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Abstract

Crowdsourcing markets have gained popular-
ity as a tool for inexpensively collecting data
from diverse populations of workers. Classifi-
cation tasks, in which workers provide labels
(such as “offensive” or “not offensive”) for in-
stances (such as “websites”), are among the
most common tasks posted, but due to hu-
man error and the prevalence of spam, the
labels collected are often noisy. This problem
is typically addressed by collecting labels for
each instance from multiple workers and com-
bining them in a clever way, but the question
of how to choose which tasks to assign to each
worker is often overlooked. We investigate
the problem of task assignment and label in-
ference for heterogeneous classification tasks.
By applying online primal-dual techniques,
we derive a provably near-optimal adaptive
assignment algorithm. We show that adap-
tively assigning workers to tasks can lead
to more accurate predictions at a lower cost
when the available workers are diverse.

1. Introduction

Crowdsourcing markets provide a platform for inex-
pensively harnessing human computation power to
solve tasks that are notoriously difficult for computers.
In a typical crowdsourcing market, such as Amazon
Mechanical Turk, registered users may post their own
“microtasks” which are completed by workers in ex-
change for a small payment, usually around ten cents.
A microtask may involve, for example, verifying the
phone number of a business, determining whether or
not an image contains a tree, or determining (subjec-
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tively) whether or not a particular website is offensive.

The availability of diverse workers willing to complete
tasks inexpensively makes crowdsourcing markets ap-
pealing as tools for collecting data (Wah et al., 2011).
Classification tasks, in which workers are asked to pro-
vide a binary label for an instance, are among the most
common tasks posted (Ipeirotis, 2010). Unfortunately,
due to a mix of human error, carelessness, and fraud
— the existence of spammy workers on Mechanical
Turk is widely acknowledged — the data collected is
often noisy (Kittur et al., 2008; Wais et al., 2010). For
classification tasks, this problem can be overcome by
collecting labels for each instance from multiple work-
ers and combining these to infer the true label. In-
deed, much recent research has focused on developing
algorithms for combining labels from heterogeneous la-
belers (Dekel & Shamir, 2009; Ipeirotis et al., 2010).
However, this research has typically focused on the in-
ference problem, sidestepping the question of how to
assign workers to tasks by assuming that the learner
has no control over the assignment. One exception
is the work of Karger et al. (2011a;b), who focus on
the situation in which all tasks are homogeneous (i.e.,
equally difficult and not requiring specialized skills),
in which case they show that it is not possible to do
better than using a random assignment.

One might expect the assignment to matter more when
the tasks are heterogeneous. Classifying images of
dogs versus images of cats is likely easier for the av-
erage worker than classifying images of Welsh Terriers
versus images of Airedale Terriers. It might be neces-
sary to assign more workers to tasks of the latter type
to produce high confidence labels. The assignment can
also be important when tasks require specialized skills.
A worker who knows little about dogs may not be able
to produce high quality labels for the Terrier task, but
may have skills that are applicable elsewhere.

We investigate the problem of task assignment and la-
bel inference for heterogeneous classification tasks. In
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our model, a task requester has a set of tasks, each
of which consists of an instance for which he would
like to infer a binary label. Workers arrive online.
The learner must decide which tasks to assign to each
worker, and then use the noisy labels produced by the
workers to infer the true label for each task. The
goal of the learner is to output a set of labels with
sufficiently low error while requesting as few labels
from workers as possible. Building on online primal-
dual methods (Buchbinder & Naor, 2005), we propose
an exploration-exploitation algorithm that is provably
competitive with an optimal offline algorithm that has
knowledge of the sequence of workers and their skills
in advance. We then evaluate this algorithm in a va-
riety of experiments on synthetic data and show that
adaptively allocating tasks helps when the worker dis-
tribution is diverse or the tasks are heterogeneous.

2. Related Work

Our research is mostly closely related to that of
Karger et al. (2011a;b) and Ho & Vaughan (2012).
Karger et al. introduced a model in which a requester
has a set of homogeneous labeling tasks he must assign
to workers who arrive online. They proposed an as-
signment algorithm based on random graph generation
and a message-passing inference algorithm inspired by
belief propagation, and showed that their technique
is order-optimal in terms of labeling budget. In par-
ticular, let pj be the probability that worker j com-
pletes any given task correctly and q = E[(2pj − 1)2],
where the expectation is over the choice of a random
worker j. They proved that their algorithm requires
O((1/q) log(1/ǫ)) labels per task to achieve error less
than ǫ in the limit as the numbers of tasks and work-
ers go to infinity. They also showed that adaptively
assigning tasks does not help in their setting, in that
Ω((1/q) log(1/ǫ)) labels are still needed in general.

We generalize this model to allow heterogeneous tasks,
so that the probability that worker j completes a task
correctly may depend on the particular task. In this
generalized setting, assigning tasks adaptively can pro-
vide an advantage both in theory and in practice.

Our techniques build on the online primal-dual frame-
work, which has been used to analyze online opti-
mization problems ranging from the adwords prob-
lem (Buchbinder et al., 2007; Devanur et al., 2011)
to network optimization (Alon et al., 2004) and pag-
ing (Bansal et al., 2007). Ho & Vaughan (2012) were
the first to apply this framework to crowdsourcing. In
their model, a requester has a fixed set of tasks of dif-
ferent types, each of which must be completed exactly
once. Each worker has an unknown skill level for each

type of task, with workers of higher skill levels produc-
ing higher quality work on average. Workers arrive on-
line, and the learner must assign each worker to a sin-
gle task upon arrival. When the worker completes the
task, the learner immediately receives a reward, and
thus also a noisy signal of the worker’s skill level for
tasks of that type. Workers arrive repeatedly and are
identifiable, so the learner can form estimates of the
workers’ skill levels over time. The goal is to maximize
the sum of requester rewards. Ho & Vaughan provide
an algorithm based on the online primal-dual frame-
work and prove that this algorithm is competitive with
respect to the optimal offline algorithm that has access
to the unknown skill levels of each worker.

Our model differs from that of Ho & Vaughan in sev-
eral key ways. Their analysis depends heavily on the
assumption that the requester can evaluate the quality
of completed work immediately (i.e., learn his reward
on each time step), which is unrealistic in many set-
tings, including the labeling task we consider here; if
the requester could quickly verify the accuracy of la-
bels, he wouldn’t need the workers’ labels in the first
place. In their model, each task may be assigned to a
worker only once. In ours, repeated labeling is neces-
sary since there would be no way to estimate worker
quality without it. These differences require a different
problem formulation and novel analysis techniques.

Repeated labeling has received considerable empiri-
cal attention, dating back to the EM-based algorithm
of Dawid & Skene (1979). Sheng et al. (2008) consid-
ered a setting in which every worker is correct on every
task with the same probability, and empirically evalu-
ated how much repeated labeling helps. Ipeirotis et al.
(2010) extended this idea to heterogeneous workers
and provided an algorithm to simultaneously esti-
mate workers’ quality and true task labels. More re-
cently, there has been work showing that label infer-
ence can be improved by first estimating parameters
of the structure underlying the labeling process using
techniques such as Bayesian learning (Welinder et al.,
2010), minimax entropy (Zhou et al., 2012), and vari-
ational inference (Liu et al., 2012).

On the theoretical side, there have been several re-
sults on learning a binary classifier using labeled data
contributed by multiple teachers, each of which labels
instances according to his own fixed labeling func-
tion (Crammer et al., 2005; 2008; Dekel & Shamir,
2009). These require PAC-style assumptions and focus
on filtering out low quality workers. Tran-Thanh et al.
(2012) used ideas from the multi-armed bandit litera-
ture to assign tasks. Bandit ideas cannot be applied
in our setting without further assumptions since the
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reward corresponding to an assignment depends on
whether the worker’s label is correct, which cannot
be inferred until the task has been assigned to others.

Ghosh et al. (2011) studied a model similar to
that of Karger et al., also with homogeneous tasks,
and used eigenvalue decomposition to estimate each
worker’s quality. Their bounds depend on a quantity
essentially identical to the quantity q defined above,
which they refer to as the population’s average compe-
tence. A similar quantity plays a role in our analysis.

3. The Model

In our model, a task requester has a set of n tasks,
indexed 1, · · · , n. Each task is a binary classification
problem. The true label of task i, denoted ℓi, is either
1 or −1, and is unknown to the requester.

Workers arrive online. When worker j arrives, she
announces the maximum number of tasks that she is
willing to complete, her capacity, Mj . No other infor-
mation is known about each worker when she arrives.

Each worker j has a skill level, pi,j ∈ [0, 1], for each
task i. If the algorithm assigns worker j to task i,
the worker will produce a label ℓi,j such that ℓi,j = ℓi
with probability pi,j and ℓi,j = −ℓi with probability
1−pi,j , independent of all other labels. The algorithm
may assign worker j up to Mj tasks, and may observe
her output on each task before deciding whether to as-
sign her to another or move on, but once the algorithm
moves on, it cannot access the worker again. This is
meant to reflect that crowdsourced workers are nei-
ther identifiable nor persistent, so we cannot hope to
identify and later reuse highly skilled workers.

Several of our results depend on the quantity qi,j =
(2pi,j − 1)2. Intuitively, when this quantity is close to
1, the label of worker j on task i will be informative;
when it is close to 0, the label will be random noise.

To model the fact that the requester cannot wait arbi-
trarily long, we assume that he can only assign tasks to
the first m workers who arrive, for some known m. We
therefore index workers 1, · · · ,m. Later we consider an
additional γm workers who are used for exploration.

In addition to assigning tasks to workers, the learn-
ing algorithm must produce a final estimate ℓ̂i for the
label ℓi of each task i based on the labels provided
by the workers. The goal of the learner is to produce
estimates that are correct with high probability while
querying workers for as few labels as possible.

Task structure: A clever learning algorithm should
infer the worker skill levels pi,j and assign workers to

tasks at which they excel. If the skills are arbitrary,
then the learner cannot infer them without assigning
every worker to every task. Therefore, it is necessary
to assume that the pi,j values exhibit some structure.
Karger et al. (2011a;b) assume that all tasks are iden-
tical, i.e., pi,j = pi′,j for all j and all i and i′. We con-
sider a more general setting in which the tasks can be
divided into T types, and assume only that pi,j = pi′,j
if i and i′ are of the same type.

Gold standard tasks: As is common in the litera-
ture (Oleson et al., 2011), we assume that the learner
has access to “gold standard” tasks of each task type.1

These are instances for which the learner knows the
true label a priori. They can be assigned in order to
estimate the pi,j values. Of course the algorithm must
pay for these “pure exploration” assignments.

Random permutation model: We analyze our
algorithm in the random permutation model as in
Devanur & Hayes (2009). The capacities Mj and skills
pi,j of each worker j may be chosen adversarially, as
long as the assumptions on task structure are satis-
fied. However, the arrival order is randomly permuted.
Since only the order of workers is randomized, the of-
fline optimal allocation is well-defined.

Competitive ratio: To evaluate our algorithm, we
use the notion of competitive ratio, which is an upper
bound on the ratio between the number of labels re-
quested by the algorithm and the number requested
by an optimal offline algorithm which has access to
all worker capacities and skill levels, but must still
assign enough workers to each task to obtain a high-
confidence guess for the task’s label. The optimal of-
fline algorithm is discussed in Sections 4 and 5.

4. An Offline Problem

To gain intuition, we first consider a simplified offline
version of our problem in which the learner is provided
with a full description of the sequence of m workers
who will arrive, including the skill levels pi,j and ca-
pacities Mj for all i and j. The learner must decide
which tasks to assign to each worker and then infer the
task labels. We discuss the inference problem first.

4.1. Aggregating Workers’ Labels

Suppose that the learner has already assigned tasks
to workers and observed the workers’ labels for these
tasks. How should the learner aggregate this informa-
tion to infer the true label for each task?

1If gold standard tasks are not available, they can be
created by assigning a small set of tasks to many workers.
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We consider aggregation methods that take a weighted
vote of the workers’ labels. Fix a task i. Let Ji denote
the set of workers assigned to this task. We consider
methods that set ℓ̂i = sign(

∑

j∈Ji
wi,jℓi,j) for some set

of weights {wi,j}. The following lemma shows that this
technique with weights wi,j = 2pi,j − 1 is guaranteed
to achieve a low error if enough high quality workers
are queried. Recall that qi,j = (2pi,j − 1)2.

Lemma 1. Let ℓ̂i = sign(
∑

j∈Ji
wi,jℓi,j) for some set

of weights {wi,j}. Then ℓ̂i 6= ℓi with probability at

most e−
1

2
(
∑

j∈Ji
wi,j(2pi,j−1))2/

∑
j∈Ji

w2

i,j . This bound is
minimized when wi,j ∝ (2pi,j − 1), in which case the

probability that ℓ̂i 6= ℓi is at most e−
1

2

∑
j∈Ji

qi,j .

The proof, which uses a simple application of Hoeffd-
ing’s inequality, is in the appendix.2 This tells us that
to guarantee that we make an error with probability
less than ǫ on a task i, it is sufficient to select a set of
labelers Ji such that Σj∈Ji

qi,j ≥ 2 ln(1/ǫ) and aggre-

gate labels by setting ℓ̂i = sign(
∑

j∈Ji
(2pi,j − 1)ℓi,j).

One might ask if it is possible to guarantee an error
of ǫ with fewer labels. In some cases, it is; if there ex-
ists an i and j such that pi,j = qi,j = 1, then one can
achieve zero error with only a single label. However,
in some cases this method is optimal. For this rea-
son, we restrict our attention to algorithms that query
subsets Ji such that Σj∈Ji

qi,j ≥ 2 ln(1/ǫ). We use the
shorthand Cǫ = 2 ln(1/ǫ).

4.2. Integer Programming Formulation

There is a significant benefit that comes from re-
stricting attention to algorithms of the form described
above. Let yi,j be a variable that is 1 if task i is as-
signed to worker j and 0 otherwise. The requirement
that

∑

j∈Ji
qi,j ≥ Cǫ can be expressed as a linear con-

straint of these variables. This would not be possible
using unweighted majority voting to aggregate labels;
weighting by 2pi,j − 1 is key. This allows us to express
the optimal offline assignment strategy as an integer
linear program (IP), with variables yi,j for each (i, j):

min Σn
i=1Σ

m
j=1yi,j

s.t. Σn
i=1yi,j ≤Mj ∀j (1)

Σm
j=1qi,jyi,j ≥ Cǫ ∀i (2)

yi,j ∈ {0, 1} ∀(i, j). (3)

Constraint (1) guarantees that worker j does not ex-
ceed her capacity. Constraint (2) guarantees that ag-
gregation will produce the correct label of each task

2An appendix containing all omitted proofs and addi-
tional details can be found in the long version of this paper
available on the authors’ websites.

with high probability. Constraint (3) implies that a
task is either assigned to a worker or not.

Note that there may not exist a feasible solution to this
IP, in which case it would not be possible to guarantee
a probability of error less than ǫ for all tasks using
weighted majority voting. For most of this paper, we
assume a feasible solution exists; the case in which one
does not is discussed in Section 5.1.

For computational reasons, instead of working directly
with this IP, we will work with a linear programming
relaxation obtained by replacing the last constraint
with 0 ≤ yi,j ≤ 1 ∀(i, j); we will see below that this
does not impact the solution too much.

4.3. Working with the Dual

Solving the linear program described above requires
knowing the values qi,j for the full sequence of workers
j up front. When we move to the online setting, it will
be more convenient to work with the dual of the re-
laxed linear program, which can be written as follows,
with dual variables xi, zj , and ti,j for all (i, j):

max CǫΣ
n
i=1xi − Σm

j=1Mjzj − Σn
i=1Σ

m
j=1ti,j

s.t. 1− qi,jxi + zj + ti,j ≥ 0 ∀(i, j)
xi, zj , ti,j ≥ 0 ∀(i, j).

We refer to xi as the task weight for i, and define the
task value of worker j on task i as vi,j = qi,jxi − 1.

Suppose that we were given access to the task weights
xi for each task i and the values qi,j . (We will discuss
how to approximate these values later.) Then we could
use the following algorithm to approximate the opti-
mal primal solution. Note that to run this algorithm,
it is not necessary to have access to all qi,j values at
once; we only need information about worker j when
it comes time to assign tasks to this worker. This is
the advantage of working with the dual.

Algorithm 1 Primal Approximation Algorithm

Input: Values xi and qi,j for all (i, j)
For every worker j ∈ {1, . . . ,m}, compute the task
values, vi,j = qi,jxi − 1, for all tasks i. Let nj be the
number of tasks i such that vi,j ≥ 0. If nj ≤Mj , then
set yij ← 1 for all nj tasks with non-negative task
value. Otherwise, set yi,j ← 1 for the Mj tasks with
highest task value. Set yi,j ← 0 for all other tasks.

The following theorem shows that this algorithm pro-
duces a near-optimal primal solution to our original
IP when given as input the optimal dual solution for
the relaxed LP. The condition that qi,jx

∗
i 6= qi′,jx

∗
i′ for

all i 6= i′ is needed for technical reasons, but can be
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relaxed by adding small random perturbations to qi,j
values as in Devanur et al. (2011).3 For the rest of the
paper, we assume that perturbations have been added
and that the condition above holds. Call this the “per-
turbation assumption.” In our final algorithm, we will
perturb our estimates of the qi,j values for this reason.

Theorem 1. Let y∗ be the primal optimal of the IP
and x∗ be the dual optimal of the relaxed formulation.
Let y be the output of the Primal Approximation Algo-
rithm given input x∗ and the true values q. Then y is
feasible in the IP, and under the perturbation assump-
tion, Σn

i=1Σ
m
j=1yi,j − Σn

i=1Σ
m
j=1y

∗
i,j ≤ min(m,n).

The proof shows that the yi,j values assigned by the
Primal Approximation Algorithm differ from the opti-
mal solution of the relaxed LP for at most min(m,n)
pairs (i, j), and that this implies the result.

5. Moving to the Online Setting

We have shown that, given access to q and the optimal
task weights x∗, the Primal Approximation Algorithm
generates an assignment which is close to the optimal
solution of the IP in Section 4.2. However, in the online
problem that we initially set out to solve, these values
are unknown. In this section, we provide methods for
estimating these quantities and incorporate these into
an algorithm for the online problem.

Our online algorithm combines two varieties of explo-
ration. First, we use exploration to estimate the op-
timal task weights x∗. To do this, we hire an addi-
tional γm workers on top of the m workers we origi-
nally planned to hire, for some γ > 0, and “observe”
their qi,j values. (We will actually only estimate these
values; see below.) Then, by treating these γm work-
ers as a random sample of the population (which they
effectively are under the random permutation model),
we can apply online primal-dual methods and obtain
estimates of the optimal task weights. These estimates
can then be fed to the Primal Approximation Algo-
rithm in order to determine assignments for the re-
maining m workers, as described in Section 5.1.

The second variety is used to estimate workers’ skill
levels. Each time a new worker arrives (including the
γm extras), we require her to complete a set of gold
standard tasks of each task type. Based on the labels
she provides, we estimate her skill levels pi,j and use
these to estimate the qi,j values. The impact of these
estimates on performance is discussed in Section 5.2.

3Adding noise will introduce an error, but this error can
be made arbitrarily small when Cǫ is large. To simplify
presentation, we do no include the error in our discussion.

If we require each worker to complete s gold standard
tasks, and we hire an extra γm workers, we need to pay
for an extra (1+γ)ms assignments beyond those made
by the Primal Approximation Algorithm. We pre-
cisely quantify how the number of assignments com-
pares with the offline optimal in Section 5.3.

5.1. Estimating the Task Weights

In this section, we focus on the estimation of task
weights in a simplified setting in which we can observe
the quality of each worker as she arrives. To estimate
the task weights, we borrow an idea from the litera-
ture on the online primal-dual framework. We use
an initial sampling phase in which we hire γm work-
ers in addition to the primary m workers, for some
γ. We observe their skill levels and treat the distribu-
tion over skills of the sampled workers as an estimate
of the distribution of skills of the m primary workers.
Given the qi,j values from the sampled γm workers, we
can solve an alternative linear programming problem,
which is the same as our relaxed offline linear program-
ming problem, except thatm is replaced by γm and Cǫ

is replaced by γCǫ. Let x̂
∗ be the optimal task weights

in this “sampled LP” problem. We show that if ǫ is
small enough, running the Primal Approximation Al-
gorithm using x̂

∗ and q yields a near-optimal solution,
with a number of assignments close to optimal, and a
prediction error close to ǫ after aggregation.

Theorem 2. For any ǫ, δ ∈ (0, 1/2), for any γ = ℓ/m
with ℓ ∈ {1, 2, · · · ,m} and γ ∈ [1/Cǫ, 1], let ŷ

s,∗ and
x̂
∗ be the primal and dual optimal solutions of the sam-

pled LP with parameters ǫ and γ. Let ŷ∗ be the out-
put of the Primal Approximation Algorithm with in-
puts x̂∗ and q, and let ȳ∗ be the optimal assignment of
the relaxed offline formulation with parameter ǫ. Let
qmin = min(i,j):ŷs,∗

i,j
>0 qi,j. Then under the perturba-

tion assumption, with probability at least 1− δ,

n
∑

i=1

m
∑

j=1

ŷ∗i,j ≤
(

1+
min(m,n)

qminnCǫ
+
35 ln(2/δ)

qmin

√
γCǫ

) n
∑

i=1

m
∑

j=1

ȳ∗i,j .

If the labels collected from the resulting assignment are
used to estimate the task labels via weighted majority
voting, the probability that any given task label is pre-
dicted incorrectly is no more than ǫ1−6 ln(2/δ)/

√
γCǫ .

The requirement that γ ≥ 1/Cǫ stems from the fact
that if Cǫ is small, the total number of assignments
will also be small, and the quality of the assignment
is more sensitive to estimation errors. If Cǫ is large,
small estimation errors effect the assignment less and
we can set the sampling ratio to a smaller value.

In the proof, we show that the gap between the ob-
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jectives of the primal solution generated by the Pri-
mal Approximation Algorithm using x̂

∗ and q and the
corresponding dual solution is exactly the summation
of x̂∗

i (Cǫ−Σm
j=1qi,j ŷ

∗
i,j) over all tasks i, which is small

if enough workers are sampled. By weak duality, the
optimal number of assignments is between the primal
and the dual objectives, so the primal solution output
by the algorithm must be near-optimal.

A note on feasibility: We have implicitly assumed
that the sampled LP is feasible. In practice, it may
not be, or even if it is, there may exist tasks i such
that minj:ŷs,∗

i,j
>0 qi,j is very small, leading to a small

value of qmin. If either of these things happen, the
task requester may want to discard some of the tasks
or lower his desired error, solve the sampled LP with
these modified constraints, and continue from there,
as there is no way to guarantee low error on all tasks.

5.2. Using Estimates of Skill Levels

We now discuss the effect of estimating worker skills.
Given observations of the gold standard tasks of type
τ that worker j completed, we can estimate pi,j for
any task i of type τ as the fraction of these tasks she
labeled correctly. The following lemma, follows from
a straightforward application of the Hoeffding bound;
we state it here as it will be useful, but omit the proof.

Lemma 2. For any worker j, for any task type τ ,
and for any t, δ ∈ (0, 1), suppose that worker j labels
ln(2/δ)/(2t2) gold standard tasks of type τ . Then with
probability at least 1− δ, for all tasks i of type τ , if we
set p̂i,j to the fraction of gold standard tasks of type τ
answered correctly then |pi,j − p̂i,j | ≤ t.

This estimate of pi,j can then be used to derive an
estimate for qi,j , with error bounded as follows.

Lemma 3. For any worker j and task i, if p̂i,j is an
estimate of pi,j such that |pi,j − p̂i,j | ≤ t, and q̂i,j is
set to (2p̂i,j − 1)2, then |qi,j − q̂i,j | ≤ 4t.

Of course the use of estimated values impacts per-
formance. Consider the offline problem discussed in
the previous section. One might hope that if we ap-
plied the Primal Approximation Algorithm using q̂,
the number of assignments would be close to the num-
ber made using q. Unfortunately, this is not true.
Consider this toy example. Let qi,1 = qi,2 = qi,3 = 1
for all i, qi,j = 10−4 for all i and j > 3, and Mj = n
for all j. Set ǫ = 0.224 so that Cǫ ≈ 3. In the op-
timal solution, each task i should be assigned only to
workers 1, 2, and 3. If we underestimate the qi,j val-
ues, we could end up assigning each task to many more
workers. This can be made arbitrarily bad.

To address this, instead of solving the relaxed offline
formulation directly, we consider an alternative LP
which is identical to the relaxed offline formulation,
except that q is replaced with q̂ and Cǫ is replaced
with a smaller value Cǫ′ (corresponding to a higher al-
lowable error ǫ′). We call this the approximated LP.
We show that, if ǫ′ is chosen properly, we can guar-
antee the optimal solution in the relaxed offline for-
mulation is feasible in the approximated LP, so the
optimal solution of the approximated LP will yield an
assignment with fewer tasks assigned to workers than
the optimal solution of the relaxed offline formulation,
even though it is based on estimations.

To set ǫ′, we assume the requester has a rough idea
of how hard the tasks are and how inaccurate his
estimates of worker skills are. The latter can be
achieved by applying Lemma 2 and the union bound
to find a value of t such that |pi,j − p̂i,j | ≤ t for
all (i, j) pairs with high probability, and setting each
q̂i,j = (2p̂i,j − 1)2 as in Lemma 3. For the former, let
ȳ∗ be the optimal solution of the relaxed offline formu-
lation. Define q̄∗i = Σm

j=1qi,j ȳ
∗
i,j/Σ

m
j=1ȳ

∗
i,j . We assume

that the requester can produce a value q̄∗min such that
q̄∗min ≤ q̄∗i for all i and then set Cǫ′ = 2 ln(1/ǫ′) where
ǫ′ = ǫ1−4t/q̄∗min . If the requester doesn’t have much in-
formation, he can conservatively set q̄∗min much smaller
than mini{q̄∗i }, but will both need more accurate esti-
mates of pi,j and sacrifice some prediction accuracy.

Theorem 3. Assume that we have access to a value
q̄∗min such that q̄∗min ≤ q̄∗i for all i and values p̂i,j such
that |pi,j − p̂i,j | ≤ t for all (i, j) pairs for any known
value t < q̄∗min/4. Then for any ǫ > 0, the opti-
mal solution of the approximated LP with parameter
ǫ′ = ǫ1−4t/q̄∗min and skill levels q̂i,j = (2p̂i,j − 1)2 is no
bigger than the optimal solution of the relaxed offline
formulation with parameter ǫ and skill levels qi,j.

Of course this guarantee is not free. We pay the price
of decreased prediction accuracy since we are using ǫ′

in place of ǫ. We also pay when it comes time to ag-
gregate the workers’ labels, since we must now use q̂ in
place of q when applying the weighted majority voting
method described in Section 4.1. This is quantified in
the following theorem. Note that this theorem applies
to any feasible integer solution of the approximated
LP and therefore also the best integer solution.

Theorem 4. Assume again that we have access to
a value q̄∗min such that q̄∗min ≤ q̄∗i for all i and val-
ues p̂i,j such that |pi,j − p̂i,j | ≤ t for all (i, j) pairs
for any known value t < q̄∗min/4. For any ǫ > 0, let
y be any feasible integer assignment of the approxi-
mated LP with parameter ǫ′ = ǫ1−4t/q̄∗min and skill lev-
els q̂i,j = (2p̂i,j−1)2. Let Ji = {j : yi,j = 1} denote the
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set of workers that are assigned to task i according to
y , and define q̂i = Σj∈Ji

qi,j/ |Ji|. If the tasks are as-
signed according to y and the results aggregated using
weighted majority voting with weights wi,j = 2p̂i,j − 1,
the error probability of the predicted task label for task
i is bounded by ǫ(1−4t/q̄∗min)(1−4t/q̂i).

Theorem 4 tells us that if our estimates of the worker
skills are accurate (i.e., if t is small), then our pre-
diction error will be close to the error we would have
achieved if we had known the true worker skills. How
good the estimates need to be depends on the quality
of the workers, as measured by q̄∗min and q̂i. Intu-
itively, if q̄∗min is small, there may exist some task i
at which workers perform poorly in the optimal solu-
tion. In this case, the assignment will be very sensitive
to the value of ǫ′ chosen, and it will be necessary to
set ǫ′ larger to guarantee that the true optimal solu-
tion is feasible in the approximated LP. If q̂i is small,
then a small amount of error in estimated worker qual-
ity would dramatically change the weights used in the
weighted majority voting aggregation scheme.

5.3. Putting it All Together

We have separately considered relaxations of the task
assignment and label inference problem in which the
optimal task weights or worker skill levels are already
known. We now put all these pieces together, give a
combined algorithm, and state our main theorem.

Algorithm 2 Main Algorithm

Input: Values (ǫ, γ, s, and q̄∗min)
Hire γm preliminary workers.
for each preliminary worker do

Assign s gold standard tasks of each task type.
Calculate q̂i,j values as in Section 5.2 and per-
turb with a negligible amount of noise.

end for

Calculate Cǫ′ and solve the sampled LP with q̂ to
obtain primal ys and dual x̂∗ as in Section 5.1.
for each worker j ∈ {1, ...,m} do

Assign s gold standard tasks of each task type.
Calculate q̂i,j values as in Section 5.2 and per-
turb with a negligible amount of noise.
Run the Primal Approximation Algorithm with
inputs x̂∗ and (perturbed) q̂ to y.
Assign worker j to all tasks i with yi,j = 1.

end for

Aggregate the workers’ labels using weighted ma-
jority voting as in Section 4.1.

The complete algorithm is stated in Algorithm 2, and
its performance guarantee is given below. Recall that

T is the number of task types. Again, we assume that
the optimization problems are feasible.

Theorem 5. For any ǫ, δ ∈ (0, 1/2), for any γ = ℓ/m
for an ℓ ∈ {1, 2, ...,m} such that γ ∈ [1/Cǫ, 1], as-
sume we have access to a value q̄∗min satisfying the
condition in Theorem 3, let s be any integer satis-
fying s ≥ 8 ln(4T (1 + γ)m/δ)/q̄∗2min, and let ǫ′ =

ǫ1−4
√

ln(4T (1+γ)m/δ)/(2s)/q̄∗min . Then under the per-
turbation assumption, with probability at least 1 −
δ, when the Main Algorithm is executed with input
(ǫ, γ, s, q̄∗min) , the following two things hold:

1) The number of assignments of to non-gold standard
tasks is no more than

(

1 +
min(m,n)

q̂minnCǫ′
+

35 ln(4/δ)

q̂min

√
γCǫ′

)

times the optimal objective of the IP, where q̂min =
min(i,j):ys

i,j
=1 q̂

s
i,j.

2) The probability that the aggregated label for each
task i is incorrect is bounded by ǫ(1−l1)(1−l2)(1−l3,i),
where l1 = 4t/q̄∗min, l2 = 6 ln(4/δ)/

√
γCǫ′ , l3,i = 4t/q̂i,

and t =
√

ln(4T (1 + γ)m/δ)/(2s).

When ǫ is small, Cǫ′ is large, and l2 approaches 0. The
competitive ratio may shrink, but if ǫ is too small, q̂min

will shrink as well, and at some point the problem may
become infeasible. When s is large, t is small, and so
l1 and l3,i approach 0, leading to error almost as low
as if we knew the true q values, as we would expect.

6. Synthetic Experiments

In this section, we evaluate the performance of our
algorithm through simulations on synthetically gener-
ated data. As a comparison, we also run the message-
passing inference algorithm of Karger et al. (2011a;b)
on the same data sets. As described in Section 2,
Karger et al. use a non-adaptive, random assignment
strategy in conjunction with this inference algorithm.
We show that adaptively allocating tasks to workers
using our algorithm can outperform random task as-
signment in settings in which (i) the worker distribu-
tion is diverse, or (ii) the set of tasks is heterogeneous.

We create n = 1, 000 tasks and m = 300 workers with
capacity Mj = 200 for all j, and vary the distribution
over skill levels pi,j . We would like to compare the
error rates of the algorithms when given access to the
same total number of labels. In the message-passing
algorithm, we can directly set the number of labels by
altering the number of assignments. In our algorithm,
we change the parameter ǫ and observe the number of
labels (including exploration) and the prediction error.
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Figure 1. Uniform tasks with one or two worker types.

6.1. Worker Diversity

In their analysis, Karger et al. assume there is only
one task type (that is, pi,j = pi′,j for all i, i′, and
j), and claim that in this setting adaptively assigning
tasks does not yield much of an advantage. Our first
experiment simulates this setting. We would like to
see if our algorithm can perform better if the worker
distribution is diverse, even though it requires some
“pure exploration” — we need to pay each worker to
complete the gold standard tasks, and we need to hire
an extra γm workers to estimate the task weights.

For our algorithm, we set γ = 0.3 and sample 90 ex-
tra workers from the same distribution to learn task
weights. Each worker is required to complete s = 20
gold standard tasks of each type when she arrives.
These values were not optimized, and performance
could likely be improved by tuning these parameters.

We examine two settings. In the first, every worker
gives us a correct label with probability 0.6414 for all
tasks. In the second, the population is 50% spammers
and 50% hammers. The spammers give random an-
swers, while the hammers answer correctly with prob-
ability 0.7. Note that these values are chosen such that
E[qi,j ] = E[(2pi,j − 1)2] is the same in both settings.

The results are shown in Figure 1. The performance
of the message-passing algorithm is almost identical in
the two settings. Our algorithm performs relatively
poorly in the setting with uniform workers since we
can’t benefit from adaptive assignments but still pay
the exploration costs. However, our algorithm outper-
forms message passing in the setting with two types
of workers, quickly learning not to assign any tasks to
the spammers beyond those used for exploration.

6.2. Heterogeneous Tasks

We next examine a setting in which there are multiple
types of tasks, and every worker is skilled at exactly
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our algorithm: k=1
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message-passing: k=1
message-passing: k=2
message-passing: k=3

Figure 2. Heterogeneous tasks.

one type. We generate k task types and k correspond-
ing worker types, for k = 1, 2, and 3. Type α workers
complete type α tasks correctly with probability 0.7,
but other tasks correctly with probability 0.5.

For our algorithm, we set γ = 0.3. Each worker com-
pletes s = 10 gold standard tasks of each type.

The results are shown in Figure 2. Not surprisingly,
since the message-passing algorithm does not attempt
to match tasks to suitable workers, its performance
degrades quickly when k grows. Since our algorithm
attempts to find the best match between workers and
tasks, the performance degrades much more slowly
when k grows, even with the extra exploration costs.

7. Conclusion

We conclude by mentioning several extensions of our
model. We have assumed that the requester pays the
same price for any label. Our results can be extended
to handle the case in which different workers charge
different prices. Let ci,j denote the cost of obtaining
a label for task i from worker j. The objective in the
integer program would become Σn

i=1Σ
m
j=1ci,jyi,j . This

is linear and the same techniques would apply.

The framework can also be extended to handle more
intricate assumptions about the structure of tasks.
We have assumed that there are T task types, with
pi,j = pi′,j whenever i and i′ are of the same type.
However, this assumption is used only in the explo-
ration phase in which workers’ skills are estimated.
While the amount of exploration required by the al-
gorithm depends on the particular task structure as-
sumed, the derivation of our algorithm and the general
analysis are independent of the task structure.
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A. Appendix

A.1. Proof of Lemma 1

Without loss of generality, assume that ℓi = 1.
Let Xi,j be a random variable which represents the
weighted label, so

Xi,j =

{

wi,j , with probability pi,j ,

−wi,j , with probability 1− pi,j ,

and let Xi =
∑

j∈Ji
Xi,j .

Recall that we predict that task i has label 1 if Xi ≥ 0
and has label −1 otherwise. Since the true label is 1,
bounding Pr(Xi ≤ 0) would give us a bound on the
probability of an error. We will need that

E[Xi] =
∑

j∈Ji

E[Xi,j ]

=
∑

j∈Ji

(pi,jwi,j − (1− pi,j)wi,j)

=
∑

j∈Ji

(wi,j(2pi,j − 1)).

Note that Pr(Xi ≤ 0) = Pr(E[Xi]−Xi ≥ E[Xi]). By
Hoeffding’s inequality, we have

Pr(Xi ≤ 0) ≤ exp

(

− 2(E[Xi])
2

∑

j∈Ji
(2wi,j)2

)

= exp

(

−
(
∑

j∈Ji
wi,j(2pi,j − 1))2

2
∑

j∈Ji
w2

i,j

)

.

This shows the first part of this lemma. This error
bound is maximized when the expression

(
∑

j∈Ji
wi,j(2pi,j − 1))2

2
∑

j∈Ji
w2

i,j

is minimized. Setting the gradient of this expression
to 0, we see that this happens when for every k,

∑

j∈Ji
wi,j(2pi,j − 1)
∑

j∈Ji
w2

i,j

wi,k = 2pi,k − 1,

i.e., when wi,k ∝ 2pi,k − 1. (Note that scaling the

weights will not change the bound since ℓ̂i will not
change.) Plugging wi,j = 2pi,j − 1 into the bound
from the first half of the lemma, we get that

Pr(Xi ≤ 0) ≤ exp

(

−
(
∑

j∈Ji
qi,j)

2

2
∑

j∈Ji
qi,j

)

= exp



−1

2

∑

j∈Ji

qi,j



 .

A.2. Proof of Theorem 1

The bulk of this proof involves showing that there ex-
ists a primal optimal ȳ∗ for the relaxed linear pro-
gram such that for at most min(m,n) pairs of (i, j),
ȳ∗i,j 6= yi,j . Therefore, since ȳ∗i,j , yi,j ∈ [0, 1] for all i

and j,
∑n

i=1

∑m
j=1(yi,j − ȳ∗i,j) ≤ min(m,n). To com-

plete the proof, we will use the fact that y∗ is feasible
in the relaxed linear program to show that this implies
the result.

We start with a helpful lemma that characterizes the
dual optimal solution of the relaxed linear program.

Lemma 4. If x∗ is the optimal value of x in any dual
optimal solution, then there exists a dual optimal so-
lution (x∗, z∗, t∗) such that for each j ∈ {1, · · · ,m},

z∗j =

{

0, if nj ≤Mj ,

vcj ,j , otherwise

where vi,j = qi,jx
∗
i −1 is the task value for (i, j) and cj

is the task with the Mjth largest task value for worker
j among all tasks.

Proof. We prove the lemma in two steps. In Step
1, we show that there cannot exist a dual optimal
(x∗, z̄, t̄) such that z̄j 6= vcj ,j for some j such that
nj > Mj . In Step 2, we show that if there exists a
dual optimal (x∗, z̄, t̄) such that z̄j 6= 0 for some j
with nj ≤Mj , then there exists another dual optimal
solution (x∗, z̄′, t̄′) such that

z̄′k =

{

z̄k, if k 6= j,

0, if k = j,
(4)

and

t̄′i,k =

{

t̄i,k, if k 6= j or k = j and vi,j < 0,

t̄i,k + z̄j , otherwise.
(5)

Therefore, starting with any dual solution, we can
transform it into a solution satisfying the condition
that z∗j = 0 if nj ≤ Mj by repeating this transforma-
tion for any workers j for which the condition did not
originally hold.

In the following proof, we define the function g to rep-
resent the dual objective:

g(x, z, t) = Cǫ

n
∑

i=1

xi −
m
∑

j=1

Mjzj −
n
∑

i=1

m
∑

j=1

ti,j .

Recall that the dual constraints are

1− qi,jxi + zj + ti,j ≥ 0 ∀(i, j),
xi, zj , ti,j ≥ 0.
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Step 1: Assume by contradiction that there exists a
dual optimal (x∗, z̄, t̄) and worker j such that z̄j 6=
vcj ,j and nj > Mj . Below we show that we can always

generate a dual feasible solution (x∗, z̄′, t̄′) which leads
to higher dual objective. Therefore, (x∗, z̄, t̄) cannot
be optimal.

Define

z̄′k =

{

z̄k, if k 6= j,

vcj ,j , if k = j,

and

t̄′i,k =











t̄i,k, if k 6= j or k = j and vi,j < 0

or k = j and vi,j ≥ 0 and z̄j > vcj ,j ,

t̄i,k + vcj ,j − z̄j , otherwise.

1) Suppose that z̄j < vcj ,j . We can observe that
z̄′j > z̄j and t̄′i,k ≥ t̄i,k for all k. Since (x∗, z̄, t̄) is

dual feasible, We can verify that (x∗, z̄′, t̄′) is also dual
feasible.

Next we show that (x∗, z̄′, t̄′) leads to higher dual ob-
jective than (x∗, z̄, t̄).

g(x∗, z̄, t̄)− g(x∗, z̄′, t̄′)

= −Mj z̄j +Mjvcj ,j −
∑

i:vi,j≥0

vcj ,j +
∑

i:vi,j≥0

z̄j

= (z̄j − vcj ,j)(nj −Mj) < 0.

Therefore, (x∗, z̄, t̄) couldn’t have been optimal.

2) Suppose that z̄j > vcj ,j . Note that (x∗, z̄, t̄) is dual

feasible, and the only change in (x∗, z̄′, t̄′) is that z̄′j =
vcj ,j . We need only examine if −vcj ,j + z̄′j + t̄i,j ≥ 0
to check the dual feasibility. Since t̄′i,j ≥ 0, we know

(x∗, z̄′, t̄′) is dual feasible.

Furthermore, (x∗, z̄′, t̄′) also leads to higher dual ob-
jective:

g(x∗, z̄, t̄)− g(x∗, z̄′, t̄′) = −Mj z̄j +Mjvcj ,j

= Mj(vcj ,j − z̄j) < 0.

Therefore, (x∗, z̄, t̄) couldn’t have been optimal. This
shows that there cannot be a dual optimal solution
with z∗j 6= vcj ,j for some j with nj > Mj .

Step 2: Assume there exists a dual optimal solution
(x∗, z̄, t̄) and worker j such that z̄j > 0 and nj ≤Mj .
Below we show that (x∗, z̄′, t̄′), as defined in Equa-
tions 4 and 5, is dual feasible, and the dual objective
g(x∗, z̄′, t̄′) is no less than g(x∗, z̄, t̄).

To show feasibility, first observe that for all k 6= j, the
dual variables z̄′k and t̄′i,k are not changed. Therefore,

we need only check if the constraint −vi,k+z̄′k+t̄′i,k ≥ 0
holds for all i and k = j. Observing Equations 4 and 5,
when vi,j < 0, the constraint trivially holds since z̄′k
and t̄′i,k are nonnegative. When vi,j ≥ 0, the left-hand
side of the constraint can be written as vi,j + t̄i,k + z̄j ,
which is larger then or equal to 0 since (x∗, z̄, t̄) is dual
feasible. Therefore, (x∗, z̄′, t̄′) is also dual feasible.

Furthermore, we have

g(x∗, z̄, t̄)− g(x∗, z̄′, t̄′) = −Mj z̄j +
∑

i:vi,j≥0

z̄j

= (−Mj + nj)z̄j ≤ 0.

Therefore, (x∗, z̄′, t̄′) must be an optimal dual solution.

Combining this with Step 1, we can always transform
any dual solution (x∗, z∗, t∗) into another that satisfies
the properties in the lemma without changing x∗.

Given the dual optimal above, using complementary
slackness, we can characterizes the primal optimal so-
lution ȳ∗. Below we list the cases in which ȳ∗i,j takes
on integer values. Looking ahead, we will see that in
all of these cases, ȳ∗i,j and yi,j do not differ. We can
then show there are at most min(m,n) pairs of yi,j
such that yi,j 6= ȳ∗i,j .

Lemma 5. Consider a dual optimal solution
(x∗, z∗, t∗) satisfying the criteria in Lemma 4, and
let ȳ∗ be the corresponding primal optimal solution to
the relaxed linear programming problem. Let vi,j =
qi,jx

∗
i − 1 be the task value for (i, j) and cj be the task

with the Mjth largest task value for worker j among
all tasks. For all (i, j),

1. If vi,j < 0 then ȳ∗i,j = 0.

2. If vi,j > 0 & nj ≤Mj then ȳ∗i,j = 1.

3. If vi,j > 0, nj > Mj, & vi,j > vcj ,j, then ȳ∗i,j = 1.

4. If vi,j > 0, nj > Mj, & vi,j < vcj ,j, then ȳ∗i,j = 0.

Proof. We prove the four parts in turn. First, it is
useful to note that by complementary slackness, we
have

ȳ∗i,j(1− qi,jx
∗
i + z∗j + t∗i,j) = 0 ∀(i, j), (6)

t∗i,j(ȳ
∗
i,j − 1) = 0 ∀(i, j). (7)

Part 1: The first part is simple. Since z∗j , t
∗
ij ≥ 0, if

vi,j < 0, it must be the case that 1−qi,jx
∗
i +z∗j +t∗i,j >

0. From Equation 6, we have ȳ∗i,j = 0.

Part 2: From Lemma 4, if nj ≤Mj then z∗j = 0. When
z∗j = 0 and vi,j > 0, we must have that t∗i,j ≥ vi,j in
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order to satisfy the first dual constraint. Equation 7
then implies that ȳ∗i,j = 1.

Part 3: From Lemma 4, if nj > Mj then z∗j = vcj ,j . In
this case, when vi,j > vcj ,j , by the dual constraints we
must have t∗i,j ≥ vi,j − vcj ,j > 0, and by Equation 7,
ȳ∗i,j = 1.

Part 4: Again, from Lemma 4, since nj > Mj we know
that z∗j = vcj ,j . In this case, if vi,j < vi′,j , then any
ti,j ≥ 0 is feasible. Since ti,j appears negated in the
objective and does not appear in other constraints, we
must have t∗i,j = 0. This implies that 1− qi,jx

∗
i + z∗j +

t∗i,j > 0, and by Equation 6, ȳ∗i,j = 0.

One can verify that in all of the cases covered by
Lemma 5, ȳ∗i,j = yi,j . Notice that the only case not
covered by this lemma is the case in which vi,j > 0,
nj > Mj , and vi,j = vcj ,j . Since we have assumed that
vi,j 6= vi′,j unless i = i′, this can happen at most once
for each worker j, and, therefore, at most m times in
total. In cases where yi,j and ȳ∗i,j differ, yi,j = 1 and
ȳ∗i,j ∈ [0, 1]. Hence,

n
∑

i=1

m
∑

j=1

yi,j −
n
∑

i=1

m
∑

j=1

ȳ∗i,j ≤ m. (8)

Since yi,j ∈ {0, 1}, we know that for each worker j,
there exists at most one task i such that ȳ∗i,j 6∈ {0, 1}.
Furthermore, we know that if such a task exists, the
Primal Approximation Algorithm assigns the task to
worker j, i.e., yi,j = 1. Below we further argue that
for each task i, there exists at most one worker j such
that ȳ∗i,j 6∈ {0, 1}, and this worker is the one with
minimum skill level qi,j among all the workers with
yi,j = 1. Hence, the difference in Equation 8 can be
upper bounded by n as well.

Let ji be the worker with the minimum skill level
among all the workers with yi,j = 1. As we will de-
scribe in Section A.3, we can add random noise to the
qi,j values such that qi,j 6= qi′,j′ unless i = i′ and
j = j′. Assume for contradiction that there exists a
worker j 6= ji such that ȳ∗i,j /∈ {0, 1}. We know that the
Primal Approximation Algorithm sets yi,j to 1 when
ȳ∗i,j /∈ {0, 1}. Therefore, we have qi,j > qi,ji by defini-
tion of ji. Let ∆ = min(qi,ji ȳ

∗
i,ji

/qi,j , 1−ȳ∗i,j). Suppose
that we increased the value of ȳ∗i,j by ∆ and decreased
the value of ȳ∗i,ji by qi,j∆/qi,ji . It is easy to verify
that no constraints of the relaxed offline formulation
would be violated, but the objective would decrease
since qi,j > qi,ji . This is a contradiction. Therefore,
for each task i, there exists at most one worker j such
that ȳ∗i,j 6∈ {0, 1}, and this worker is the one with mini-
mum skill level qi,j among all the workers with yi,j = 1.

Hence,
n
∑

i=1

m
∑

j=1

yi,j −
n
∑

i=1

m
∑

j=1

ȳ∗i,j ≤ n. (9)

Combining Equations 8 and 9

n
∑

i=1

m
∑

j=1

yi,j −
n
∑

i=1

m
∑

j=1

ȳ∗i,j ≤ min(m,n).

Finally, since y∗ (the optimal solution of the IP) is fea-
sible in the relaxed linear program where ȳ∗ is optimal,
we know that

n
∑

i=1

m
∑

j=1

ȳ∗i,j ≤
n
∑

i=1

m
∑

j=1

y∗i,j .

Putting these together, we have

n
∑

i=1

m
∑

j=1

yi,j −
n
∑

i=1

m
∑

j=1

y∗i,j ≤ min(m,n),

which completes the proof of Theorem 1.

A.3. Discussion of Perturbation Assumption

In Section 4.3 where we introduced the perturbation
assumption, we claimed that we can add small ran-
dom perturbations (noise) to the qi,j values as in
Devanur & Hayes (2009) to satisfy the condition that
qi,jxi 6= qi′,jxi′ for i 6= i′. In this section, we explain
the details of the claim.

First of all, note that if all the qi,j values (i) are de-
termined independently, and, (ii) are in general posi-
tion in R, then the probability that any two qi,j values
are the same is 0 (Devanur & Hayes, 2009). However,
in our solution, the qi,j values are estimated by our
exploration phase. Since the number of exploratory
assignments are small, there is only a limited number
of possible qi,j values. Therefore, the probability of
the qi,j values being all different is clearly non-zero.
To remedy this, we can add a small amount of noise
to the qi,j values after estimating them empirically. If
the noise is drawn from a uniform distribution, the new
noisy qi,j values will be in general position. Therefore,
the probability that two noisy qi,j values are the same
is 0 after adding the noise. Note that we can set the
random noise arbitrarily small to reduce the effects of
it in our analysis. For example, if we know the error
in estimating the qi,j values is bounded by t, then the
amount of random noise can be set to something much
smaller than t.

Second, we show that when qi,j values are all different,
at most n − 1 ties in the qi,jx

∗
i values can happen.
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Note that for some worker j and two tasks i and i′,
if qi,jx

∗
i = qi′,jx

∗
i′ , then x∗

i = x∗
i′(qi′,j/qi,j). Hence,

in the worst case, an adversary could create at most
n − 1 ties by adjusting the x∗ values since the noisy
qi,j values are in general position.

A.4. Proof of Theorem 2

We first characterize some properties of the Primal
Approximation Algorithm. In order to do this, we
consider the expanded version of the algorithm in Al-
gorithm 3. Its behavior is identical to the algorithm
stated in Section 4.3 in terms of the way that the as-
signments yi,j are made, but it also includes settings
for the dual variables z and t as well.

Algorithm 3 The Expanded Primal Approximation
Algorithm, which explicitly sets dual variables.

Input: Values xi and qi,j for all (i, j)
Output: Values yi,j , ti,j , zj for all (i, j)
Calculate task values vi,j = qi,jxi − 1 for all i.
if there are no more than Mj tasks with vi,j ≥ 0
then

Aet zj to 0.
for every task i with vi,j ≥ 0 do

Set ti,j = vi,j = qi,jxi − 1.
Set yi,j = 1.

end for

for every task i with vi,j < 0 do

Set ti,j = 0.
Set yi,j = 0.

end for

end if

if there are more than Mj tasks with vi,j ≥ 0
then

Set zj to a value such that there are exactly Mj

tasks with vi,j − zj ≥ 0.
for every task i with vi,j − zj ≥ 0 do

Set ti,j = vi,j − zj = qi,jxi − 1− zj .
Set yi,j = 1.

end for

for every task i with vi,j − zj < 0 do

Set ti,j = 0.
Set yi,j = 0.

end for

end if

This expanded version of the algorithm can be used to
prove the following lemma.

Lemma 6. Given any inputs x and q, let y and (z, t)
be the primal assignments and dual variables set by the
Expanded Primal Approximation Algorithm. Let P (y)
and D(x, z, t) denote the primal and dual objective.

Then under the perturbation assumption,

P (y) = D(x, z, t) +
n
∑

i=1





m
∑

j=1

qi,jyi,j − Cǫ



xi.

Proof. By examining the Expanded Primal Approxi-
mation Algorithm, one can easily verify the following
properties.

1. If ti,j > 0, then yi,j = 1.

2.
∑n

i=1 yi,j ≤Mj .

3. If
∑n

i=1 yi,j < Mj , then zj = 0.

4. If yi,j = 1, then zj + ti,j = qi,jxi − 1.

By definition, the dual objective can be written as

D(x, z, t) = Cǫ

n
∑

i=1

xi −
m
∑

j=1

Mjzj −
n
∑

i=1

m
∑

j=1

ti,j .

Note that the first property implies Σn
i=1Σ

m
j=1ti,j =

Σn
i=1Σ

m
j=1ti,jyi,j . The second and third properties to-

gether imply Mjzj = (Σn
i=1yi,j)zj . Hence,

D(x, z, t) = Cǫ

n
∑

i=1

xi −
m
∑

j=1

(

n
∑

i=1

yi,j)zj −
n
∑

i=1

m
∑

j=1

ti,jyi,j

= Cǫ

n
∑

i=1

xi −
n
∑

i=1

m
∑

j=1

(zj + ti,j)yi,j .

Finally, since yi,j ∈ {0, 1}, the fourth property implies
that (zj + ti,j)yi,j = (qi,jxi − 1)yi,j . Therefore,

D(x, z, t) = Cǫ

n
∑

i=1

xi −
n
∑

i=1

m
∑

j=1

(qi,jxi − 1)yi,j

= Cǫ

n
∑

i=1

xi −
n
∑

i=1

m
∑

j=1

(qi,jyi,j)xi +

n
∑

i=1

m
∑

j=1

yi,j

= P (y)−
n
∑

i=1





m
∑

j=1

qi,jyi,j − Cǫ



xi.

In our algorithm, we hire an extra γm workers and ob-
serve their skill levels qi,j . We then solve the sampled
LP, which consists of these γm workers. Let x̂

∗ be
the optimal task weights of the sampled LP. We then
apply the Primal Approximation Algorithm with in-
puts x̂∗ and qi,j values of the primary m workers. We
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denote ŷ∗ as the assignments generated by the Primal
Approximation Algorithm using these two inputs.

By observing Algorithm 3, we can see that as long as
the input xi is non-negative for all i, zj and ti,j will
be non-negative and 1− qi,jxi + zj + ti,j ≥ 0. There-
fore, the Primal Approximation Algorithm always gen-
erates feasible dual solutions, and the dual objective
D(x, z, t) is no bigger than primal optimal by weak
duality for any inputs x and q, subject to xi ≥ 0 for
all i.

Next we bound the values of x̂∗
i (in Lemma 7) and

Σm
j=1qi,j ŷ

∗
i,j − Cǫ (in Lemma 9). And then we can

show the primal objective is close to optimal.

Lemma 7. For every i ∈ {1, · · · , n} and j ∈
{1, · · · , γm}, let qsi,j be a value in [0, 1] perturbed by
random noise so that qsi,j 6= qsi′,j′ unless i = i′ and
j = j′. Let x̂

∗ be the optimal task weights of the
sampled LP with these perturbed values. Let ŷs,∗ de-
note the assignment generated by applying the Pri-
mal Approximation Algorithm with inputs x̂

∗ and qs.
Then under the perturbation assumption, for all i,
x̂∗
i = 1/min{j:ŷs,∗

i,j
=1} q

s
i,j.

Proof. In this proof, our discussion is restricted to the
sampled LP. Therefore, we omit all the superscript s
in the notations.

Let ji be the worker with minimum skill level for task
i among the set of workers assigned to task i, i.e., ji =
argminj:ŷ∗

i,j
=1 qi,j . Note that ji is uniquely specified

since all qi,j values are different.

Let ȳ∗ be the optimal solution of the sampled LP. By
the same argument as the one in the proof of Theo-
rem 1, we know that for each worker j, there exists
at most one task i such that ȳ∗i,j 6= ŷ∗i,j , which implies
that for each worker j, there exists at most one task i
such that ȳ∗i,j 6∈ {0, 1}. Furthermore, we know that if
such a task exists, the Primal Assignment Algorithm
assigns the task to worker j, i.e., ŷ∗i,j = 1.

We now show that if ȳ∗i,j 6∈ {0, 1}, then j = ji. This
means for each task i, there exists at most one worker j
such that ȳ∗i,j 6∈ {0, 1}, and this worker is the one with
minimum skill level among all the workers who are
assigned to that task. Assume for contradiction that
there exists a worker j 6= ji such that ȳ∗i,j ∈ (0, 1). We
know that this worker is assigned to task i by the Pri-
mal Approximation Algorithm and so qi,j > qi,ji . Let
∆ = min(qi,ji ȳ

∗
i,ji

/qi,j , 1 − ȳ∗i,j). Suppose that we in-
creased the value of ȳ∗i,j by ∆ and decreased the value
of ȳ∗i,ji by qi,j∆/qi,ji . It is easy to verify that no con-
straints of the sampled LP would be violated, but the
objective would increase since qi,j > qi,ji . This is a

contradiction.

Since the qi,j values have been randomly perturbed,
there cannot exist any set of workers Ji for any task i
such that Σj∈Ji

qi,j = Cǫ. Together with the last para-
graph and the fact that Σjqi,j ȳ

∗
i,j = Cǫ, this implies

that for each task i, ȳ∗i,ji 6∈ {0, 1}.
With this fact in place, we are ready to show that
x̂∗
i = 1/qi,ji for all i. Let (x̂∗, ẑ∗, t̂

∗
) denote the dual

optimal solution of the sampled LP.

First, assume there exists a task i such that x̂∗
i >

1/qi,ji . Then we know that 1 − qi,ji x̂
∗
i < 0. Recall

that by the dual constraints, 1− qi,j x̂
∗
i + ẑ∗j + t̂∗i,j ≥ 0

for all (i, j). Therefore, we have either ẑ∗ji > 0 or

t̂∗i,ji > 0. However, by complementary slackness, if

t̂∗i,ji > 0, we have ȳ∗i,ji = 1, which is a contradiction to
the property above. On the other hand, if ẑ∗ji > 0, then
Σn

i=1ȳ
∗
i,ji

= Mj . Since Mj is an integer and there exist
at most one task i such that ȳ∗i,ji 6∈ {0, 1}, we have
ȳ∗i,ji ∈ {0, 1}. This is also a contradiction. Therefore,
we must have that x̂∗

i ≤ 1/qi,ji .

Now assume there exists a task i such that x̂∗
i < 1/qi,ji .

Then 1−qi,ji x̂∗
i > 0. Therefore 1−qi,ji x̂∗

i + ẑ∗ji+ t̂∗i,ji >
0, which, by complementary slackness, means ȳ∗i,ji = 0.
This is again a contradiction.

From the previous two paragraphs, we know that x̂∗
i =

1/qi,ji for all i.

Next, we bound the value of Σm
j=1qi,j ŷ

∗
i,j − Cǫ. The

proof relies on Lemma 3 of (Devanur & Hayes, 2009),
which we restate here for completeness.

Lemma 8. (Devanur & Hayes, 2009) Let Y =
(Y1, ..., Ym) be a vector of random variables. For any
γ ∈ (0, 1) such that γm is an integer, let S be a random
subset of {1, . . . ,m} of size γm, and YS =

∑

j∈S Yj.
Then under the perturbation assumption, for any δ ∈
(0, 1),

Pr(|YS −E[YS ]| ≥
2

3
‖Y ‖∞ ln

2

δ
+ ‖Y ‖2

√

2γ ln
2

δ
) ≤ δ.

Lemma 9. For any given task i, with probability of at
least 1− δ,

m
∑

j=1

qi,j ŷ
∗
i,j − Cǫ ≤

dmi

γ
+
20

γ
ln

2

δ
+10

√

1

γ
ln

2

δ

√

Cǫ+
1

γ
.

where Σn
i=1dmi

= γm. Since γ ≥ 1/Cǫ,

m
∑

j=1

qi,j ŷ
∗
i,j − Cǫ ≤

dmi

γ
+ 35 ln

2

δ

√

Cǫ

γ
.
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Proof. We are considering the random permutation
model. The adversary chooses values of capacities Mj

and skills pi,j for (1 + γ)m workers, but the workers’
arriving sequence is randomly permuted. In our algo-
rithm, we hire the first γm workers and estimate the
task weights. We then try to minimize the number of
assignments for the latter m workers.

To simplify notations, in the proof, we use qs to denote
the skills of the first γm workers, and use q to denote
the skill levels of primary m workers. We will use the
following two facts to prove the lemma.

1. If x̂∗ is the optimal task weights of the sampled
LP, let ŷs,∗ be the assignments generated by the
Primal Approximation Algorithm with input x̂

∗

and qs. We have γCǫ ≤ Σγm
j=1q

s
i,j ŷ

s,∗
i,j ≤ γCǫ + 1.

This property follows directly from the proof of
Lemma 7. For each task i, there is at most one
value ŷs,∗i,j which is not equal to the optimal value

ys,∗i,j of the sampled LP, and Σγm
j=1q

s
i,jy

s,∗
i,j = Cǫ.

We also have Σγm
j=1q

s
i,j ŷ

s,∗
i,j ≤ γCǫ + dmi

, where
Σn

i=1dmi
= γm. This property follows directly

from the proof of Theorem 1. For worker j, there
is at most one ŷs,∗i,j which is not equal to the opti-
mal solution of the sampled LP.

2. Given any task weight x, let ys be the assign-
ments generated by the Primal Approximation
Algorithm with inputs x and qs, and y be the
assignments generated by the Primal Approxima-
tion Algorithm with input x and q. Note that in
our setting, given task weights x and worker skill
levels, the assignments yi,j made by the Primal
Approximation Algorithm are determined and re-
main the same for a given task, whether it ap-
pears in the initial sample or primary set of work-
ers. Below we use this fact to show that, for task
i, with high probability, Σγm

j=1q
s
i,jy

s
i,j is close to

γΣm
j=1qi,jyi,j .

Consider a single task i. Define Yj = qsi,jy
s
i,j

for j ∈ {1, ..., γm} and Yj = qi,j−γmyi,j−γm

for j ∈ {γm + 1, ..., (1 + γ)m}, and let Y =
{Y1, ...Y(1+γ)m}. Since we assume the worker ar-
riving sequence is randomly permuted, we can
think of Σγm

j=1q
s
i,jy

s
i,j as the sum of a random sub-

set of size γm from Y . We can then obtain a
bound by applying Lemma 8.

Before applying the lemma, we first bound the
values of ‖Y ‖∞, ‖Y ‖2, and E[YS ]. Below we
use the notation Qi = Σm

j=1qi,jyi,j and Qs
i =

Σγm
j=1q

s
i,jy

s
i,j .

‖Y ‖∞ = max
j
{Yj} ≤ 1.

‖Y ‖2 =

√

√

√

√

m
∑

j=1

(qi,jyi,j)2 +

γm
∑

j=1

(qsi,jy
s
i,j)

2

≤
√

Qi +Qs
i .

E[YS ] =
γ

(1 + γ)
(Qi +Qs

i ).

Applying Lemma 8, with probability at least 1−δ,

|Qs
i −

γ

1 + γ
(Qi +Qs

i )|

≤2

3
ln

2

δ
+
√

Qi +Qs
i

√

2
γ

1 + γ
ln

2

δ
.

Finally, multiplying both sides by (1+γ) gives us

|γQi −Qs
i |

≤(1 + γ)
2

3
ln

2

δ
+
√

Qi +Qs
i

√

2γ(1 + γ) ln
2

δ
.

Let Q∗
i = Σm

j=1qi,j ŷ
∗
i,j and Qs,∗

i = Σγm
j=1q

s
i,j ŷ

s,∗
i,j . Using

the two facts above, we have

Q∗
i ≤

Qs,∗
i

γ
+
1+γ

γ

2

3
ln

2

δ
+

√

2(1+γ)

γ
ln

2

δ

√

Q∗
i +Qs,∗

i .

To simplify the notation, let C = Qs,∗
i /γ and K =

2 ln(2/δ)(1 + γ)/γ, we can get

Q∗
i ≤ C +K/3 +

√
K
√

γC +Q∗
i

≤ C +K/3 +
√
K
√

γC +
√
K
√

Q∗
i .

By rearranging the variables, we can get

Q∗
i −
√
K
√

Q∗
i − (C +K/3 +

√
K
√

γC) ≤ 0.

Applying the quadratic equation, we know that

√
K −

√

K + 4(C +K/3 +
√
K
√
γC)

2

≤
√

Q∗
i ≤
√
K +

√

K + 4(C +K/3 +
√
K
√
γC)

2
.

Therefore,

√

Q∗
i ≤
√
K +

√
K + 2

√

C +K/3 +
√
K
√
γC

2

=
√
K +

√

C +K/3 +
√
K
√

γC.
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Since γ ≤ 1, taking the square on both sides,

Q∗
i ≤ K+C+K/3+

√

KγC+2
√
K

√

C+K/3+
√

KγC

≤ C+4K/3+
√

KγC+2
√
K

(√
C+

√

K/3+

√

√

KγC

)

≤ C + (
4 + 2

√
3

3
)K + (γ

1

2 + 2)K
1

2C
1

2 + 2γ
1

4K
3

4C
1

4

≤ C + 3K + 3K
1

2C
1

2 + 2K
3

4C
1

4 .

Since K3/4C1/4 ≤ max{K,K1/2C1/2}, we have
K3/4C1/4 ≤ K +K1/2C1/2. Therefore,

Q∗
i ≤ C + 5K + 5K

1

2C
1

2 .

Since Qs,∗
i ≤ γCǫ + min(1, dmi

), we have C ≤ Cǫ +
min(1/γ, dmi

/γ). Also, since 1 + γ ≤ 2, we have

Q∗
i−Cǫ ≤

min(1, dmi
)

γ
+10

1+γ

γ
ln

2

δ
+5

√

2
1+γ

γ
ln

2

δ

√

Cǫ+
1

γ

≤min(1, dmi
)

γ
+
20

γ
ln

2

δ
+10

√

1

γ
ln

2

δ

√

Cǫ+
1

γ
.

Since δ < 1/2, ln(2/δ) ≥ 1. Since γ ≥ 1/Cǫ, the above
bound can be written as

Q∗
i − Cǫ ≤

min(1, dmi
)

γ
+ (20 + 10

√
2) ln

2

δ

√

Cǫ

γ

≤ min(1, dmi
)

γ
+ 35 ln

2

δ

√

Cǫ

γ
.

Note that the Primal Approximation Algorithm al-
ways generates feasible dual solutions, therefore, the
dual objective is always no bigger than the optimal
primal solution by weak duality. We use OPT to de-
note the primal optimal solution of the relaxed offline
formulation. Combing Lemmas 6, 9, and 7. Recall
that qi,min = min{j:ŷs,∗

i,j
=1} q

s
i,j and qmin = mini qi,min.

Since we required ln(2/δ) ≥ 1 and γ ≥ 1/Cǫ, we have
that

P (ŷ∗) = D(x̂∗, ẑ∗, t̂
∗
) +

n
∑

i=1





m
∑

j=1

qi,j ŷ
∗
i,j − Cǫ



 x̂i

≤ OPT +
n
∑

i=1

(

min(1, dmi
)

γ
+ 35 ln

2

δ

√

Cǫ

γ

)

1

qi,min

≤ OPT +
1

qmin

(

min(m,n) + 35n ln
2

δ

√

Cǫ

γ

)

.

Since OPT ≥ nCǫ,

P (ŷ∗) ≤ OPT

(

1 +
min(m,n)

qminnCǫ
+

35 ln(2/δ)

qmin

√
γCǫ

)

.

Finally, we need to bound the prediction error. Recall
that we know that

Cǫ ≤
γm
∑

j=1

qsi,j ŷ
s,∗
i,j ≤ γCǫ + 1,

and

|γQ∗
i −Qs

i | ≤(1 + γ)
2

3
ln

2

δ
+
√

Q∗
i +Qs

i

√

2γ(1 + γ) ln
2

δ
.

Hence,

Q∗

i ≥Cǫ −

(

1+γ

γ

2

3
ln

2

δ
+

√

2(1+γ)

γ
ln

2

δ

√

Q∗

i
+γ(Cǫ+

1

γ
)

)

= Cǫ −K/3−
√
K
√

Q∗

i
−

√
K
√

γC

Again, by simple manipulation,

Q∗
i +
√
K
√

Q∗
i − Cǫ +K/3 +

√
K
√

γC ≥ 0.

Using the quadratic formula again,

√

Q∗
i ≤
−
√
K −

√

K + 4Cǫ − 4K/3− 4
√
K
√
γC

2
or

√

Q∗
i ≥
−
√
K +

√

K + 4Cǫ − 4K/3− 4
√
K
√
γC

2
.

Note that the first inequality never holds since
√

Q∗
i ≥

0. Squaring both sides of the second inequality,

Q∗
i ≥

K

4
+

K

4
+ Cǫ −

K

3
−
√
K
√

γC

− 1

2

√
K

√

K + 4Cǫ − 4K/3− 4
√
K
√

γC

≥ Cǫ +
K

6
−
√

γCK

− 1

2

√
K(
√
K + 2

√

Cǫ − 2
√

K/3− 2

√√
K
√

γC)

≥ Cǫ + 0.24K − (γ1/2 + 1)(CK)1/2 + (γC)1/4K3/4

≥ Cǫ − 2K
1

2C
1

2

= Cǫ − 2

√

2
1 + γ

γ
ln

2

δ

√

Cǫ +
1

γ

≥ Cǫ − 4

√

1

γ
ln

2

δ

√

Cǫ +
1

γ
.



Adaptive Task Assignment for Crowdsourced Classification

Again, since δ < 1/2 and γ ≥ 1/Cǫ,

Q∗
i ≥ Cǫ − 4

√
2

√

1

γ
ln

2

δ

√

Cǫ

= Cǫ(1− 4
√
2

√

1

γ
ln

2

δ

1√
Cǫ

)

≥ Cǫ(1− 6 ln
2

δ

1√
γCǫ

). (10)

Therefore, if labels are aggregated using weighted ma-
jority voting, the prediction accuracy is bounded by
ǫ′, where

ǫ′ = ǫ1−6 ln(2/δ)/
√
γCǫ

because Cǫ′ = Cǫ(1− 6 ln(2/δ)/
√
γCǫ).

A.5. Proof of Lemma 3

We have assumed we have an estimate p̂i,j such that
|pi,j − p̂i,j | = α for some α ∈ [0, t]. Define q̂i,j =
(2p̂i,j − 1)2. We have

|qi,j − q̂i,j | =
∣

∣(2pi,j − 1)2 − (2p̂i,j − 1)2
∣

∣

= 4
∣

∣p2i,j − pi,j − p̂2i,j + p̂i,j
∣

∣

= 4
∣

∣(p2i,j − p̂2i,j)− (pi,j − p̂i,j)
∣

∣ . (11)

Consider the two terms in the absolute value in Equa-
tion 11. First note that these two terms always have
the same sign; both are positive if pi,j > p̂i,j , negative
if pi,j < p̂i,j , and 0 if pi,j = p̂i,j . Therefore, we can
write

|qi,j − q̂i,j | = 4
∣

∣

∣

∣p2i,j − p̂2i,j
∣

∣− |pi,j − p̂i,j |
∣

∣

= 4
∣

∣

∣

∣p2i,j − p̂2i,j
∣

∣− α
∣

∣ .

Consider the case in which pi,j ≥ p̂i,j . Then

∣

∣p2i,j − p̂2i,j
∣

∣ = p2i,j − p̂2i,j ≤ p2i,j − (pi,j − α)2

= 2αpi,j − α2 ≤ 2α .

A symmetric argument can be made for the case in
which pi,j < p̂i,j . So

∣

∣p2i,j − p̂2i,j
∣

∣ ∈ [0, 2α] and there-
fore

|qi,j − q̂i,j | ≤ 4α ≤ 4t.

A.6. Proof of Theorem 3

We first show that the optimal solution of the relaxed
offline formulation with the true qi,j values and pa-
rameter ǫ is feasible in the approximated LP using the
values q̂i,j = (2p̂i,j − 1)2 and parameter ǫ′. Let ȳ∗ be
the optimal solution of the relaxed offline formulation.

To show that ȳ∗ is feasible in the approximated LP,
we need only show that for every task i, ȳ∗ satisfies

m
∑

j=1

q̂i,j ȳ
∗
i,j ≥ Cǫ′ = 2 ln

(

1

ǫ1−4t/q̄∗
min

)

, (12)

because q̂ and Cǫ′ only appear in this constraint.

Fix a task i. Since we assumed that for every j, |pi,j−
p̂i,j | ≤ t, we have from Lemma 3 that q̂i,j ≥ qi,j − 4t
for all j, and

m
∑

j=1

q̂i,j ȳ
∗
i,j ≥

m
∑

j=1

qi,j ȳ
∗
i,j − 4t

m
∑

j=1

ȳ∗i,j .

Since ȳ∗ is optimal in the relaxed offline formulation
we can easily show that Σm

j=1qi,j ȳ
∗
i,j = Cǫ for all i.

Assume for contradiction that this was not the case.
We cannot have Σm

j=1qi,j ȳ
∗
i,j < Cǫ for any i since this

would violate the constraints of the relaxed offline for-
mulation. Assume that Σm

j=1qi,j ȳ
∗
i,j > Cǫ for some i.

Then we could always decrease some y∗i,j of task i to
make the equality hold, which would decrease the ob-
jective value without violating any other constraint,
meaning that the solution could not be optimal.

By definition of q̄∗i , i.e., q̄
∗
i = Σm

j=1qi,j ȳ
∗
i,j/Σ

m
j=1ȳ

∗
i,j , we

also can get that Σm
j=1ȳ

∗
i,j = Cǫ/q̄

∗
i .

Therefore,

m
∑

j=1

q̂i,j ȳ
∗
i,j ≥ Cǫ − 4tCǫ/q̄

∗
i = Cǫ(1− 4t/q̄∗i ).

Since Cǫ = 2 ln(1/ǫ),

Cǫ(1− 4t/q̄∗i ) = 2(1− 4t/q̄∗i ) ln (1/ǫ)

= 2 ln

(

1

ǫ1−4t/q̄∗
i

)

.

Hence,

m
∑

j=1

q̂i,j ȳ
∗
i,j ≥ 2 ln

(

1

ǫ1−4t/q̄∗
i

)

≥ 2 ln

(

1

ǫ1−4t/q̄∗
min

)

.

which shows that ȳ∗ satisfies Equation 12 for all i.

Since the optimal solution of the relaxed offline formu-
lation is feasible in the approximated LP, the optimal
objective of the approximated LP is no bigger than the
optimal objective of the relaxed offline formulation.
Furthermore, the optimal objective of the relaxed of-
fline formulation is always no bigger than the optimal
objective of the offline integer program. Therefore, the
optimal objective of the approximated LP would be no
bigger than the offline optimal of integer program.
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A.7. Proof of Theorem 4

We begin by restating the main definitions from the
theorem statement for easy reference. Recall that q̄∗min

is a value such that q̄∗min ≤ q̄∗i for all i, and our esti-
mates p̂i,j are guaranteed to satisfy |pi,j − p̂i,j | ≤ t for
all (i, j) pairs for some t < q̄∗min/4. Recall that y is
any feasible integer assignment of the approximated
LP with parameter ǫ′ = ǫ1−4t/q̄∗min and skill levels
q̂i,j = (2p̂i,j − 1)2, Ji = {j : yi,j = 1} denotes the set
of workers that are assigned to task i according to the
feasible integer assignment, and q̂i = Σj∈Ji

q̂i,j/ |Ji|.
Tasks are assigned according to y and the results
are aggregated using weighted majority voting with
weights wi,j = 2p̂i,j − 1, so

ℓ̂i = sign





∑

j∈Ji

(2p̂i,j − 1)ℓi,j



 .

Below we show that ℓ̂i = ℓi with probability at least
1− ǫ(1−4t/q̄∗min)(1−4t/q̂min).

Without loss of generality, assume that ℓi = 1. Note
that although we weight each label by 2p̂i,j − 1, the
probability of label ℓi,j being correct (i.e., the proba-
bility that ℓi,j = ℓi = 1) is still pi,j . Similar to the
proof of Lemma 1, let

Xi,j =

{

2p̂i,j − 1 with probability pi,j

−2p̂i,j + 1 with probability 1− pi,j ,

and
Xi =

∑

j∈Ji

Xi,j .

Let ti,j = pi,j − p̂i,j . Then

E[Xi] =
∑

j∈Ji

E[Xi,j ]

=
∑

j∈Ji

(pi,j(2p̂i,j − 1) + (1− pi,j)(−2p̂i,j + 1))

=
∑

j∈Ji

(4pi,j p̂i,j − 2pi,j − 2p̂i,j + 1)

=
∑

j∈Ji

(4(p̂i,j + ti,j)p̂i,j − 2(p̂i,j + ti,j)− 2p̂i,j + 1)

=
∑

j∈Ji

(2p̂i,j − 1)2 +
∑

j∈Ji

2ti,j(2p̂i,j − 1)

≥
∑

j∈Ji

(2p̂i,j − 1)2 −
∑

j∈Ji

2 |ti,j | |2p̂i,j − 1| .

The first term is simply |Ji| q̂i. Since, by assumption,
|ti,j | ≤ t for all (i, j), and since |2p̂i,j − 1| ≤ 1 for all

(i, j), we have

E[Xi] ≥ |Ji| q̂i − 2t |Ji| = |Ji| (q̂i − 2t).

Similar to the proof of Lemma 1, the probability of
predicting the wrong label for task i is bounded by
Pr(Xi ≤ 0) = Pr(E[Xi]−Xi ≥ E[Xi]). Using Hoeffd-
ing’s inequality and the bound above, we have

Pr(Xi ≤ 0) ≤ exp

(

− 2(E[Xi])
2

∑

j∈Ji
(4p̂i,j − 2)2

)

≤ exp

(

−2|Ji|2(q̂i − 2t)2

4|Ji|q̂i

)

= exp

(

−|Ji|(q̂i − 2t)2

2q̂i

)

= exp

(

−|Ji|q̂i
2(1− 2t/q̂i)

2

2q̂i

)

= exp

(

−1

2
|Ji|q̂i(1− 2t/q̂i)

2

)

≤ (ǫ1−4t/q̄∗min)(1−2t/q̂i)
2

= ǫ(1−4t/q̄∗min)(1−2t/q̂i)
2

≤ ǫ(1−4t/q̄∗min)(1−4t/q̂i).

The sixth line follows from the constraints of the ap-
proximated LP which require that

|Ji|q̂i =
∑

j∈Ji

q̂i,j ≥ 2 ln(1/ǫ′),

and so exp(−|Ji|q̂i/2) ≤ ǫ′.

A.8. Proof of Theorem 5

The proof is a direct application of Lemma 2 and The-
orems 2, 3, and 4.

We assign each worker s gold standard tasks for each
task type. If we use the empirical skill level p̂i,j as
an estimate of pi,j as in Lemma 2, we know that for
any δ′, with probability at least 1 − δ′, |pi,j − p̂i,j | ≤
√

ln(2/δ′)/(2s).

Note that we have T types of tasks and (1+γ)m work-
ers. Hence, we need to assign T (1+γ)ms gold standard
tasks in total to workers. Replacing δ′ with δ/2 and
applying the union bound for all types of tasks and all
workers, we know that with probability at least 1−δ/2,

|pi,j − p̂i,j | ≤
√

ln(4T (1 + γ)m/δ)

2s
for all (i, j).

(13)
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Let t =
√

ln(4T (1 + γ)m/δ)/(2s). If we set q̂i,j =
(2p̂i,j−1)2, from Lemma 3, we have an estimate q̂ such
that with probability at least 1− δ/2, |qi,j − q̂i,j | ≤ 4t
for all i and j. Given q̂ and access to q̄∗min (as as-
sumed in statement of the theorem), we can create
the approximated LP as described in Section 5.2 with
q̂ and Cǫ′ where ǫ′ = ǫ1−4t/q̄∗min .

Bounding Competitive Ratio

Below we bound the number of non-gold standard
tasks assignment of the Main Algorithm. In Section
5.1, we assumed that the qi,j values of worker j are re-
vealed when worker j arrives. However, now we have
only estimates of these values. We can still apply The-
orem 2, but now with the estimated values q̂i,j in place
of the qi,j , and ǫ′ in place of ǫ. The relaxed online
formulation with these replacements is exactly the ap-
proximated LP of Section 5.2. Applying Theorem 2
with δ set to δ/2, with probability at least 1−δ/2, the
Primal Approximation Algorithm with inputs x̂ and q̂

yields an assignment y such that the number of tasks
assigned using y is no more than

(

1 +
min(m,n)

q̂minnCǫ′
+

35 ln(4/δ)

q̂min

√
γCǫ′

)

times the optimal value of the approximated LP, where
q̂min = min(i,j):ys

i,j
=1 q̂

s
i,j , and ys is the primal optimal

solution of the sampled LP with the replacements de-
scribed above.

From Theorem 3, we know that the optimal of the
approximated LP yields no more assignment than the
optimal of the relaxed offline formulation. Combining
the above results, with probability of at least 1− δ/2,
the Main Algorithm yields no more assignments than

(

1 +
min(m,n)

q̂minnCǫ′
+

35 ln(4/δ)

q̂min

√
γCǫ′

)

times the optimal of the relaxed offline formulation,
which is less than the optimal of the IP.

Since the analysis above holds only if |pi,j − p̂i,j | ≤ t
for all (i, j) and we know this happens with probability
at least 1 − δ/2, we can apply union bound to show
that the competitive ratio above can be achieved with
probability of at least 1− δ.

Bounding Prediction Error

We now bound the prediction error. By a similar ar-
gument to the one used above, we can use the same
argument made to achieve the error bound in The-
orem 2 (Equation 10) to guarantee that if the high
probability events above hold, then

m
∑

j=1

q̂i,jyi,j ≥ Cǫ′

(

1− 6
ln(4/δ)
√

γC ′
ǫ

)

where ǫ′′ = ǫ′(1−6 ln(4/δ)/
√

γCǫ′ ).

Assume that the high probability event from above
holds and so |pi,j − p̂i,j | ≤ t for all (i, j). Let q̂i =
∑

j:yi,j=1 qi,j/|{j : yi,j = 1}|. Applying Theorem 4

with the value ǫ′′ in place of ǫ′ (since y is a feasible
assignment to the relaxed LP with ǫ′′ used instead of
ǫ′), we have that the prediction error of each task i is
bounded by

ǫ′′1−4t/q̂i ≤ ǫ′(1−6 ln(4/δ)/
√

γC′
ǫ)(1−4t/q̂i)

≤ ǫ(1−4t/q̄∗min)(1−6 ln(4/δ)/
√

γC′
ǫ)(1−4t/q̂i).

Replacing s in Equation 13, we have that |pi,j − p̂i,j | ≤
t for all i and j where t ≤

√

ln(4T (1 + γ)m/δ)/(2s).
Finally, replacing t in the error bound above completes
the proof.


