance is then evaluated
on the chosen test data. After iterating all subsets, we com-
pute the average out-of-sample error across 5 test sets.

The evaluation errors, computed via the sum of squared
residuals, together with the errors if we assume workers are
Bayesian rational, are shown in Table 3. The results demon-
strate that our framework explains the real human behavior
better than Bayesian persuasion does.

error using
our model

error assuming
Bayesian rational

prior (0.2, 0.8) 0.0506 0.1230
prior (0.4, 0.6) 0.0417 0.1231

Table 3: 5-fold cross validation error (computed via the sum
of squared residuals) for the models in Figure 3.

Implication to information design. Finally, we discuss
the impacts of receiver models to the information design
problem. In particular, note that each of the ball composition
of urns corresponds to an information disclosure policy. For
each policy, we can compute the expected utility for each re-
ceiver model by assuming the receiver takes action follows
the model prediction. In addition, given the data collected
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Figure 4: Comparisons between the empirical sender’s utility collected in data, sender’s utility predicted by our model, and the
sender’s utility predicted by assuming workers are Bayesian rational.

by our experiments, we can compute the empirical average
utility achieved by each policy (i.e., multiply the empirical
ratio of workers choosing Urn X by the probability of red
ball realization) and use it as the ground truth for compari-
son.

The results, as shown in Figure 4, demonstrate that our
model (fitted with data) makes a much more accurate pre-
diction (red dashed line) on the empirical average utility (or-
ange line) of different information disclosure policies than
the one predicted by Bayesian persuasion (gray dashed line).
For example, for the high prior treatment, different from the
peak at (0.5, 0.5) when assuming workers are Bayesian ra-
tional, the empirical data shows that the empirical optimal
information disclosure policy is generating a posterior be-
tween (0.6, 0.4) and (0.7, 0.3) when seeing a red ball, and
this is also reflected in our model prediction. Similar results
can also be found for the low prior treatment.

Discussions and Future Work
In this section, we discuss the limitations of our current re-
sults and potential future directions.

Generalizability of our framework and experimental re-
sults. While our work has been one of the few empirical
studies in examining human behavior in the persuasion liter-
ature, similar to prior work, our experiment is constructed on
a more abstract setup (i.e., utilizing the urn and ball drawing
problem). Developing a more realistic experimental setup
that depicts real-world scenarios (e.g., how a seller selec-
tively discloses product information to persuade the buyer to
make the purchase decision) and/or conducting more exten-
sive experiments (e.g., including more priors and posteriors,
recruiting more workers) would help better understand and
model real human behavior.

In addition, our current experiments has limited to a sim-
ple form of information presentation. It is therefore not triv-
ial to claim that our findings hold for different presentations
of information structure. In particular, in our experiment de-
sign, for each combination of prior and target posterior, we
identify an information disclosure policy (i.e., a particular
set of ball compositions in urns) that induces the target pos-
terior from the prior when receiver sees a red ball. In our
design, almost all ball compositions have 100% red balls in
Urn X except two compositions in the upper right of Ta-
ble 2. There are several benefits for this style of composi-
tion. First, it aligns with the optimal information design as
derived in Proposition 5, i.e., the sender always sends a sig-
nal R when Urn X is realized. For the two compositions that
it is not feasible to have 100% red balls in Urn X, we choose
to make Urn Y to contain 100% red balls to ensure that our
ball compositions are consistent among different tasks, i.e.,
at least one urn has 100% red balls. Second, we believe
the simplicity of these compositions also helps to alleviate
human’s cognitive burden when processing signal informa-
tion. However, despite the above mentioned benefits, it lim-
its the generalizability of our findings outside of this partic-
ular form of information presentation. Note that there are es-
sentially infinite number of different ball compositions that
we can use to induce the same target posterior. For example,
in Figure 2, given the prior (0.4, 0.6), any ball composition
(x, 1−x, y, 1−y) that satisfies 0.4x

0.4x+0.6y = 0.6, x, y ∈ [0, 1]

can induce a posterior (0.6, 0.4) whenever a worker sees a
red ball. Understanding the impacts of different signal pre-
sentations has practical importance and would be an impor-
tant future research direction.

We have considered a particular set of behavioral mod-
els, i.e., discrete choice model and probability weighting, to
relax the Bayesian rational assumption. While these models
have been well-examined in the literature, there have also



been other models of human decision making to relax the as-
sumption of Bayesian rationality. Empirically understanding
whether and when other models are suitable and how differ-
ent models impact the information design problem requires
more future studies from both theoretical and experimental
investigations.

Algorithmic solutions for information design. In Sec-
tion , we develop an alternative framework to model the
receiver’s behavior and formulate the sender’s optimization
problem. In the section about our baseline setting, we then
demonstrate that in a simple baseline setup with two states
and binary actions, we can obtain a closed form of optimal
information structure. The natural next question to ask is that
whether we can develop an algorithmic procedure to obtain
the optimal information design for general settings in these
frameworks.

Note that if the receiver is Bayesian rational, for a gen-
eral information design problem, there have been earlier
works (Dughmi and Xu 2019) showing that it is #P-hard
to exactly compute the expected sender utility for the opti-
mal information structure. One interesting future direction is
to explore whether the earlier computational complexity re-
sults still hold in our framework. More specifically, can we
identify a polynomial-time algorithm to derive the optimal
information disclosure policy, as defined in (6).

Potential negative societal impacts. Lastly, we would
like to highlight the potential negative societal impacts of the
usage of information design. When the sender’s objective
is to maximize the social welfare or to improve the quality
of the receiver’s action, the impacts of information design
could be positive to the receiver and beneficial to the soci-
ety. However, in our work and in almost the entire literature
on Bayesian persuasion, we have often focused on how to
identify an optimal information disclosure policy that maxi-
mizes the sender’s payoff. Since the sender often represents
the advantageous party (e.g., the government, the company,
the platform, etc) that has access to more information, when
the interests of the sender do not align with the interests of
the receiver, optimizing the sender’s utility could lead to po-
tential negative social impacts to the receivers, who are often
the general public. In other words, with ill-specified objec-
tive in information design, the sender could utilize the infor-
mation advantage and create significant negative impacts. It
is therefore also important to consider the impacts and the
potential regulations on information design.

Conclusion
This paper investigates the information design problem
in human-in-the-loop systems. We extend the standard
framework of Bayesian persuasion and relax the common
Bayesian rational assumption on the receiver’s behavior.
In particular, we develop an alternative framework based
on discrete choice model and probability weighting to ac-
count for this relaxation. We characterize the property of
this framework and show the optimal information design

can also be formulated as a constrained optimization prob-
lem. To demonstrate the difference of the two frameworks,
we utilize a simple baseline setting with two states and bi-
nary actions and provide the optimal information disclosure
policies derived from both frameworks. Finally, we conduct
behavioral experiments on Amazon Mechanical Turk to ex-
amine the behavioral models and the policies derived by
both frameworks. The results demonstrate that our proposed
framework better explains user behavior and leads to better
information design policies. Our results showcase the im-
portance of understanding human behavior before applying
the results on information design research to the field.
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