
Environment Design for Biased Decision Makers

Guanghui Yu and Chien-Ju Ho
Washington University in St. Louis
{guanghuiyu, chienju.ho}@wustl.edu

Abstract
We study the environment design problem for bi-
ased decision makers. In an environment design
problem, an informed principal aims to update the
decision making environment to influence the deci-
sions made by the agent. This problem is ubiqui-
tous in various domains, e.g., a social networking
platform might want to update its website to en-
courage more user engagement. In this work, we
focus on the scenario in which the agent might ex-
hibit biases in decision making. We relax the com-
mon assumption that the agent is rational and aim
to incorporate models of biased agents in environ-
ment design. We formulate the environment design
problem under the Markov decision process (MDP)
and incorporate common models of biased agents
through introducing general time-discounting func-
tions. We then formalize the environment design
problem as constrained optimization problems and
propose corresponding algorithms. We conduct
both simulations and real human-subject experi-
ments with workers recruited from Amazon Me-
chanical Turk to evaluate our proposed algorithms.

1 Introduction
We explore the problem where two parties with mis-aligned
objectives, a principal and an agent, are in the same sequen-
tial decision making environment. The goal of the agent is to
take a sequence of actions to maximize his total payoff1. The
principal cannot directly take actions but can update the en-
vironment to influence the agent’s actions and receive reward
based on the agent’s actions. The goal of the principal is to
update the environment such that the agent takes actions that
maximize the principal’s payoff.

This problem setting is motivated by several existing and
potential applications. For example, a user-generated content
website might want to update their site to provide incentives,
such as badges or virtual points, to encourage users to con-
sume and rate the content on their website. An online retailer
might want to decide when and whether to provide coupons
to nudge the user to make the purchase. An assistive AI agent

1We use she to denote the principal and he to denote the agent.

might want to provide interventions, such as reminding mes-
sages, to help humans achieve personal goals, such as reduc-
ing the amount of time spent on social networking sites.

If we assume the agent is rational and makes decisions ac-
cording to the optimal policy, this problem is similar to sev-
eral existing works in the literature, including policy teach-
ing [Zhang and Parkes, 2008; Zhang et al., 2018], in which
the principal updates the reward functions to induce the agent
to take certain policies, and the poisoning attack for reinforce-
ment learning [Rakhsha et al., 2020; Zhang et al., 2020], in
which an adversarial principal aims to modify the training en-
vironment such that the agent learns the undesired policy. In
this work, we are motivated by the natural setting in which the
agent is a human being and might exhibit biases in decision
making. As observed in empirical studies, humans are known
to exhibit systematic biases in making decisions. For exam-
ple, humans might not have the ability to reason far ahead
into the future [Kahneman, 2003] or might exhibit present
bias [O’Donoghue and Rabin, 1999], giving stronger weights
on immediate costs and benefits rather than balancing them
against those in the future.

We study this two-party sequential decision making prob-
lem under the formulation of Markov decision process
(MDP). A standard MDP is characterized by the set of states,
the set of actions, the state transition function, and the reward
function. The solution of an MDP is a policy that specifies
which action to take in each state that maximizes the total
reward. Our setting deviates from the standard MDP in two
perspectives. First, there are two parties, a principal and an
agent, in the same decision making environment. The princi-
pal and the agent share the same information about the state,
state transition, and action set. However, they have different
reward functions. Moreover, while the agent can take actions
in the environment, the principal can only update the envi-
ronment to influence the agent’s actions. Second, the agent
exhibits decision-making biases in his solution to the MDP.
Since the focus of this paper is in sequential decision making,
we focus on the time-related decision biases, including my-
opic decision making, bounded rationality, and present bias.

We consider two natural sets of design spaces that the prin-
cipal can choose from to update the environment. In the first
design space, the principal can modify the agent’s reward
function in MDP, and the agent’s policy is based on the mod-
ified reward function. This design space corresponds to the

scenario in which the principal can update the environment
in a global manner (e.g., changing the badge design in so-
cial networking sites), and the agent will take actions in the
updated environment. In the second design space, when the
agent is choosing an action during decision time, the principal
can offer additional incentives to nudge the agent to choose
a different action. This design space corresponds to the sce-
nario in which the principal can take interventions during the
agent’s decision time (e.g., offering a coupon when the user
navigates to a certain page). In environment design with both
design spaces, the goal of the principal is to maximize her
own total rewards, depending on the principal’s reward func-
tion and the agent’s actions, subject to a budget constraint that
the amount of environment updates is limited.

We formulate the principal’s environment design prob-
lems as constrained optimization problems under both de-
sign spaces. We first show that the optimization problems
are generally NP-hard to solve for both design spaces. We
then propose relaxed formulations and corresponding algo-
rithms for solving the problems. To evaluate the effective-
ness of our proposed algorithms for environment design, we
conduct simulations to understand the algorithm performance
over a range of scenarios and parameters. Moreover, to exam-
ine whether we can indeed update the environment to influ-
ence the decisions of real-world human decision makers, we
conduct a human-subject experiment with 300 workers from
Amazon Mechanical Turk. Our results demonstrate the en-
vironment updates derived by our algorithms can effectively
influence humans’ decisions and lead to better total payoff.
Contributions. The main contributions of this work can be
summarized as follows.
• We formulate the environment design problem with biased

decision makers. To the best of our knowledge, this is the
first work to incorporate human behavioral models in en-
vironment design, i.e., modifying the MDP environment to
change the decisions made by humans with decision biases.

• We show that the environment design problems are gener-
ally NP-hard to solve. We propose algorithms for two dif-
ferent sets of design spaces, reward function modification
and action nudge.

• We have conducted simulations and real-world human-
subject experiments with 300 human subjects to evaluate
our proposed algorithms for environment design. The re-
sults demonstrate that our algorithms lead to better out-
comes with biased decision makers.

1.1 Related Work
Our work is built on the formulation of Markov decision pro-
cess (MDP) commonly seen in reinforcement learning. In-
stead of solving the agent’s optimal policy, we consider a
Stackelberg game formulation, in which the principal first
chooses how to update the environment, and then the agent
makes decisions in the updated environment. The clos-
est works that consider this two-party setting in MDP in-
clude policy teaching [Zhang and Parkes, 2008; Zhang et al.,
2009, 2018] and poisoning attack for reinforcement learn-
ing [Rakhsha et al., 2020; Zhang et al., 2020]. Our work
deviates from these works by incorporating human behav-

ioral models in the framework. The human models consid-
ered in this work are empirically motivated from behavioral
economics, such as bounded rationality [Kahneman, 2003]
and present bias [O’Donoghue and Rabin, 1999].

Our work joins the recent research theme that incorporates
human models in computational frameworks [Frazier et al.,
2014; Mansour et al., 2015; Tang and Ho, 2019, 2021; Klein-
berg and Oren, 2014; Masters et al., 2021a,b]. There have
been other lines of research that also includes humans in
the loop of reinforcement learning frameworks, such as in-
verse reinforcement learning [Ng et al., 2000; Evans et al.,
2016; Shah et al., 2019; Hughes et al., 2020; Zhi-Xuan et
al., 2020] that infers the reward functions in MDP through
(potentially human) demonstrations. Researchers also aim
to leverage human feedback to train reinforcement learning
algorithms [Knox and Stone, 2008; Nikolaidis et al., 2015;
Bobu et al., 2021]. Our work differs in that our goal is to
induce humans to perform desired behavior through updat-
ing the decision-making environment instead of improving
the learning algorithms. The more detailed discussion on the
related work can be found in Appendix A.

2 Problem Setting
Decision-making environment. We formulate the sequen-
tial decision making environment as a finite-time hori-
zon MDP with two sets of reward functions: W =
⟨S,A, P,Ra, Rp, T ⟩, where S is the set of states, A is the set
of agent actions, P (s′|s, a) is the transition probability from
state s to state s′ after taking action a, T is the time horizon,
Ra(s, a) is the bounded reward obtained by the agent after he
takes action a at state s, and Rp(s, a) is the bounded reward
obtained by the principal after the agent takes a at state s.
Agent decision-making policy. Since the agent could be bi-
ased and might not make time-consistent decisions, we rep-
resent the agent policy in a time-inconsistent manner: Π :
S×T →A. In particular, for an agent policy π ∈ Π, π(s, t)
denotes the action the agent will take in state s at time t
when following policy π. We formulate the agent as a planner
H : W →Π, with input being an environment w ∈ W and
output being a policy π ∈ Π according to his decision-making
model. The agent’s goal is to maximize his perceived (poten-
tially biased) rewards. To characterize the time-inconsistent
behavior of the agent, we define the notion d(t), the discount-
ing factor that the agent perceives the payoff obtained t steps
ahead. In the standard setting, d(t) is often assumed to be
in the form of γt with γ ∈ (0, 1] being the time-discounting
factor. In this paper, we address different forms of d(t) that
captures different agent models, which will be discussed later.

With d(t) defined, we now characterize the agent policy
by defining a perceived Q-function2 Qπ(s, a, t, t̂), specify-
ing the agent’s perceived value at time t for him to take ac-
tion a in state s at a future time t + t̂ and follows policy π
afterwards. This additional t̂ parameter captures the agent’s
time-inconsistent belief: what the agent thinks he will do in
a future time t + t̂ while at time t might be different from

2This definition extends the standard Q-function to incorporate
the agent’s biased decision making.

2

what he will actually do at time t + t̂. We also abuse the
notation and let π(s, t, t̂) denote the action the agent thinks
what he would do in state s in a future time t + t̂ while at
time t. This perceived Qπ(s, a, t, t̂) can be expressed as the
sum of (1) the perceived reward for taking action a in a fu-
ture time step t + t̂ while at time t: d(t̂)Ra(s, a) and (2)
the expected future reward for following policy π after t+ t̂:
E[
∑T

t′=t+t̂+1 d(t
′ − t)Ra(sπt′ , π(s

π
t′ , t, t

′ − t))]], where sπt′ is
the random variable denoting the state at t′ if the agent fol-
lows π after t+ t̂. The expectation is over the randomness of
the state transition.

Since the policy is only executed with t̂= 0 (t̂ > 0 repre-
sents the agent’s belief of what he would do t̂ steps ahead),
we let Qπ(s, a, t) = Qπ(s, a, t, 0) and π(s, t) = π(s, t, 0).
The agent policy π∗ can then be written as:

π∗(s, t) = argmax
a

Qπ∗
(s, a, t) (1)

For a given environment, the agent policy can be solved by
applying standard techniques, such as backward induction.
Biased agent models. As discussed above, we use the no-
tion d(t), denoting how much the agent discounts the payoff
t steps in the future to characterize the agent’s behavior. This
notion characterizes many common behavioral models, with
some illustrative examples below:
• Standard model: In the literature, the agent is often as-

sumed to have a consistent time-discounting factor γ ∈
(0, 1] for discounting future payoff. Therefore, we can set
d(t) = γt to represent this standard assumption.

• Bounded rationality or short-sightedness: It considers the
scenario in which the agent can only perform limited com-
putation due to either time, cognitive, or information con-
straints. This can be approximated by considering that the
agent only has information or only can reason about in-
formation within τ steps. We can formulate this by set-
ting d(t) = γt for all 0 ≤ t ≤ τ , and d(t) = 0 for all
τ < t ≤ T . In the special case of myopic agent, who
only cares about the immediate payoff and not the future
payoffs, we can set τ = 0.

• Present bias: When choosing between earning 10 dollars
100 days from now or 11 dollars 101 days from now, most
people will choose the latter. However, when again being
asked to choose between earning 10 dollars now or 11 dol-
lars tomorrow, many people will change their decisions.
This example illustrates the present bias, describing hu-
mans’ inconsistency in discounting future payoffs. One
common way to account for this behavior is through hy-
perbolic discounting factor: d(t) = 1

1+kt for k > 0.

Design space of the principal. Recall that the principal aims
to update the environment to influence the agent’s actions.
We consider two natural sets of “updates” the principal can
make to the environment:
• Reward function modification: The principal may pay

costs to modify the agent’s reward function to influence
the agent’s decisions. Formally, the principal can modify
the agent’s reward from Ra(s, a) to R̄a(s, a) = Ra(s, a)+
c(s, a) for taking action a in state s by paying a cost equal
to the absolute value of the modification |c(s, a)|. The

agent will only observe the modified reward function and
will make decisions based on R̄a. Note that this type of
environment updates is performed offline in the sense that
it updates the environment before the agent starts to make
their decisions in the environment.

• Action nudge: We also consider another design space,
in which the principal can offer a non-negative incentive
c(s, a, t) ≥ 0 to nudge the agent to take action a in state
s at time t. The agent’s reward in state s would then be
R(s, a) + c(s, a, t) if taking action a at time t while the
future perceived rewards do not change. Different from
the reward function modification, this nudge influences the
agent’s decisions during decision time.
The principal’s goal is to maximize her total rewards de-

rived from the agent’s actions under the budget constraint that
the total cost does not exceed budget B. Given the agent’s
policy π and the initial state distribution p0(s), let pπt (s) be
the state distribution at time t when the agent follows policy
π, the principal’s total expected reward can be written as3:

T∑
t=0

∑
s∈S

pπt (s)R
p(s, π(s, t)) (2)

3 Problem Formulations and Algorithms
Before we formulate the environment design problems, we
first present an important, although perhaps not surprising,
result that if the agent exhibit biases in decision making, be-
ing oblivious of the biases could lead to undesired outcome
for the principal. The result showcases the importance of tak-
ing human behavior into account in environment design4.

Lemma 1. If the principal performs environment design by
assuming the agent is a standard agent while the agent is
boundedly rational, the ratio between the principal’s reward
after environment design compared with the principal’s re-
ward obtained in environment design with the correct agent
model could be arbitrarily close to 0.

3.1 Reward function modification
We first consider the environment design problem in which
the principal can influence the agent’s decisions through mod-
ifying the agent’s reward functions Ra(s, a). Let c(s, a)
be the modification the principal makes on Ra(s, a), and
R̄a(s, a) = Ra(s, a)+c(s, a) is the reward function that the
agent perceives and based on when making decisions. Let the
updated MDP environment be w̄, replacing the agent reward
function as R̄a, and the agent policy on this environment be
π = h(w̄). The environment design problem for the principal
is to choose the set of updates {c(s, a)} to maximize her pay-
off subject to the budget constraint B. Again, let the initial
state distribution be p0(s), and pπt (s) be the state distribution
at time t when the agent follows policy π, we can formulate
the environment design problem as follows,

3We do not include the time-discounting factor for the principal’s
payoff to simplify the presentations. Our results and discussion can
be easily extended to the setting with time-discounting factor.

4All proofs are included in the appendix of the full paper.

3

max
c

T∑
t=0

∑
s∈S

pπt (s)R
p(s, π(s, t))

s.t.
∑
s∈S

∑
a∈A

|c(s, a)| ≤ B ; π = h(w̄)

(3)

Note that this is a bi-level optimization problem, in which
the principal is optimizing over the space of {c(s, a)} while
the agent is optimizing his policy in response to the princi-
pal’s update in the form of π=h(w̄). To solve the inner opti-
mization problem (the agent’s optimal policy), we can define
an updated Q̄π by replacing the reward Ra with R̄a and solve
the policy π using backward induction. We show that this
bi-level optimization problem is generally NP-hard to solve.

Theorem 2. It is NP-hard to solve the environment design
problem with reward function modification as defined in (3).

Relaxed formulation. To address this hardness result, we
propose to use a soft-max stochastic policy ρ to relax the
deterministic policy π. This relaxation makes the inner op-
timization differentiable, so first-order optimization methods
might be applied. Instead of using π(s, t) to denote the cho-
sen action, we use ρ(s, a, t) to represents the probability of
choosing action a in state s at time t. Moreover, we again use
Q̄ρ to denote the perceived cumulative reward for policy ρ.
The definition is similar to Qπ except that we need to incor-
porate the randomness of policy when evaluating the future
reward. Moreover, we use a soft-max form to approximate
the agent policy: ρ(s, a, t) = eβQ̄ρ(s,a,t)∑

a′ eβQ̄ρ(s,a′,t) ,∀s, a, t.
Below we formulate the relaxed environment design prob-

lem. We now use pρt (s) to denote the state distribution at time
t (with pρ0(s) defined as the initial state distribution p0(s) for
notational simplicity) when the agent follows policy ρ. In
addition, we explicitly layout the state distribution over time
following policy ρ as a constraint in the third constraint of the
optimization problem. Since the gradient of the optimization
variables exists, we can approach this optimization through a
gradient-based algorithm, as in Algorithm 1.

max
c

T∑
t=0

∑
s∈S

∑
a∈A

pρt (s)R
p(s, a)ρ(s, a, t)

s. t.
∑
s∈S

∑
a∈A

|c(s, a)| ≤ B

ρ(s, a, t) =
eβQ̄

ρ(s,a,t)∑
a′ eβQ̄

ρ(s,a′,t)
,∀s, a, t

pρt+1(s) =
∑
s′∈S

∑
a∈A

pρt (s
′)P (s|s′, a)ρ(s′, a, t),∀s, t

ρ(s, a, t) ≥ 0,∀s, a, t

(4)

Discussion. When β→∞, ρ(s, a, t) approximates to a delta
function with the probability mass on the action with the
highest Q̄ value, which recovers the original problem. More-
over, recall that the Q function is defined with respect to the
policy (when calculating the expected future rewards). We
can show that this soft-max relaxation converges to the Q

Algorithm 1 Gradient-based Algorithm for Solving (4)

1: Input: learning rate δ, maximal iterations N
2: initialize c, i = 0
3: while i < N do
4: sample ŝ ∈ S, â ∈ A
5: update R̄a(s, a), Q̄(s, a, t), ρ(s, a, t), pρt (s),∀s, a, t
6: calculate ∂ρ(s,a,t)

∂c(ŝ,â) ,
∂pρ

t (s)
∂c(ŝ,â) ,∀s, a, t

7: c(ŝ, â)← c(ŝ, â) + δ
∂
∑

pρ
t (s)R

p(s,a)ρ(s,a,t)
∂c(ŝ,â)

8: i← i+ 1
9: end while

10: return c

function of deterministic policy exponentially fast in β. In
our simulations, we also empirically demonstrate that setting
a small β is enough to approximate the optimal of the original
problem in (3).
Lemma 3. For any environment w, let πw and ρw be the
agent’s deterministic and stochastic policies following our
model. Let Qπw(s, a, t) and Qρw(s, a, t) be the correspond-
ing Q-functions. For all (s, a, t), we have

|Qπw(s, a, t)−Qρw(s, a, t)| ≤ O(e−βC),

where C > 0 is a constant and β is the parameter of ρ.

3.2 Action nudge
We now formulate the environment design problem via ac-
tion nudge. The principal can choose to pay c(s, a, t) ≥ 0
to the agent if he takes action a in state s at time t. In this
approach, the agent’s perceived Q function does not change,
but the agent’s action will be influenced by this additional in-
centive, i.e., the agent will choose the action that maximizes
Qπ(s, a, t) + c(s, a, t) in state s at time t. Moreover, since
the nudge is calculated offline but deployed online, the budget
constraint is satisfied in expectation. Formally, the principal’s
environment design problem can be written as:

max
c

T∑
t=0

∑
s∈S

pπt (s)R
p(s, π(s, t))

s.t.

T∑
t=0

∑
s∈S

c(s, π(s, t), t)pπt (s) ≤ B

π(s, t) = argmax
a
{Qπ(s, a, t) + c(s, a, t)},∀s, t

(5)

Solving this problem directly is again generally NP-hard
due to the same bi-level optimization property and the de-
terministic policy structure. Below we utilize the problem
structure and develop an alternative formulation.
Alternative formulation. Let π be the agent’s policy in the
original decision-making environment. The goal of action
nudge is to make the agent change from action a = π(s, t)
to a new action a′. Assume the principal can break ties in any
way she prefers when multiple actions lead to the same pay-
off5, the cost the principal needs to pay to make the agent se-
lect action a′ instead of a is c(s, a′, t)=Q(s, a, t)−Q(s, a′, t).

5While this assumption seems strong, it can be approximately
satisfied by adding a arbitrarily small value to c(s, a′, t) to make the
agent break ties to align with the principal’s goal.

4

We can pre-calculate all the cost the principal needs to pay for
action nudge c(s, a, t) = Q(s, π(s, t), t)−Q(s, a, t),∀s, a, t.

With the above observations and the additional tie-
breaking assumption, the environment design problem via ac-
tion nudge is reduced to selecting which action the principal
should nudge the agent to select for all (s, t). The nudged ac-
tion a would generate a reward of Rp(s, a) and incurs a cost
c(s, a, t). The goal is to maximize the total rewards such that
the total cost is no larger than budget B in expectation. This
problem reduces to a standard constrained MDP problem.

max
ϕ

T∑
t=0

∑
s∈S

∑
a∈A

Rp(s, a)ϕ(s, a, t)

s.t.

T∑
t=0

∑
s∈S

∑
a∈A

c(s, a, t)ϕ(s, a, t) ≤ B∑
s′∈S

∑
a∈A

P (s|s′,a)ϕ(s′,a,t)=
∑
a∈A

ϕ(s,a,t+1),∀s, t∑
a∈A

ϕ(s, a, 0) = p0(s),∀s

ϕ(s, a, t) ≥ 0,∀s, a, t

(6)

In this optimization problem, ϕ(s, a, t) is the optimiza-
tion variables, representing the joint probability at time t
for the agent to be in state s and take action a. To trans-
late ϕ(s, a, t) to the stochastic policy ρ(s, a, t), we have
ρ(s, a, t) = ϕ(s,a,t)∑

a′∈A ϕ(s,a′,t) . The optimization problem is a
linear program in ϕ(s, a, t). Therefore we can directly apply
standard linear programming solvers to solve this optimiza-
tion problem. When the agent is in state s at time t, this
solution indicates that the principal should nudge and offers
c(s, a, t) if ϕ(s, a, t) > 0. 6

4 Experiments
We conduct both simulated and real-human experiments to
evaluate our proposed algorithms for environment design.

4.1 Simulations
In our simulations, we create a grid world of size 10 × 10.
Each grid represents a state in the MDP. There are four actions
representing the direction agent can move to: {up, down, left,
right}. After each action, the agent moves to the nearby grid
associated with the action with 70% chance and to a random
nearby grid with 30% chance. The initial state is in the middle
of the grid world. The time horizon T is set to be 20.

We initialize the principal’s reward function values to be
uniformly drawn from the range [0, 0.5]. We then randomly
choose a 2×2 block as global optimal region and add 0.5 to
the reward values within this block. Similarly, we randomly
draw 1 to 3 local optimal regions (2×2 blocks) by setting their
reward lower than global optimal but higher than its neigh-
bors. We randomly generate 1,000 environments following

6There could be multiple actions that lead to ϕ(s, a, t)> 0 for a
given (s, t), leading to offering multiple nudges simultaneously. In
Appendix C, we show that there exists a solution such that this does
not happen frequently and discuss approaches to find this solution.

the above procedure and report the average results on these
1,000 environments.
Different agent behavioral models. We start with the setting
that the agent’s reward function is the same as the principal’s.
In this setting, if the agent is behaving optimally, the principal
does not need to update the environment. Therefore, we focus
on examining how the agent’s biased behavior impacts the
total payoff and how effectively environment design can help.

We first examine the impact of biased agents without envi-
ronment design. We consider agents with bounded rationality
(or short-sightedness) and with present bias. Following the
formulation in Section 2, we modify τ for boundedly-rational
agents and k for present-bias agents. For boundedly-rational
agents, we set γ=1 and vary τ to be from 0 to 9. For present-
bias agents, we vary k to be in {0.1,

√
0.1, 1,

√
10, 10}. The

performance is measured in terms of the principal’s objective.
As shown in Figure 1, the principal’s payoff, even when the
reward function aligns with the agent’s, could decrease sig-
nificantly when the agent exhibits decision biases.

0 3 6 9
0.5

0.6

0.7

0.8

0.9

1.0

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

(a) Bounded rationality.

0.1 1 10

k

0.5

0.6

0.7

0.8

0.9

1.0

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

(b) Present biased.

Figure 1: The principal’s payoff with biased decision-makers with-
out environment design. Agents with higher τ or lower k are closer
to being rational.

Next we examine the effect of environment design in im-
proving the principal’s payoff. We apply the algorithms in
Section 3, with the soft-max parameter β = 3 (the choice of
β is discussed in the appendix). We examine present-bias
agents with k ∈ {1, 10} and boundedly-rational agents with
τ ∈{0, 1, 2}. We vary the budget for algorithms with both de-
sign spaces. As in Figure 2, our algorithms lead to effective
environment design and improve with larger budget. While
action nudge seems more cost efficient, the cost needs to be
incurred for each agent. In reward modification, the environ-
ment may need only be updated once for multiple agents.

0 0.5 1 1.5 2

Relative budget

0.5

0.6

0.7

0.8

0.9

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Bounded rationality =0

Bounded rationality =1

Bounded rationality =2
Present bias k=1

Present bias k=10

(a) Reward modification.

0 0.05 0.1 0.15 0.2

Relative budget

0.5

0.6

0.7

0.8

0.9

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Bounded rationality =0

Bounded rationality =1

Bounded rationality =2
Present bias k=1

Present bias k=10

(b) Action nudge.

Figure 2: The principal’s payoff with biased decision-makers after
applying environment design. The y-axis is the relative performance
compared with the optimal, and the x-axis is the amount of budget
relative to the optimal performance.

Mis-alignment of the principal’s and the agent’s objective.
We now consider the case that the agent’s reward function
might not align with the principal’s. We fix the principal’s re-
ward function as before and vary the agent’s reward function.
We consider the cases in which the agent’s reward function

5

is the inverse (adversarial), randomly drawn (irrelevant), and
the same (cooperative) of the principal’s reward function. The
agent’s bias model is set to be boundedly rational with τ = 1
(the results are qualitatively similar for other agent models).
As shown in Figure 3, our algorithm can find the sets of envi-
ronment updates to induce desired agent decisions, though it
generally requires more budgets when the principal’s reward
function does not align with the agent’s.

0 5 10 15 20

Relative budget

0

0.5

1

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Cooperative

Irrelevant

Adversarial

(a) Reward modification.

0 0.2 0.4 0.6 0.8 1

Relative budget

0

0.5

1

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Cooperative

Irrelevant

Adversarial

(b) Action nudge.

Figure 3: Misalignment of the principal’s and the agent’s the agent’s
reward function. The y-axis is the relative performance compared
with the optimal (in terms of the principal’s payoff), and the x-axis
is the amount of budget relative to the optimal performance.

Additional simulations. Additional simulations are included
in Appendix D. We show that setting a small β in Algorithm 1
suffices to approximate the true optimal of (3) and examine
its runtime. This result complements Lemma 3, proving the
convergence of Q functions, and demonstrates that we can ap-
proximate the overall performance of the optimal. In another
simulation, we demonstrate how to combine off-the-shelf in-
verse reinforcement learning algorithms to deal with scenar-
ios when the agent rewards and biases are unknown a priori.

4.2 Real-world human-subject experiments
While our simulation results are promising, they are under the
assumption that the agent makes decisions following the be-
havioral model. In this section, we examine whether our envi-
ronment design algorithms are effective for real human deci-
sion makers whose behavior might deviate from the model.
We have recruited 300 unique workers from Amazon Me-
chanical Turk. Each worker is paid $0.50 and might earn
additional bonuses. The average hourly rate is around $11.50.
Task description. Each worker is asked to play six navi-
gation games, with each represented by a grid world of size
10 × 10. The setup is similar to our simulations, except that
we simplify the rewards to depend only on the state, i.e.,
Ra(s, a) = Rp(s, a) = R(s), to reduce the cognitive burden
for workers. Workers’ bonuses depend on their total rewards.
We also consider the setting in which the principal and the
agent share the same reward function. To induce biased hu-
man behavior, a worker can only see the rewards of the nearby
states (to simulate the short-sightedness). Out of six games,
there are two games each for vision length of 1, 2, 3, which we
use short-sighted (boundedly rational) agent with τ = 0, 1, 2
to model when solving the environment design problem. The
detailed task setup is included in Appendix E.1.

Each worker is randomly assigned to one of the three treat-
ments: {baseline, modified reward, action nudged}. The
games are drawn from the same pool for each treatment. In
baseline, workers play the drawn games without modifica-
tions. In modified reward, workers see the modified rewards

generated by our algorithm. In action nudge, when a nudge
happens, the workers see an additional messages indicating
they might gain bonus for moving towards a certain direction.
Since our goal is to observe whether environment design has
impacts to real human decision-makers, we set the budget to
be large enough such that the optimal decisions can be in-
duced when the agent follows the behavioral model. We also
report the true incurred cost in the experiment results.

0 1 2
500

600

700

800

900

1000

P
e

rf
o

rm
a

n
c
e

Baseline

Modified reward

Action nudge

(a) Average principal’s payoff.

0 1 2
0

0.2

0.4

0.6

0.8

1

R
a

ti
o

Baseline

Modified reward

Action nudge

(b) The ratio of human moves
matched predictions.

Figure 4: The results from the human-subject experiment. The re-
sults are grouped by the vision length of the games, mapping to dif-
ferent values of τ in short-sighted (boundedly rational) agents. 4(a)
shows the average principal’s payoff with real human decision mak-
ers in treatments, and 4(b) shows the ratio of worker moves which
are the same as short-sighted model predictions.

Experiment results. As shown in Figure 4(a), workers under
both environment design treatments generate more rewards
for the principal, suggesting that our algorithms lead to ef-
fective environment designs even for real humans that do not
always behave as the behavioral model. The actual costs in-
curred in “modified reward” and “action nudge” treatments
are 73.7 and 50.3 points, while the average gain is 142.9 and
119.2 points. Moreover, since the principal and the agent
share the same reward, the baseline treatment corresponds to
the optimal design (do nothing) for the standard agent model.
The performance improvement of our algorithms re-affirms
the importance of incorporating realistic human models.

We also measure whether real humans behave as predicted
by the behavioral model. As in Figure 4(b), worker behav-
ior aligns with our behavioral models 53.8%, 54.2%, 68.7%
of the time on average in each treatment. We also compare
worker behavior with the standard model, with alignment at
only 33.2%, 36.9%, 45.9% of the time. Interestingly, workers
are more likely to behave as predicted in the “action nudge”
treatment, likely because this treatment generates additional
information that triggers workers to follow the nudged action.

5 Conclusion
We investigate environment design with biased decision mak-
ers. Our work sheds lights on many important applications,
such as AI-assisted decision making. Future works include
incorporating other bias models, including different envi-
ronment design strategies, and addressing potential concerns
when the objectives of the principal and the agent differ, such
as in the adversarial setting. For example, can we design
robust decision-making environments, e.g., imposing regula-
tions/constraints on the environment updates to be allowed, to
better safeguard human welfare. We hope this work can open
more discussion in designing assistive AI technology and in
incorporating behavioral models in computation.

6

Acknowledgements
This work is supported in part by the Office of Naval Re-
search Grant N00014-20-1-2240.

References
Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via in-

verse reinforcement learning. In International Conference on Ma-
chine Learning, 2004.

Andreea Bobu, Marius Wiggert, Claire Tomlin, and Anca D Dragan.
Feature expansive reward learning: Rethinking human input. In
International Conference on Human-Robot Interaction, 2021.

Xiaoni Duan, Chien-Ju Ho, and Ming Yin. Does exposure to diverse
perspectives mitigate biases in crowdwork? an explorative study.
In AAAI Conference on Human Computation and Crowdsourcing,
2020.

Xiaoni Duan, Chien-Ju Ho, and Ming Yin. The influences of task
design on crowdsourced judgement: A case study of recidivism
risk evaluation. In The Web Conference (WWW), 2022.

Owain Evans and Noah D Goodman. Learning the preferences
of bounded agents. In NIPS Workshop on Bounded Optimality,
2015.

Owain Evans, Andreas Stuhlmüller, and Noah Goodman. Learning
the preferences of ignorant, inconsistent agents. In AAAI Confer-
ence on Artificial Intelligence, 2016.

Peter Frazier, David Kempe, Jon Kleinberg, and Robert Kleinberg.
Incentivizing exploration. In ACM Conference on Economics and
Computation, 2014.

Sebastian Gottwald and Daniel A Braun. Bounded rational decision-
making from elementary computations that reduce uncertainty.
Entropy, 2019.

Dana Hughes, Akshat Agarwal, Yue Guo, and Katia Sycara. Infer-
ring non-stationary human preferences for human-agent teams. In
IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN), 2020.

Daniel Kahneman. A perspective on judgment and choice: mapping
bounded rationality. American Psychologist, 58(9):697, 2003.

Jon Kleinberg and Sigal Oren. Time-inconsistent planning: a com-
putational problem in behavioral economics. In ACM Conference
on Economics and Computation, 2014.

Jon Kleinberg, Sigal Oren, and Manish Raghavan. Planning with
multiple biases. In ACM Conference on Economics and Compu-
tation, 2017.

W. Bradley Knox and Peter Stone. Tamer: Training an agent manu-
ally via evaluative reinforcement. In IEEE International Confer-
ence on Development and Learning, 2008.

Yishay Mansour, Aleksandrs Slivkins, and Vasilis Syrgkanis.
Bayesian incentive-compatible bandit exploration. In ACM Con-
ference on Economics and Computation, 2015.

Peta Masters, Michael Kirley, and Wally Smith. Extended goal
recognition: a planning-based model for strategic deception. In
International Conference on Autonomous Agents and MultiAgent
Systems, 2021.

Peta Masters, Wally Smith, and Michael Kirley. Extended goal
recognition: Lessons from magic. Frontiers in Artificial Intel-
ligence, 4, 2021.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse re-
inforcement learning. In International Conference on Machine
Learning, 2000.

Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie
Shah. Efficient model learning from joint-action demonstrations
for human-robot collaborative tasks. In International Conference
on Human-Robot Interaction, 2015.

Ted O’Donoghue and Matthew Rabin. Doing it now or later. Amer-
ican Economic Review, 89(1):103–124, 1999.

Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu,
and Adish Singla. Policy teaching via environment poisoning:
Training-time adversarial attacks against reinforcement learning.
In International Conference on Machine Learning, 2020.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforce-
ment learning. In International Joint Conference on Artificial In-
telligence, 2007.

Sonja Schach, Sebastian Gottwald, and Daniel A Braun. Quantify-
ing motor task performance by bounded rational decision theory.
Frontiers in neuroscience, 2018.

Rohin Shah, Noah Gundotra, Pieter Abbeel, and Anca Dragan. On
the feasibility of learning, rather than assuming, human biases
for reward inference. In International Conference on Machine
Learning, 2019.

Aleksandrs Slivkins. Introduction to multi-armed bandits. Found.
Trends Mach. Learn., 2019.

Zhao Song, Ron Parr, and Lawrence Carin. Revisiting the softmax
bellman operator: New benefits and new perspective. In Interna-
tional Conference on Machine Learning, 2019.

Wei Tang and Chien-Ju Ho. Bandit learning with biased human
feedback. In International Conference on Autonomous Agents
and Multiagent Systems, 2019.

Wei Tang and Chien-Ju Ho. On the bayesian rational assumption in
information design. In AAAI Conference on Human Computation
and Crowdsourcing, 2021.

Wei Tang, Chien-Ju Ho, and Ming Yin. Leveraging peer com-
munication to enhance crowdsourcing. In The Web Conference
(WWW), 2019.

Shunan Zhang and J Yu Angela. Forgetful bayes and myopic plan-
ning: Human learning and decision-making in a bandit setting. In
Advances in Neural Information Processing Systems, 2013.

Haoqi Zhang and David C Parkes. Value-based policy teaching with
active indirect elicitation. In AAAI Conference on Artificial Intel-
ligence, 2008.

Haoqi Zhang, Yiling Chen, and David C Parkes. A general approach
to environment design with one agent. In International Joint Con-
ference on Artificial Intelligence, 2009.

Haifeng Zhang, Jun Wang, Zhiming Zhou, Weinan Zhang, Ying
Wen, Yong Yu, and Wenxin Li. Learning to design games: Strate-
gic environments in reinforcement learning. In International
Joint Conference on Artificial Intelligence, 2018.

Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. Adap-
tive reward-poisoning attacks against reinforcement learning. In
International Conference on Machine Learning, 2020.

Tan Zhi-Xuan, Jordyn Mann, Tom Silver, Josh Tenenbaum, and
Vikash Mansinghka. Online bayesian goal inference for bound-
edly rational planning agents. In Advances in Neural Information
Processing Systems, 2020.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey,
et al. Maximum entropy inverse reinforcement learning. In AAAI
Conference on Artificial Intelligence, 2008.

7

A Related Work

Our work is built on the formulation of Markov decision pro-
cess commonly seen in reinforcement learning. Instead of
solving the agent’s optimal policy, in this work, we consider
a Stackelberg game formulation, in which the principal can
first choose how to update the decision-making environment,
and then the agent makes decisions in the updated environ-
ment. The goal of the principal is to obtain the maximum
total rewards derived from the agent’s actions. When the
agent is rational and chooses the optimal policy, our prob-
lem is similar to policy teaching [Zhang and Parkes, 2008;
Zhang et al., 2009, 2018] and poisoning attack for reinforce-
ment learning [Rakhsha et al., 2020; Zhang et al., 2020] in
the literature. Our work deviates from these works by incor-
porating human behavioral models in the framework and in
conducting real-world human subject experiments to evalu-
ate our approaches.

This work incorporates the human behavioral models about
biased decision-making from behavioral economics. In
particular, we include the bounded rationality [Kahneman,
2003], which describes the intuitions that human decisions
might not be optimal due to limited computation power or
lack of future information (a myopic agent can be considered
as a bounded-rational agent that only cares about the current
payoff), and present bias [O’Donoghue and Rabin, 1999],
which describes humans’ tendency to give stronger weights
on immediate costs and benefits rather than balancing them
against costs and benefits in the future. While these behav-
ioral models are empirically observed to often better align
with real human behavior, there are still relatively limited re-
search that incorporate them in studying computational sys-
tems with humans in the loop.

There have been recent works that aim to incorporate be-
havioral models in computational frameworks. For example,
the research on incentivizing exploration [Frazier et al., 2014;
Mansour et al., 2015] (see Chapter 11 in the recent survey
by Slivkins [2019]) studies how a principal can incentivize
myopic agents to perform exploration in bandit learning via
designing specific monetary payments or information poli-
cies; Tang and Ho [2019] incorporates the model of herding
bias in the feedback generation in bandit learning; Tang and
Ho [2021] relax the Bayesian rational assumption in incen-
tive design; Kleinberg and Oren [2014] and Kleinberg et al.
[2017] study the planning for time-inconsistent agents in en-
vironments characterized by graphical models; Masters et al.
[2021a,b] incorporate biased human model in goal recogni-
tion. Moreover, there have been works examining real-world
human behavior in computational environments [Zhang and
Angela, 2013; Schach et al., 2018; Gottwald and Braun,
2019; Duan et al., 2020, 2022; Tang et al., 2019]. Our work
aligns with this line of research which incorporates realis-
tic human behavioral models in computation. In particular,
we focus on the study of environment design in sequential
decision-making environments characterized by Markov de-
cision process with biased decision makers.

There have been other lines of research that also includes
humans in the loop of reinforcement learning frameworks.
For example, inverse reinforcement learning [Ng et al., 2000;

Abbeel and Ng, 2004; Ziebart et al., 2008; Ramachandran
and Amir, 2007] aims to infer the reward functions in MDP
through observing demonstrations of the optimal policy. If
the demonstrator is a human being, the demonstrations could
be noisy or contain behavioral biases. There have been stud-
ies [Evans et al., 2016; Shah et al., 2019; Hughes et al., 2020;
Zhi-Xuan et al., 2020] aiming to incorporate human behav-
ioral biases in the inference process and infer both the rewards
and biases simultaneously. While the research goal is differ-
ent, this line of research complements our study in that the
techniques can be applied to infer the reward function and hu-
man biases in our formulation. In another line of research, re-
searchers aim to leverage human feedback and knowledge to
better train learning algorithms in reinforcement learning set-
tings [Knox and Stone, 2008; Nikolaidis et al., 2015; Bobu et
al., 2021]. This work differs from this line of work in that our
goal is to induce humans to perform desired behavior through
finding optimal ways to update the decision-making environ-
ment instead of improving the learning algorithms.

B Omitted Proofs in the Main Paper
B.1 Proof of Lemma 1
Proof. We prove the lemma by constructing an example
MDP for bounded-rational agents. Consider a bounded-
rational agent with parameter τ . We construct an MDP as
show in Figure A1, where the circle denotes the state, ar-
row denotes the action (with deterministic transition), and
the number associate with the arrow is the reward. We con-
sider the case that the reward functions for the principal and
the agent are the same. In this example, the set of state is
{s0, ..., sτ+1}. For states si with i = 1 to τ , there is only one
available action “move right” that moves to state si+1, where
the reward Ra(si,move right) = Rp(si,move right) = 1.
For state s0, there is an additional action of staying in state s0
that lead to reward of 2, and for state sτ+1, the only action is
to move to state s0 that gives a reward of m.

Figure A1: The example MDP used for proving Lemma 1 with
bounded-rational agents.

Let the initial state be s0 and T = τ + 2. If the agent is
bounded rational with τ , it is easy to see that the agent will
choose to stay in s0 and generate a total reward of (τ +2) ∗ 2
for the principal. If the agent is a standard agent with γ = 1,
he will move from s0 to sτ+1 then back to s0, leading to a
total reward of τ + 1 + m. Therefore, without environment
design, the ratio between the reward by a bounded-rational
agent and the reward by a standard agent would be 2(τ +
2)/(τ +1+m), which goes to 0 when m→∞. This proves
that there exists an MDP such that the ratio of the reward
made by an bounded rational agent compared to the reward
made by a standard agent is arbitrarily close to 0.

8

If the principal believes the agent is a standard agent, she
does not need to update the environment to reach the optimal
payoff. However, the agent, who is bounded rational, would
take the the sub-optimal action. Therefore, the principal’s
performance ratio would again be 2(τ + 2)/(τ + 1 + m),
which could goes to 0 when m→∞.

B.2 Proof of Theorem 2
Proof. We prove the NP-hardness through a reduction from
the knapsack problem. The reduction process is similar to the
one by Zhang and Parkes [2008], though we use the myopic
agent case to show that the problem is NP-hard with biased
agents. Note that this proof holds for both the problem of
environment design via reward function modification and via
action nudge.

An instance of the knapsack problem consists of n items.
Denote the i-th item value as ui > 0 and the weight as
wi > 0, for 1 ≤ i ≤ n. The knapsack problem aims to
find a set of items that maximizes the total values while en-
suring the total weights is within budget B. Using variables
xi ∈ {0, 1} to denote whether item i is included in the set,
the knapsack problem can be formulated as the below integer
program, which is NP-hard in general:

max
x

n∑
i=1

uixi; s.t.
n∑

i=1

wixi ≤ B, xi ∈ {0, 1},∀i (A1)

For the reduction, for each instance of the knapsack prob-
lem, we can construct an MDP as follows. Consider an MDP
with n + 1 states, s1 to sn+1. The initial state is s1. We
also make the action set from state sn+1 to be empty, effec-
tively making it an end state. There are two actions {a1, a0}
available for each state, except for sn+1, with taking a1 at
state si representing accepting item i, and taking a0 repre-
senting not accepting. No matter which action is taken at
state si, the next state will always be si+1. The agent’s re-
ward function corresponds to the weight for accepting item
and the principal’s rewards corresponds to the utility, i.e.,
agent reward is Ra(si, a1) = −wi, and principal reward is
Rp(si, a1) = ui. Taking action a0 leads to zero reward for
both principal and agent, i.e., Ra(si, a0) = Rp(si, a0) = 0.
Let the agent be myopic, and the budget for the principal is
B. Note that in this MDP, the initial state is s1, and no mat-
ter what the agent policy is, the state at time t is st, so we
have omitted the time index in the agent policy to simplify
the presentation, which means the myopic agent will choose
π(si) = argmaxa∈{a0,a1} R

a(si, a). Note also that, without
environment design, the myopic agent will always choose ac-
tion a0 since Ra(si, a0) = 0 > −wi = Ra(si, a1),∀i, and
therefore the principal’s total reward is 0 in this case.

The environment design problem either via reward func-
tion modification or action nudge can be expressed in the
same way as in (A2). The reason is that 1) in this MDP
construction, the agent policy does not depend on time t, and
2) since the agent is myopic, both reward function modifica-
tion and action nudge need to pay same amount of c(si, a) for
agent to change action. Therefore, the optimization formula-
tion for both design spaces is the same as in (A2), and this
NP-hardness proof holds for both cases.

max
c

n∑
i=1

Rp(si, π(si))

s.t.
n∑

i=1

∑
a∈{a0,a1}

|c(si, a)| ≤ B

π(si) = argmax
a
{Ra(si, a) + c(si, a)},∀si

(A2)

Below we show that, with the solution of (A2), we can
obtain the solution of the knapsack problems in polynomial
time. Since we can construct the environment design prob-
lem for every instance of the knapsack problem, if our envi-
ronment design problem is not NP-hard, the knapsack prob-
lem is not NP-hard, which lead to the contradiction since the
knapsack problem is known to be NP-hard. Observe that
if we have the solution c(s, a) from (A2), we can obtain
π(si) as well in the equality constraint. If π(si) = a0, we
have c(si, a0) = c(si, a1) = 0. If π(si) = a1, we have
c(si, a1)− c(si, a0) ≥ Ra(si, a0)−Ra(si, a1) = wi. There-
fore, |c(si, a1)| + |c(si, a0)| ≥ wi, and the equality holds
when we set c(si, a1) = wi and c(si, a0) = 0. With the
above observation and our MDP construction, setting xi to
be 1 in the knapsack problem if and only if π(si) = a1 could
maximize the total utility of selected items while satisfying
the budget constraint on item weights. This means we can
solve the knapsack problem if the solution of (A2) is given.
This finishes the proof.

B.3 Proof of Lemma 3
Recall that we define Q(s, a, t) as Q(s, a, t, 0). Below we
give the proof of a more general version of Lemma 3, as stated
below.

Lemma A1. For any environment w, let πw and ρw be the
agent’s deterministic and stochastic policies following our
model. Let Qπw(s, a, t, t̂) and Qρw(s, a, t, t̂) be the corre-
sponding Q-functions. For all (s, a, t, t̂), we have

|Qπw(s, a, t, t̂)−Qρw(s, a, t, t̂)| ≤ O(e−βC),

where C > 0 is a constant and β is the parameter of ρ.

Proof. This proof extends the results by Song et al. [2019],
who prove the convergence for infinite-time horizon MDP, to
address finite horizon and general discounting function. In
the following proof, we omit the subscript w in πw and ρw
and represent them using π and ρ. For a biased agent with
discounting function d(t), Let Qπ(s, a, t, t̂) be the biased Q-
function following π. Similar to the standard notation con-
vention, we use the random variable sπt to denote state at time
t when following policy π. The expectation is taken over the
randomness of state transition. Also, since we are considering
finite-horizon MDP, we set Qπ(s, a, t, t̂) = 0 for t + t̂ > T ,
which represents the unreachable horizon. We have

Qπ(s, a, t, t̂) = d(t̂)R(s, a)

+ E[Qπ(sπ
t+t̂+1

, π(sπ
t+t̂+1

, t, t̂+ 1), t, t̂+ 1)]

9

We can write down Qρ(s, a, t, t̂) similarly as Qπ . The
only difference is in the second term. Instead of taking ac-
tion π(sπ

t+t̂+1
, t, t̂ + 1), the agent takes action a = aρ

t+t̂+1

with probability ρ(s, a, t, t̂+1) = eβQρ(s,a,t,t̂+1)∑
a′ eβQρ(s,a′,t,t̂+1) . More-

over, the expectation is taken over both state transition and
stochastic policy.

Qρ(s, a, t, t̂) = d(t̂)R(s, a)

+ E[Qρ(sρ
t+t̂+1

, aρ
t+t̂+1

, t, t̂+ 1)]

Claim 1: Qπ(s, a, t, t̂)−Qρ(s, a, t, t̂) ≥ 0

Proof. We prove this claim by induction. Note that by defi-
nition, both Q functions are 0 when t̂+ t > T .
• When t̂ = T − t, Qπ(s, a, t, T − t)−Qρ(s, a, t, T − t) =
R(s, a)−R(s, a) = 0.

• When t̂ < T−t, we have Qπ(s, a, t, t̂−1)−Qρ(s, a, t, t̂−
1) = E[maxa Q

π(s, a, t, t̂)−
∑

a ρ(s, a, t, t̂)Q
ρ(s, a, t, t̂)].

Since Qπ(s, a, t, t̂) ≥ Qρ(s, a, t, t̂) for all (s, a, t, t̂), we
have Qπ(s, a, t, t̂)−Qρ(s, a, t, t̂) ≥ 0.

For the purpose of the analysis, we define two functions:

δ(s, t, t̂) = max
a

Qπ(s, a, t, t̂)−
∑
a

ρ(s, a, t, t̂)Qπ(s, a, t, t̂)

ζ(t, t̂) = max
s

δ(s, t, t̂)

Claim 2: Qπ(s, a, t, t̂)−Qρ(s, a, t, t̂)≤
∑T

j=t+t̂+1 ζ(t, j−t)

Proof. We again prove it by induction.
• When t̂ = T − t, Qπ(s, a, t, T − t)−Qρ(s, a, t, T − t) =
R(s, a)−R(s, a) = 0.

• Suppose the statement is true for t̂. For t̂ − 1, we have
(for notation simplicity, we use s′ to denote st+τ). The
expectation of s′ is over the state transition P (s′|s, a) and
the expectation of a′ is over the stochastic policy ρ.

Qπ(s, a, t, t̂− 1)−Qρ(s, a, t, t̂− 1)

=E
s′

[
max
a′

Qπ(s′, a′, t, t̂)−E
a′
[Qρ(s′, a′, t, t̂)]

]
≤E

s′

[
max
a′

Qπ(s′, a′, t, t̂)−E
a′
[Qπ(s′, a′, t, t̂)]

+

T∑
j=t+t̂+1

ζ(t, j − t)
]

=E
s′
[δ(s′, t, t̂)] +

T∑
j=t+t̂+1

ζ(t, j − t)

≤ζ(t, t̂) +
T∑

j=t+t̂+1

ζ(t, j − t) =

T∑
j=t+t̂

ζ(t, j − t)

Therefore, by induction, we know the claim is true.

With the above claims, we now show how ζ converges
in terms of β. For given (s, t, t̂), we sort {Qπ(s, a, t, t̂)}
such that Qπ(s, a[1], t, t̂) ≥ Qπ(s, a[2], t, t̂) ≥ · · · ≥
Qπ(s, a[m], t, t̂). Therefore, we have σi = Qπ(s, a[1], t, t̂) −
Qπ(s, a[i], t, t̂) ≥ 0. Also, there exists an index i∗ ≤ m such
that σi > 0,∀i∗ ≤ i ≤ m and σi = 0,∀i < i∗. If i∗ does
not exist, for all action Qπ(s, a, t, t̂) = maxa′ Qπ(s, a′, t, t̂),
there is no difference in selecting any action. Notice that i∗
depends on (s, t, t̂), but we omit the dependency for clarity.

Note that we can express δ(s, t, t̂) as below.

δ(s, t, t̂) =Qπ(s, a[1], t, t̂)−
∑
a

ρ(s, a, t, t̂)Qπ(s, a, t, t̂)

=

∑m
i=2 e

−βσiσi

1 +
∑m

i=2 e
−βσi

Since
∑

i xi

1+
∑

i yi
≤

∑
i

xi

1+yi
for non-negative sequences

{xi} and {yi}. By setting xi = e−βσiσi and yi = e−βσi ,
we have

δ(s, t, t̂) =

∑m
i=2 e

−βσiσi

1 +
∑m

i=2 e
−βσi

≤
m∑
i=2

e−βσiσi

1 + e−βσi

=

m∑
i=2

σi

1 + eβσi
=

m∑
i=i∗

σi

1 + eβσi

≤ e−βσi∗
m∑

i=i∗

σi

Therefore, ζ(t, t̂) can be upper bounded as below:

ζ(t, t̂) = max
s

δ(s, t, t̂) ≤ max
s

e−βσi∗
m∑

i=i∗

σi

By applying Claim 2, we have the following

Qπ(s, a, t, t̂)−Qρ(s, a, t, t̂)

≤
T∑

j=t+t̂+1

ζ(t, j − t)

≤(T − t− t̂) max
t+t̂+1≤j≤T

max
s

e−βσi∗
m∑

i=i∗

σi

Note that σi ≤ maxs,a,t,t̂ Q
π(s, a, t, t̂) ≤∑T

t=0 d(t)Rmax, and Rmax = maxs,a R(s, a) > 0. If
we choose σ∗ = mini,s,t,t̂ σi such that σi > 0 holds, the
following bounds holds for all (s, a, t, t̂) and β > β0:

Qπ(s, a, t, t̂)−Qρ(s, a, t, t̂)

≤
[
m(T + 1)

T∑
t=0

d(t)Rmax

]
e−βσ∗

10

C Discussion on the Action Nudge
Formulation

We have formulated the design of action nudge as a linear
program as in Equation (6). Note that there could be multiple
actions that lead to ϕ(s, a, t) > 0 for a given (s, t), imply-
ing that we might need to offer multiple competing nudge
simultaneously. This might not be desirable in practice. One
potential approach to address this is to add small random
noises into Rp(s, a). Since the reason for multiple competing
nudges is due to ties (the agent is indifferent between choos-
ing multiple actions), and the chance for two summations of
random real numbers to be equal is small, this approach could
reduce the the chance of having multiple nudges simultane-
ously. Below we can show that there exists an optimal solu-
tion such that this “multiple competing nudge” scenario will
happen at most once.

Lemma A2. There exists an optimal solution ϕ∗ for prob-
lem 6, such that there is at most 1 state-time (ŝ, t̂) that we
can find two actions a1, a2 such that ϕ∗(ŝ, a1, t̂) > 0 and
ϕ∗(ŝ, a2, t̂) > 0.

Proof. The problem formulated in (6) is a LP problem with
|S|(T + 1) + 1 constraints, with |S|T constraints on tran-
sition dynamics, |S| constraints on initial distribution, and
1 constraint on the nudge budget (excluding the constraints
ϕ(s, a, t) ≥ 0). Therefore, using the property of linear pro-
grams, there exists at least one optimal solution with at most
|S|(T + 1) + 1 non-zero variables (the one with the small-
est number of non-zero variables is called the basic feasible
solution).

First consider a special case that we can find an optimal
solution ϕ∗ that (1) has at most |S|(T +1)+1 non-zero vari-
ables and (2) there exists an action a for every (s, t) such
that ϕ∗(s, a, t) > 0. Note that finding ϕ∗ satisfying (1) is
always possible using the property of linear programs as dis-
cussed above. If there exists ϕ∗ that satisfies both conditions,
the proof of the lemma is straightforward. Since we have
|S|(T + 1) sets of (s, t), there will be at least |S|(T + 1)
non-zero variables due to the condition. Since there is also at
most |S|(T+1)+1 non-zero variables in ϕ∗, we can conclude
there exists at most one set of (s, t) such that there contains
two non-zero variables in ϕ∗.

Below we consider the general case that we can only find ϕ′

that satisfies the first condition but not the second. We demon-
strate how to construct a “smaller” problem that satisfies both
conditions in a smaller problem instance. We then argue the
optimal solutions in the smaller problem space is also optimal
in the original space. First, we know there always exists a so-
lution ϕ

′
that satisfies the first condition from the property of

linear programs. Now let us construct a “smaller” problem of
the original problem (6). For a given ϕ

′
that satisfies the first

condition, denote Y = {(s, t)|∀s, t}, the set of all (s, t), and
X = {(s, t)|

∑
a ϕ

′
(s, a, t) = 0}, the set of (s, t) such that∑

a ϕ
′
(s, a, t) = 0. Now construct an updated problem from

problem (6) such that the the set of state-time pair is Y \ X
(i.e., the set of state-time pair that is in Y but not in X), but the
transition and cost is still the same, and corresponding action

probability is set to zero, i.e., ϕ(s, a, t) = 0 if (s′, t+1) ∈ X
and P (s′|s, a) > 0. Note that ϕ′ is still the optimal solution
in new problem, and any optimal solution in new problem is
also going to be optimal in the original problem (since they
perform at least as well as ϕ′). Note that now in the new prob-
lem, the number of constraint is |S|(T + 1) + 1 − |X|, and
the number of state-time pair is |S|(T + 1) − |X|. Again,
using the property of linear program, there exists a solution
with at most |S|(T + 1) + 1 − |X| elements. If we can find
a solution ϕ∗ that satisfies the above while also satisfying the
condition that there exists an action a for every (s, t) ∈ Y \X
such that ϕ∗(s, a, t) > 0, there exists at most one (s, t) with
two nonzero ϕ∗(s, a, t) and we have the proof. If not, we can
continue the above process to keep shrink the set of (s, t) until
we find the new problem that satisfies both conditions. Note
since in each new construction, the set of (s, t) is reduced at
least by 1, and therefore this procedure will terminate in a
finite number of times. This concludes our proof.

In Lemma A2, we demonstrate the existence of solution
such that ”multiple competing nudge” only happens once.
Now we show how to leverage the simplex method to find
such a solution. The process is essentially an implementa-
tion of the procedure in the proof using the simplex method.
Given problem (6), we can first use the simplex method to
find a basic feasible solution, named ϕ1. If ϕ1 satisfies the re-
quirement that ”multiple competing nudge” happens at most
once, then ϕ1 is the desired solution. If not, since ϕ1 is a ba-
sic feasible solution, there must exists some (s, t) such that
ϕ1(s, a, t) = 0,∀a. We could then reconstruct a problem by
removing all those state-time in problem (6), then resolve the
problem using simplex method to find a new basic feasible
solution ϕ2. Note that ϕ2 has the same performance of ϕ1 in
the original problem. If ϕ2 meets the requirement, we have
found the desired solution. If not, we could repeat above pro-
cess to construct new problem and find new solution, until
the solution satisfies at most one ”multiple nudge”. Note that
each new solution is still an optimal solution in original prob-
lem. In the worst case, we need to repeat the above process
|S|(T+1) times, i.e., the number of state-time pair. However,
this is still linear in terms of time complexity. By following
the above procedure, we can find a solution that ”multiple
competing nudge” happen at most once in polynomial time.

D Additional Simulation Results
We present two additional sets of simulation results in this
section. The first one examines the choice of β in the re-
laxed formulation in environment design via reward modifi-
cation. The second one examines the scenario when the agent
reward function and biases are not known a priori and eval-
uate whether we can leverage inverse reinforcement learning
to infer agent rewards and biases to be used in our algorithms.

D.1 The effect of β in the relaxed formulation
We have shown that solving the environment design problem
as defined in (3) is NP-hard and have proposed an relaxed for-
mulation as in (4). The key parameter of this relaxation is β
in the soft-max function. When β →∞, the relaxation is the

11

same as the original environment design problem. However,
in practice, we can only solve it with a finite β.

Here we examine how much the choices of β impacts the
outcome. We consider the mis-alignment of the principal’s
and the agent’s reward function. For the agent model, we con-
sider the boundedly-rational agent with τ = 1 and present-
bias agent with k = 1 (we have examined a range of dif-
ferent parameters, and the results are qualitatively similar.).
For comparison, we brute-forcedly derive the optimal solu-
tion using bi-level solver of Pyomo7 and examine how fast
the performance of our algorithms converges to the true opti-
mal as β increases. As shown in Figure A2, the performance
converges quickly with β increases. It suggests that setting a
small β is enough to reach reasonable approximations. This
result also complements Lemma 3, proving the convergence
of Q functions, and demonstrates that we can approximate
the overall performance of the optimal.

0 2 4 6 8 10
0.6

0.7

0.8

0.9

1

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Cooperative

Irrelevant

Adversarial

(a) Bounded rational τ = 1.

0 2 4 6 8 10
0.6

0.7

0.8

0.9

1

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Cooperative

Irrelevant

Adversarial

(b) Present biased k = 1.

Figure A2: Examining the impact of β to the relaxation algorithm.
When β is large, the relaxation is close to optimal. The results sug-
gest that a small β is sufficient for the approximation.

We have also measured the runtime improvements for the
relaxation. In our simulation (|S|=100, |A|=4, and T =20),
it takes 7.9 seconds for our algorithm to solve an instance
on average in our relaxed formulation while it takes 721.3
seconds to solve the instance exactly. The results demonstrate
the efficiency improvements of the relaxation.

D.2 Unknown agent reward and biases:
Combining inverse reinforcement learning

In our setting, we assume the reward function and agent bias
parameters are known. While this assumption might be ap-
proximately satisfied in some cases (e.g., reward functions are
payments specified by the system, and biases can be roughly
estimated as in our experiment), it might not be satisfied in
other cases. When these parameters are unknown, if we have
access to data of human behavior in the original environment
(e.g., user action history on the website), we might apply stan-
dard approaches in inverse reinforcement learning to simulta-
neously infer the reward and human biases first and then use
the inferred values for environment design. In this set of sim-
ulations, we examine whether this idea is feasible.

We use the same simulation setup as in the main paper and
apply the techniques by Evans and Goodman [2015] to in-
fer the reward and bias parameter at the same time from the
policy. Since they take a Bayesian approach, and the prior
(initial belief about the parameters) would influence the out-
come, we run simulations by assuming the prior is a noisy

7https://github.com/Pyomo/pyomo

observation of the truth. In particular, let r(s, a) be the true
reward. In the prior, we randomly draw the prior of r(s, a) to
be N(N(r(s, a), σ), σ), where N(µ, σ) is a normal distribu-
tion with mean µ and variance σ. Intuitively, larger σ implies
a worse prior. We set the agent model to be a bounded ra-
tional agent with τ = 1 (we have tried other agent models
and the results are qualitatively similar). Figure 3(a) and 3(b)
demonstrate how well the inverse reinforcement learning can
estimate the true values with different noise σ in the prior.
We then run our environment design algorithms on the in-
ferred values, and Figure 3(c) and 3(d) demonstrate that our
algorithms work on inferred rewards and biases as long as we
have reasonable initial prior. While the results in this simu-
lation are exploratory, it showcases the possibility to utilize
environment design even when the rewards and human biases
are initially unknown.

0.01 0.1 1.0
0

0.5

1

1.5

R
e

w
a

rd
 r

m
s
e

Bounded rationality

Present bias

(a) RMSE of inferred reward.

0.01 0.01 1.0
0

0.5

1

1.5

2

B
ia

s
 p

a
ra

m
e

te
r

rm
s
e

Bounded rationality

Present bias

(b) RMSE of inferred bias pa-
rameters.

0 1 2 3 4 5

Relative budget

0.8

0.85

0.9

0.95

1

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

(c) Reward modification.

0 0.2 0.4 0.6 0.8 1

Relative budget

0.8

0.85

0.9

0.95

1

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

(d) Action nudge.

Figure A3: Performance of environment design when the rewards
and biases parameters are inferred.

E Details of the Human Subject Experiment
We provide the more detailed description of our human sub-
ject experiments in this section. We also summarize the de-
mographic information of the online workers recruited from
Amazon Mechanical Turk in the human-subject experiments.

E.1 Experiment design and task interface
Our human-subject experiment is approved by the IRB board
in our institution. In our human-subject study, each worker is
asked to play six navigation games, representing the decision-
making environments. Similar to our simulation setting, each
navigation game is represented by a grid world of size 10×10.
The initial state is in the middle of the grid world, and the time
horizon T is set to 20. In order to reduce the cognitive burden
for human subjects, the reward function is simplified to only
depend on the state, and we let the principal’s reward function
to be equal to the agent’s reward function, i.e., Ra(s, a) =
Rp(s, a) = R(s).

The reward on each state is an integer from 1 to 100. Simi-
lar to the setup in the simulation, we place a high reward state
(uniformly drawn from 80 to 100) in a random corner of grid

12

as global optimal, and a medium reward state (from 50 to 80)
in other three corners as local optimal. Since the initial point
is in the middle of map, we set the reward of path to global
optimal and one local optimal to be low (from 10 to 30), and
reward towards other two local optimal to be relatively high
(from 30 to 50). Other places of map is set to be relatively
low (from 1 to 30).

The interface of the navigation game is shown in Fig-
ure A4. Workers can move the plane around the map to col-
lect the points in the grid world, and their bonuses depend on
the total points they collected for the six games. For every
100 points collected, they can earn an additional USD $0.01
bonus. Taking into account the workers’ working time in the
task, and the $0.50 base payment for submitting the task, the
average hourly rate is around USD $11.50.

Figure A4: The interface of the navigation game in the human-
subject experiment. Workers can use arrow keys to move the air-
plane around and collect points. The information on the bottom
of the left-panel is the action nudge presented to workers, which
is shown in action nudge treatment hen a nudge is provided by the
principal, hidden otherwise.

To induce biased human behavior, at each time step, a
worker can only see the rewards of the nearby states (to sim-
ulate the short-sightedness). Out of six games, there are two
games each for vision length of 1,2, 3, which we use short-
sighted agent with τ = 0, 1, 2 to model when solving the
environment design problem. Note that the purpose of this
design is to provide us an estimate of human biases to be used
in environment design. Worker behavior might not follow the
behavior model.

Each worker is randomly assigned to one of the three treat-
ments: {baseline, modified reward, action nudged}, with 106,
86, 108 workers assigned to each. The games are drawn from
the same pool for each treatment. In the baseline treatment,
workers will play the drawn games without modifications. In
the modified reward treatment, workers will see the modified
rewards generated by our algorithm, while in the action nudge
treatment, when the nudge happens, the workers will see an
additional message indicating they might gain bonus for mov-
ing towards a certain direction (as shown in Figure A4).

E.2 Demographic Information of the Workers
We summarize the demographic information of our 300 on-
line workers recruited from Amazon Mechanical Turk in the

human-subject experiments in Table A1.

Group Category Number

Age

19 or younger 6
20 to 29 112
30 to 39 110
40 to 49 35
50 to 59 26
60 or older 11

Gender
Female 121
Male 174
Other 5

Race /
Ethnicity

Caucasian 196
Black or African-American 18
American Indian/Alaskan Native 7
Asian or Asian-American 63
Spanish/Hispanic 7
Other 9

Education

High school degree 20
Some college credit, no degree 19
Associate’s degree 13
Bachelor’s degree 216
Graduate’s degree 29
Other 3

Table A1: Demographic information of the 300 participants from
Amazon Mechanical Turk in our experiment.

13

	Introduction
	Related Work

	Problem Setting
	Problem Formulations and Algorithms
	Reward function modification
	Action nudge

	Experiments
	Simulations
	Real-world human-subject experiments

	Conclusion
	Related Work
	Omitted Proofs in the Main Paper
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Lemma 3

	Discussion on the Action Nudge Formulation
	Additional Simulation Results
	The effect of in the relaxed formulation
	Unknown agent reward and biases: Combining inverse reinforcement learning

	Details of the Human Subject Experiment
	Experiment design and task interface
	Demographic Information of the Workers

