
Bandit Learning with Delayed Impact of Actions

Wei Tang†, Chien-Ju Ho†, and Yang Liu∗
†Washington University in St. Louis, ∗University of California, Santa Cruz

{w.tang, chienju.ho}@wustl.edu, yangliu@ucsc.edu

Abstract

We consider a stochastic multi-armed bandit (MAB) problem with delayed impact
of actions. In our setting, actions taken in the past impact the arm rewards in the
subsequent future. This delayed impact of actions is prevalent in the real world.
For example, the capability to pay back a loan for people in a certain social group
might depend on historically how frequently that group has been approved loan
applications. If banks keep rejecting loan applications to people in a disadvantaged
group, it could create a feedback loop and further damage the chance of getting
loans for people in that group. In this paper, we formulate this delayed and long-
term impact of actions within the context of multi-armed bandits. We generalize
the bandit setting to encode the dependency of this “bias" due to the action history
during learning. The goal is to maximize the collected utilities over time while
taking into account the dynamics created by the delayed impacts of historical
actions. We propose an algorithm that achieves a regret of Õ(KT 2/3) and show a
matching regret lower bound of Ω(KT 2/3), where K is the number of arms and
T is the learning horizon. Our results complement the bandit literature by adding
techniques to deal with actions with long-term impacts and have implications in
designing fair algorithms.

1 Introduction

Algorithms have been increasingly involved in high-stakes decision making. Examples include
approving/rejecting loan applications [23, 37], deciding on employment and compensation [5, 19],
and recidivism and bail decisions [1]. Automating these high-stakes decisions has raised ethical
concerns on whether it amplifies the discriminative bias against protected classes [52, 14]. There
have also been growing efforts towards studying algorithmic approaches to mitigate these concerns.
Most of the above efforts have focused on static settings: a utility-maximizing decision maker needs
to ensure her actions satisfy some fairness criteria at the decision time, without considering the
long-term impacts of actions. However, in practice, these decisions may often introduce long-term
impacts to the rewards and well-beings for the human agents involved. For example,

• A regional financial institute may decide on the fraction of loan applications from different social
groups to approve. These decisions could affect the development of these groups: The capability
of applicants from a group to pay back a loan might depend on the group’s socio-economic status,
which is influenced by how frequently applications from this group have been approved [6, 18].

• The police department may decide on the amount of patrol time or the probability of patrol in a
neighborhood (primarily populated with a demographic group). The likelihood to catch a crime in
a neighborhood might depend on how frequent the police decides to patrol this area [28, 26].

These observations raise the following concerns. If being insensitive with the long-term impact
of actions, the decision maker risks treating a historically disadvantaged group unfairly. Making
things even worse, these unfair and oblivious decisions might reinforce existing biases and make
it harder to observe the true potential for a disadvantaged group. While being a relatively under-

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

ar
X

iv
:2

00
2.

10
31

6v
4

 [
cs

.L
G

]
 3

1
O

ct
 2

02
1

explored (but important) topic, several recent works have looked into this problem of delayed impact
of actions in algorithm design. However, these studies have so far focused on understanding the
impact in a one-step delay of actions [45, 36, 31], or a sequential decision making setting without
uncertainty [47, 33, 51, 66, 46, 20, 67].

Our work departs from the above line of efforts by studying the long-term impact of actions in
sequential decision making under uncertainty. We generalize the multi-armed bandit setting by
introducing the impact functions that encode the dependency of the “bias” due to the action history of
the learning to the arm rewards. Our goal is to learn to maximize the rewards obtained over time, in
which the rewards’ evolution could depend on the past actions.

The history-dependency reward structure makes our problem substantially more challenging. In
particular, we first show that applying standard bandit algorithms leads to linear regret, i.e., existing
approaches will obtain low rewards with a biased learning process. To address this challenge, under
relatively mild conditions for the dependency dynamics, we present an algorithm, based on a phased-
learning template which smoothes out the historical bias during learning, that achieves a regret of
Õ(KT 2/3). Moreover, we show a matching lower regret bound of Ω(KT 2/3) that demonstrates
that our algorithm is order-optimal. Finally, we conduct a series of simulations showing that our
algorithms compare favorably to other state-of-the-art methods proposed in other application domains.
From a policy maker’s point of view, our paper explores solutions to learn the optimal sequential
intervention when the actions taken in the past impact the learning environment in an unknown and
long-term manner. We believe our work nicely complements the existing literature that focuses more
on the “understanding” of the dynamics [33, 45, 66, 67].

Related work. Our work contributes to algorithmic fairness studied in sequential settings. Prior
works either study fairness in sequential learning settings without considering long-term impact of
actions [34, 49, 27, 7, 30, 54] or explore the delayed impacts of actions with focus on addressing the
one-step delayed impacts or sequential learning with full information [33, 45, 6, 31, 51, 18, 20]. Our
work differs from the above and studies delayed impacts of actions in sequential decision making
under uncertainty. Our formulation bears similarity to reinforcement learning since our impact
function encodes memory (and is in fact Markovian [53, 62]), although we focus on studying the
exploration-exploitation tradeoff in bandit formulation. Our learning formulation builds on the rich
bandit learning literature [42, 3] and is related to non-stationary bandits [60, 8, 9, 43, 38]. Our
techniques share similar insights with Lipschitz bandits [39, 59] and combinatorial bandits [13] in
that we also assume the Lipschitz reward structure and consider combinatorial action space. There
are also recent works that have formulated delayed action impact in bandit learning [56, 38], but in all
of these works, the setting and the formulation are different from the ones we consider in the present
work. More discussions on related work can be found in Appendix A.

2 Problem Setting

We formulate the setting in which an institution sequentially determines how to allocate resource
to different groups. For example, a regional financial institute may decide on overall frequency of
loan applications to approve from different social groups. The police department may decide on the
amount of patrol time allocated to different regions.

The institution is assumed to be a utility maximizer, aiming to maximize the expected reward
associated with the allocation policy over time. If we assume the reward1 for allocating a unit of
resource to a group is i.i.d. drawn from some unknown distribution, this problem can be reduced to a
standard bandit problem, with each group representing an arm. The goal of the institution is then to
learn a sequence of arm selections to maximize its cumulative rewards.

In this work, we extend the bandit setting and consider the delayed impact of actions. Below we
formalize our setup which introduces impact functions to bandit framework.

Action space. There are K base arms, indexed from k = 1 to K, with each base arm representing a
group. At each discrete time t, the institution chooses an action, called a meta arm, which specifies

1The reward could be whether a crime has been stopped or whether the borrower pays the monthly payment
on time. For applications that require longer time periods to assess the rewards, the duration of a time step, i.e.,
the frequency to update the policy, would also need to be adjusted accordingly.

2

the probability to activate each base arm. Let P = ∆([K]) be the (K − 1)-dimensional probability
simplex. We denote the meta arm as p(t) = {p1(t), . . . , pK(t)} ∈ P . Each base arm k is activated
independently according to their pk(t) in p(t). The institution only observes the reward from the
arms that are activated. Our feedback model deviates slightly from the classical bandit feedback and
shares similarity to combinatorial bandits: instead of assuming always observing one arm’s reward
each time, we observe the reward of one arm in expectation, i.e., we can potentially observe no arm’s
reward or multiple arms’ rewards. This modeling choice is mainly needed to resolve a technicality
issue and has been adopted in the literature [65, 13]. Most of our algorithms and results extend to the
case where only one arm is activated according to p(t).2

Remark 2.1. We can also interpret the meta-arm as specifying the proportion of resources allocated
to each base arm. The interpretation impacts the way the rewards are generated (i.e., instead of
observing the rewards of the realized base arms, the institution observes the rewards of all base
arms with non-zero allocations.) Our analysis utilizes the idea of importance weighting and could
deal with both cases in the same framework. To simplify the presentation, we focus on the case of
interpreting the meta-arm as probabilities, though our results apply to both interpretations.

Delayed impacts of actions. We consider the scenario in which the rewards of actions are unknown
a priori and are influenced by the action history. Formally, let H(t) = {p(s)}s∈[t] be the action
history at time t. We define the impact function f(t) = F (H(t)) to summarize the impact of the
learner’s actions to the reward generated in each group, where F (·) is the function mapping the action
history to its current impact on arms’ rewards. In the following discussion, we make F (·) implicit and
use the vector f(t) = {f1(t), . . . , fK(t)} to denote the impact to each group, where fk(t) captures
the impact of action history to arm k.

Rewards and regret. The reward for selecting group k at time t depends on both pk(t) and the
historical impact fk(t). In particular, when the arm representing group k is activated, the institution
observes a reward (the instantaneous reward is bounded within [0, 1]) drawn i.i.d. from a unknown
distribution with mean rk (fk(t)) ∈ [0, 1] and claims the sum of rewards from activated arms as
total rewards. rk(·) is unknown a priori but is Lipschitz continuous (with known Lipschitz constant
Lk ∈ (0, 1]) with respect to its input, i.e., a small deviation of the institution’s actions has small
impacts on the unit reward from each group. When action p(t) is taken at time t, the institution
obtains an expected reward

Ut(p(t)) =

K∑
k=1

pk(t) · rk (fk(t)) . (1)

As for the impact function, we focus on the setting in which f(t) is a time-discounted average, with
each component fk(t) defined as

fk(t) =

∑t
s=1 pk(s)γt−s∑t

s=1 γ
t−s

, (2)

where γ ∈ [0, 1) is the time-discounting factor. 3 Intuitively, fk(t) is a weighted average with more
weights on recent actions. We would like to highlight that our results extend to a more general family
of impact functions and do not require the exact knowledge of impact functions (see discussion in
Section 5.2). We also note that when γ = 0, our setting reduces to a special case where the impact
function only depends on the current action pk(t) (action dependent), instead of the entire history of
actions (discounted by 0 right away). We study this special case of interest in Section 4.

Let A be the algorithm the institution deploys. The goal of A is to choose a sequence of actions
{p(t)} that maximizes the total utility. The performance of A is characterized by regret, defined as

Reg(T) = sup
p∈P

T∑
t=1

Ut(p)− E
[T∑
t=1

Ut(p(t))

]
, (3)

where the expectation is taken on the randomness of algorithm A and the utility realization.4

2The upper bound becomes Õ(K4/3T 2/3), which is slightly worse than Õ(KT 2/3) in K. But the upper
bound is still tight in T . We provide discussions in Remark D.6

3Here we follow the tradition to define 00 = 1 when γ = 0.
4In this paper, we adopt the standard regret definition and compare against the optimal fixed policy. Another

possible regret definition is to compare against the optimal dynamic policy that could change based on the

3

2.1 Exemplary Application of Our Setup

We provide an illustrative example to instantiate our model. Consider a police department who needs
to dispatch a number of police officers to K different districts. Each district has a different crime
distribution, and the goal (absent additional fairness constraints) might be to maximize the number of
crimes caught [22]. 5 The effects of police patrol resource allocated to each district may aggregate
over time and then impact the crime rate of that district. In other words, the crime rate in each district
depends on how frequently the police officers have been dispatched historically in this district.

To simplify the discussion, we normalize the expected police resource to be one unit. Each district
k has a default average crime rate rk ∈ (0, 1) at the beginning of the learning process. This crime
rate can (at most) be decreased to rk ∈ (0, rk). All of these are unknown to the police department.
The police department makes a resource allocation decision at each time step. We use rk(t) ∈ (0, 1)
to denote the crime rate in district k at time t, taking into account the impact of historical decisions.
Assume pk(t) is the amount of police resource dispatched to district k at time t (

∑
k pk(t) = 1 for

all t), the expected number of crimes caught at district k at time t would be pk(t)rk(t). Note that
here pk(t) can be interpreted as the probability of allocating police resource (randomly sending the
patrol team to each of the K districts) or the fraction of allocated police resource.

Below we provide one natural example of the interaction between the impact function and the reward.
At time step t + 1, let Hk(t) := {pk(1), . . . , pk(t)} denote the historical decisions of the police
department for district k. Now givenHk(t+1) = {Hk(t)∪pk(t+1)} where pk(t+1) is the current
decision for district k, assume that the crime rate at time t+ 1 in district k is in the following form:

rk(t+ 1) = rk − fk(Hk(t+ 1))× (rk − rk), (4)

where fk(·) : [0, 1]t → [0, 1] is the impact function that summarizes how historical actions would

impact the current crime rate. One possible example is fk(Hk(t)) =
∑t
s=1 pk(s)γt−s∑t
s=1 γ

t−s as we defined in
Equation (2). This impact function has two natural properties:

• When fk(Hk(t)) = 1 (e.g., pk(s) = 1,∀s ≤ t), the police department keeps dispatching the
police officers to district k with probability 1, then district k will reach its lowest crime rate.

• When fk(Hk(t)) → 0 (e.g., pk(s) → 0,∀s ≤ t), the police department rarely dispatch police
officers to district k, The crime rate in district k will reach its highest level.

In this example, treating each district as an arm and directly applying standard bandit algorithms
might reach suboptimal solutions since the reward dynamic is not considered. In this paper, we
develop algorithms that can take into account this history-dependent reward dynamic and achieve
no-regret learning. Our results hold for a general class of impact functions (under mild conditions)
and do not need to assume the exact knowledge of the impact function.

3 Overview of Main Results

We summarize our main results in this section. First, we present an important, though perhaps not
surprising, negative result: if the institution is not aware of the delayed impact of actions, applying
existing standard bandit algorithms in our setting leads to linear regrets. This negative result highlights
the importance of designing new algorithms when delayed impact of actions are present. The formal
statement and analysis are in Appendix C.
Lemma 3.1 (Informal). If the institution is unaware of the delayed impact of actions, applying
standard bandit algorithms (including UCB, Thompson Sampling) leads to linear regrets.

While the negative result might not be surprising, as it resembles similarity to the negative results
on applying classic bandit algorithm to a non-stationary setting, it points out the need to design new
algorithms for settings with delayed impact of actions. The key challenge introduced by our setting is
in estimating the arm rewards: when pulling the same meta arm at different time steps, the institution

history. However, calculating the optimal dynamic policy in our setting is nontrivial as it requires to solve an
MDP with continuous states.

5As discussed by Elzayn et al. [22], there might be other goals besides simply catching criminals, including
preventing crime, fostering community relations, and promoting public safety. We use the same goal they
adopted for the illustrative purpose.

4

does not guarantee to obtain rewards drawn from the targeted distribution according to the chosen
meta arm, as the arm reward depends on the impact function f(t). To address this challenge, we
note that if the institution keeps pulling the same meta-arm repeatedly, the impact function (and
thus the arm reward associated with the meta-arm) would converge to some value. This observation
leads to our approaches. We first develop a bandit algorithm that works with impacts that converge
“immediately" (or equivalently only depend on “immediate” actions, echoing the case with γ = 0 in
Equation (2)). We then propose a phased-learning reduction template that reduces our general setting
to the above one and achieves a sublinear regret.

Theorem 3.2 (Informal). There is an algorithm that achieves an optimal regret bound Õ(KT 2/3) for
the bandit problem with the impact function defined in Equation (2). In addition, there is a matching
lower bound of Ω(KT 2/3).

To provide an overview of our approaches, we start with action-dependent bandits (Section 4),
where the impact at time t depends only on the action at t, i.e., f(t) = p(t), namely γ = 0 in
Equation (2). This setting not only captures the one-step impact but also offers a backbone for the
phase-learning template for the general history-dependent scenario. In this setting, when a meta-arm
p = {p1, . . . , pK} is selected, each base arms k is activated with probability pk, and the institution
observes the realized rewards for all activated base arms and receives the sum of them as total rewards.
Since we know the probability pk for activating each base arm, we may apply importance weighting
to simulate the case as if the learner is selecting K probabilities and obtain K signals at each time
step. This interpretation transforms our problem structure to a setting similar to combinatorial bandits.
Furthermore, since both rk(·) are Lipschitz continuous, we adopt the idea from Lipschitz bandits
to discretize the continuous space of each pk. With these ideas combined, we design a UCB-like
algorithm that achieves a regret of O(KT 2/3(lnT)1/3).

With the solution of action-dependent bandits, we explore the general history-dependent bandits with
impact functions following Equation (2) (Section 5). The main idea is to divide total time rounds
into phases, and then selecting the same actions in each phase to smooth out impacts of historically
made actions, which will then help reduce the problem to an action-dependent one. One challenge
is to construct appropriate confidence bound and adjust the length of each phase to account for the
historical action bias. With a careful combination with our results for action-dependent bandits, we
present an algorithm which can also achieve a regret of the order Õ(KT 2/3). We further proceed to
show that this bound is tight and provide numerical experiments.

4 Action-Dependent Bandits

In this section, we study action-dependent bandits, in which the impact function f(t) = p(t),
corresponding to γ = 0 in Equation (2). Our algorithm starts with a discretization over the space
P . Formally, we uniformly discretize [0, 1] for each base arm into intervals of a fixed length ε,
with carefully chosen ε such that 1/ε is an positive integer.6 Let Pε be the space of discretized
meta arms, i.e., for each p = {p1, . . . , pK} ∈ Pε,

∑K
k=1 pk = 1 and pk ∈ {ε, 2ε, . . . , 1} for all k.

Let p∗ε := supp∈Pε
∑K
k=1 pk · rk(pk) denote the optimal strategy in discretized space Pε. After a

meta arm p(t) = {p1(t), . . . , pK(t)} ∈ Pε is selected, each arm k is independently activated with
probability pk(t). From now, we use r̃t(·) to denote the realization of corresponding reward. The
learner observes activated arms, and observes the instantaneous reward r̃t(pk(t)) of each activated
arm k. We use importance weighting [29] to construct the unbiased realized reward for each of the K
elements in p:

r̂t(pk(t)) =

{
r̃t(pk(t))/pk(t), arm k is activated
0. arm k is not activated

(5)

Since the probability activating arm k is pk(t), it is easy to see that E[r̂t(pk(t))] = E[r̃t(pk(t))].
Given the importance-weighted rewards {r̂t(pk(t))}, we re-frame our problem as choosing a K-
dimensional probability measure (one value for each base arm). In particular, for each base arm k, pk
will take the value from {ε, 2ε, . . . , 1}, and we refer to pk as the discretized arm.
Remark 4.1. The above importance-weighting technique enables us to “observe” samples of rk(pk)
for all base arms k when selecting p = {p1, . . . , pK}. This technique helps to bridge the gap between

6Smarter discretization generally does not lead to better regret bounds [39].

5

the interpretation of whether p is a probability distribution or an allocation over base arms. Our
following techniques can be applied in either interpretation.

Algorithm 1 Action-Dependent UCB

1: Input: K, ε
2: Initialization: For each discretized arm, play an arbitrary meta arm such that this discretized

arm is included (if the selection of the arm is not realized, then simply initialize its reward to 0;
otherwise initialize it to the observed reward divided/reweighted by the selection probability).

3: for t = dK/εe+ 1, ..., T do
4: Select p(t) = arg maxp∈Pε UCBt(p) where UCBt(p) is defined as in (6).
5: Arm k is activated w.p. pk(t) and observe its realized reward r̃t(pk(t)).
6: Update the importance-weighted rewards {r̂t(pk(t))} as in (5) and update the empirical mean

{r̄t(pk(t))} for each base arm as in (6).
7: end for

By doing so, our problem is now similar to combinatorial bandits, in which we are choosing K
discretized arms and observe the corresponding rewards. Below we describe our UCB-like algorithm
based on the reward estimation of discretized arms. We define the set Tt(pk) = {s ∈ [t] : pk ∈ p(s)}
to record all the time steps such that the deployed meta arm p(s) contains the discretized arm pk. We
can maintain the empirical estimates of the mean reward for each discretized arm and compute the
UCB index for each meta arm p ∈ Pε:

r̄t(pk) =

∑
s∈Tt(pk) r̂s(pk)

nt(pk)
, UCBt(p) =

√
K ln t

minpk∈p nt(pk)
+
∑
pk∈p

pk · r̄t(pk), (6)

where nt(pk) is the cardinality of set Tt(pk). With the UCB index in place, we are now ready to state
our algorithm in Algorithm 1. The next theorem provides the regret bound of Algorithm 1.

Theorem 4.2. Let ε = Θ
(
(lnT/T)1/3

)
. The regret of Algorithm 1 (with respect to the optimal arm

in non-discretized P) is upper bounded as follows: Reg(T) = O
(
KT 2/3(lnT)1/3

)
.

Proof Sketch. Similar to the proofs of the family of UCB-style algorithms for MAB, after an appro-
priate discretization, we can derive the regret as the sum of the badness (suboptimality of a meta
arm) for all (discretized) suboptimal meta arm selection. However, this will cost us an exponential K
in the order of final regret bound: this is because we need to take the summation over all feasible
suboptimal meta arms, which the number grows exponentially with K. To tackle this challenge, we
focus on the derivations of badness via tracking the minimum suboptimal selections in the space of
realized actions (base arms), which enables us to reduce the exponential K to a polynomial K. On a
high level, our proof proceeds in the following steps:

• In Step 1, we obtain a high probability bound of the estimation error for the expected rewards of
meta arms after discretization.

• In Step 2, we bound the probability on deploying a suboptimal meta arm when selected sufficiently
many number of times, where we quantify such sufficiency via minpk∈p nt(pk), which is the
minimum number of selection of a discretized arm contained in a suboptimal meta arm.

• In Step 3 and Wrapping-up step, we bound the expected value of minpk∈p nt(pk) and connect the
regret for playing suboptimal meta arms p with the regret incurred by including discretized arms
pk /∈ p∗ε which are not in optimal strategy (in discretized space).

Finally, the regret bound of Algorithm 1 can be achieved by optimizing the discretization parameter.

Discussions Our techniques have close connections to Lipschitz bandits [16, 50] and combinatorial
bandits [13, 12]. Given the Lipschitz property of rk(·), we are able to utilize the idea of Lipschitz
bandits to discretize the strategy space and achieve sublinear regret with respect to the optimal strategy
in the non-discretized strategy space. Moreover, we achieve a significantly improved regret bound by
utilizing the connection between our problem setting and combinatorial bandits. In combinatorial
bandits, the learner selects K actions out of action spaceM at each time step, where |M| = Θ(K/ε)

6

in our setting. Directly applying state-of-the-art combinatorial bandit algorithms [13] in our setting
would achieve an instance-independent regret bound of O

(
K3/4T 3/4(lnT)1/4

)
, while we achieve a

lower regret of O
(
KT 2/3(lnT)1/3

)
.7 The reason for our improvement is that, for each base arm,

regardless of which probability it was chosen, we can update the reward of the base arm, which
provides information for all meta arms that select this arm with a different probability. This reduces
the exploration and helps achieving the improvement. In addition to the above improvement, we
would like to highlight that another of our main contributions is to extend the action-dependent
bandits to the problem of history-dependent bandits, as discussed in Section 5.

Another natural attempt to tackle our problem is to apply EXP3 [4], which achieves sublinear regret
even when the arm reward is generated adversarially. However, note that the optimal policy in our
setting could be a mixed strategy, while the “sublinear” regret of EXP3 is with respect to a fixed
strategy. Therefore, when applying EXP3 over the set of base arms, it still implies a linear regret in
our setting. The other option is to apply EXP3 over the set of meta arms. Since the number of meta
arms is exponential in K, it would incur a regret exponential in K due to the size of meta arms.

5 History-Dependent Bandits

We now describe how to utilize our results for action-dependent bandits to solve the history-dependent
bandit learning problem, with the impact function specified in Equation (2). The crux of our analysis
is the observation that, in history-dependent bandits, if the learner keeps selecting the same strategy
p for a long enough period of time, the expected one-shot utility will be approaching the utility of
selecting p in the action-dependent bandits. More specifically, suppose after time t, the current action
impact for all arms is f(t) = p(γ)(t) = {p(γ)

1 (t), . . . , p
(γ)
K (t)}. Assume that the learner is interested

in learning about the utility of selecting p = {p1, . . . , pK} next. Since the rewards are influenced
by f(t), selecting p at time t+ 1 does not necessarily give us the utility samples at U(p). Instead,
the learner can keep pulling this meta arm for a non-negligible s consecutive rounds to ensure that
f(t+ s) approaches p. Following this idea, we decompose the total number of time rounds T into
bT/Lc phases which each phase is associated with L rounds. We denote m ∈ [1, . . . , bT/Lc] as
the phase index and p(m) as the selected meta-arm in the m-th phase. To summarize the above
phased-learning template:

• In each phase m, we start with an approaching stage:
the first sa rounds of the phase. This stage is used to
“move" f(t+ s) with 1 ≤ s ≤ sa towards to p.
• In the second stage, namely, estimation stage, of each

phase: the remaining L− sa rounds. This stage is used
for collecting the realized rewards and estimating the
true reward mean on action p.

• Finally, we leverage our tools in action-dependent ban-
dits to decide what meta arm to select in each phase.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Fair Bandit Learning with Delayed Impact of Actions

Anonymous Authors1

Time t

· · · · · ·

Phase 1 Phase 2 Phase m

Approaching Stage: sa; Estimation Stage: L � sa

p(m) = p

Figure 1. A graphical illustration. We deploy p for all rounds in
m-th phases, therefore, we use p(m) = p to represent p(t) = p
for simplicity.

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Fig. 1: We deploy p for all rounds in m-
th phases, therefore, we use p(m) = p
to represent p(t) = p for simplicity.

Note that even if we keep pulling the arm k with the constant probability pk in the approaching stage,
the action impact in the estimation stage is not exactly the same as meta arm we want to learn, i.e.,
f(t + s) 6= p for s ∈ (sa, L], due to the finite length of the stage. However, we can guarantee all
f(t+ s) for s ∈ (sa, L] is close enough to p by bounding its approximation error w.r.t p. The above
idea enables a more general reduction algorithm that is compatible with any bandit algorithm that
solves the action-dependent case. Let ρ = (L− sa)/L be the ratio of number of rounds in estimation
stage of each phase. We present this reduction in Algorithm 2 and a graphical illustration in Figure 1.

5.1 History-Dependent UCB

In this section, we show how to utilize the reduction template to achieve a Õ(KT 2/3)
regret bound for history-dependent bandits. We first introduce some notations. For
each discretized arm pk, similar to action-dependent case, we define Γm(pk) :=

7We compare our results with a tight regret bound achieved in Theorem 2 of [13]. The detailed derivations
are deferred to Appendix D.2.1.

7

Algorithm 2 Reduction Template

1: Input: K,T ; γ, ε, ρ ∈ (0, 1), sa.
2: Input: A bandit algorithm A: History-Dependent UCB (Algorithm 3).
3: Split all rounds into consecutive phases of L = sa/(1− ρ) rounds each.
4: for m = 1, . . . do
5: Query algorithm A for its meta arm selection p(m) = p.
6: Each phase is separated into two stages:

1). Approaching stage: t = L(m− 1) + 1, . . . , L(m− 1) + sa;
2). Estimation stage: t = L(m− 1) + sa + 1, . . . , Lm.

7: for t = L(m− 1) + 1, . . . , L(m− 1) + sa do
8: Deploy the meta arm p.
9: end for

10: for t = L(m− 1) + sa + 1, . . . , Lm do
11: Deploy the meta arm p;
12: Collect the realized rewards r̃t of activated arms to estimate the mean reward as in (7).
13: end for
14: Update Uest

t (p) as in (7).
15: end for

{
s : s ∈ ((i− 1)L+ sa, iL] where pk ∈ p(i),∀i ∈ [m]

}
as the set of all time indexes till the end of

phase m in estimation stages such that arm k is pulled with probability pk. We define the following
empirical r̄estm (pk) computed from our observations and the empirical utility Uest

m (p): 8

r̄estm (pk) =
1

nestm (pk)

∑
s∈Γm(pk)

r̂s(p
(γ)
k (s)), Uest

m (p) =
∑
pk∈p

pk · r̄estm (pk), (7)

where nestm (pk) := |Γm(pk)| is the total number of rounds pulling arm k with probability pk in all
estimation stages, and r̂s(p

(γ)
k (s)) is defined similarly as in Equation (5). We use the smoothed-

out frequency {p(γ)
k (s)}s∈Γm(pk) in the estimation stage as an approximation for the discounted

frequency right after the approaching stage.

We compute our UCB for each meta arm
at the end of each phase. We define and
compute err := Kγsa(L∗ + 1), the ap-
proximation error incurred after our at-
tempt to smooth out the historical ac-
tion impact. With these preparations,
we present the phased history-dependent
UCB algorithm (in companion with Al-
gorithm 2) in Algorithm 3. The main
result of this section is given as follows:

Algorithm 3 History-Dependent UCB

1: Construct UCB for each meta arm p ∈ Pε
at the end of each phase m = 1, 2, . . . ,
as follows:

UCBm(p) = Uest
m (p) + err + 3

√
K ln (Lρ)

minpk∈p n
est
m (pk)

.

2: Select p(m + 1) = arg maxp UCBm(p)
with ties breaking equally.

Theorem 5.1. For any constant ratio ρ ∈ (0, 1) and γ ∈ (0, 1), let ε = Θ((ln(Tρ)/(Tρ))1/3) and
sa = Θ(ln(ε1/3/K)/ ln γ). The regret of Algorithm 2 with Algorithm 3 as input bounds as follows:
Reg(T) = O

(
KT 2/3 ((ln(Tρ))/ρ)

1/3).
For a constant ratio ρ, we match the optimal regret order for action-dependent bandits. When γ is
smaller, the impact function “forgets" the impact of past-taken actions faster, therefore less rounds in
approaching stage would be needed (see sa’s dependence in γ) and this leads to larger ρ.
Remark 5.2. The dependence of our regret on the phase lengthL is encoded in ρ. When implementing
our algorithm (Section 7), we calculate L via sa given the ratio ρ. We also run simulations of our
algorithm on different ratios ρ, the results show that the performance of our algorithm are not
sensitive w.r.t. specifying ρs - in practice, we do not require the exact knowledge of ρ, instead we can
afford to use a rough estimation of its upper bound to compute L.

8est in superscript stands for esttimation stage.

8

0 1000 2000 3000 4000
Rounds (t)

0

200

400

600

800

Cu
m

ul
at

iv
e

Re
gr

et

Our algorithm
CUCB
EXP3
mEXP3

(a) Action-dependent

0 1000 2000 3000 4000 5000
Rounds (t)

0

500

1000

1500

2000

Cu
m

ul
at

iv
e

Re
gr

et

Our algorithm
EXP3
DUCB
SWUCB

(b) γ = 0.2

0 1000 2000 3000 4000 5000
Rounds (t)

0

500

1000

1500

2000

Cu
m

ul
at

iv
e

Re
gr

et

Our algorithm
EXP3
DUCB
SWUCB

(c) γ = 0.4

0 1000 2000 3000 4000 5000
Rounds (t)

0

500

1000

1500

2000

Cu
m

ul
at

iv
e

Re
gr

et

Our algorithm
EXP3
DUCB
SWUCB

(d) γ = 0.6

Fig. 2: (a): Behavior of the different algorithms for action-dependent bandits. (b)-(d): Behavior of the different
algorithms for history-dependent bandits on different γ.

5.2 Extension to General Impact Functions

So far, we discuss settings when the impact function is specified as in Equation (2). However, the
same technique we presented earlier can be applied for a more general family of impact functions. In
particular, as long as the impact function converges after the learner keeps selecting the same action,
our result holds. To be more precise, we only require f(t) to satisfy the condition |fk(t+s)−g(pk)| ≤
γs, γ ∈ (0, 1) when the learner keeps pulling arm k with probability pk for s round. The function
g(·) can be an arbitrary monotone function as long as it is continuous and differentiable, for example:
g(x) = x. In fact, the property of f(t) is only used when we estimate how close f is to g(p) after
the approaching stage with repeatedly selecting p. For a different f(t), we define new reward mean
functions r′k(·) = rk(g(·)), and tune parameters ε and sa accordingly to bound the approximation
error for

∣∣U(p) − Uest
m (p)

∣∣ (change the Lipschitz constant). This way we can follow the same
algorithmic template to achieve a similar regret.

Moreover, we do not require exact knowledge of the impact function f(t). We only require the
impact functions to satisfy the above conditions for our algorithms/analysis to hold. With the same
arguments, while we assume the reward function rk(·) is fed with the same impact function f , our
formulation generalizes to different impact functions for rk(·), as long as these impact functions are
able to stabilize given a consecutive adoption of the desired action.

6 Matching Lower Bounds

For both action- and history-dependent bandit learning problems, we have proposed algorithms that
achieve a regret bound of Õ(KT 2/3). We now show the above bounds are order-optimal with respect
to K and T , i.e., the lower bounds of our action- and history-dependent bandits are both Ω(KT 2/3),
as summarized below.
Theorem 6.1. Let T > 2K andK ≥ 4, there exist problem instances that for our action- and history-
dependent bandits, respectively, the regret for any algorithm A follows: infAReg(T) ≥ Ω(KT 2/3).

For the lower bound proof of action-dependent bandits (included in Appendix F), we following the
standard randomized problem instances construction used in combinatorial bandits and Lipschitz
bandits and use information inequality to prove the lower bound. For history-dependent bandits,
we show that for a general class of reward function rk(·) which satisfies the proper property (see
Definition G.1), solving history-dependent bandits is as least as hard as solving action-dependent
bandits. Armed with the above derived lower bound of action-dependent bandits, we can then
conclude the lower bound of history-dependent bandits.

7 Numeric Experiments

We conducted a series of simulations to understand the performance of our algorithms. The detailed
setups and discussion are in Appendix I. We first compare our algorithm with some baselines under
action-dependent bandits and other non-stationary baselines under history-dependent bandits with
different γ (the parameter in time-discounted frequency). The results, as shown in Fig. 2, demonstrate
that our proposed algorithm consistently outperforms the baseline methods. We also note that
the performance of our algorithm is relatively robust w.r.t. difference choices of γ, i.e., the time-

9

0 2000 4000 6000 8000
Rounds (t)

0

1000

2000

3000

4000

Cu
m

ul
at

iv
e

Re
gr

et

Our algorithm
EXP3
DUCB
SWUCB

(a) K = 3

0 2000 4000 6000 8000
Rounds (t)

0

1000

2000

3000

4000

Cu
m

ul
at

iv
e

Re
gr

et

Our algorithm
EXP3
DUCB
SWUCB

(b) K = 4

0 2000 4000 6000 8000
Rounds (t)

0

1000

2000

3000

4000

Cu
m

ul
at

iv
e

Re
gr

et

Our algorithm
EXP3
DUCB
SWUCB

(c) K = 5

0 1000 2000 3000 4000 5000
Rounds (t)

0

40

80

120

160

Cu
m

ul
at

iv
e

Re
gr

et

ρ= 0.2
ρ= 0.4
ρ= 0.6
ρ= 0.8

(d) different ratio

Fig. 3: (a)-(c): Behavior of the different algorithms on different K, the remaining parameters are the same with
the simulations in comparison on different K. (d): The performance of our algorithms on different ratios, we set
K = 2 and remaining parameters are also same as before.

discounting factor for the impact. One explanation is that our algorithm utilizes repeated pulling to
smooth out historical bias. Given the exponential-decaying nature of time discounting, the amount
of pulling required for the impact to converge does not depend on γ too heavily. As shown in our
theoretical regret upper bounds, gamma can be absorbed with other numeric constants, and when the
time horizon increases, the effect of gamma on our algorithm’s performance is diminishing, which
aligns with our empirical observation. We also examine our algorithm with larger number of base
arms K and different ratios ρ. The results, as in Figure 3, show that our algorithm outperforms
other baselines when K goes large. Furthermore, in our regret bounds (see Theorem 5.1), the regret
scales linearly w.r.t K. Though the presented results absorb other numeric constants, it is expected
to see that the slope of the regret curve is proportionally increasing along with increasing K. The
results also suggest that our algorithm is not sensitive to different ρ, though one could see the regret
is slightly lower when ρ is increasing, which is expected from our regret bound.

8 Conclusion and Future Work

We explore a multi-armed bandit problem in which actions have delayed impacts to the arm rewards.
We propose algorithms that achieve a regret of Õ(KT 2/3) and provide a matching lower regret
bound of Ω(KT 2/3). Our results complement the bandit literature by exploring the action history
dependent biases in bandits. While our model have its limitations, it captures an important but
relatively under-explored angle in algorithmic fairness, the long-term impact of actions in sequential
learning settings. We hope our study will open more discussions along this direction.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their valuable comments. This work is supported in part by
the Office of Naval Research Grant N00014-20-1-2240 and the National Science Foundation (NSF)
FAI program in collaboration with Amazon under grant IIS-1939677 and IIS-2040800.

References
[1] Angwin, J., Larson, J., Mattu, S., and Kirchner, L. Machine bias. ProPublica, May, 23:2016,

2016.

[2] Audibert, J.-Y. and Bubeck, S. Regret bounds and minimax policies under partial monitoring.
Journal of Machine Learning Research, 11:2785–2836, 2010.

[3] Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

[4] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[5] Bartik, A. and Nelson, S. Credit reports as resumes: The incidence of pre-employment credit
screening. 2016.

[6] Bartlett, R., Morse, A., Stanton, R., and Wallace, N. Consumer-lending discrimination in the
era of fintech. Unpublished working paper. University of California, Berkeley, 2018.

10

[7] Bechavod, Y., Ligett, K., Roth, A., Waggoner, B., and Wu, S. Z. Equal opportunity in online
classification with partial feedback. In Advances in Neural Information Processing Systems, pp.
8972–8982, 2019.

[8] Besbes, O., Gur, Y., and Zeevi, A. Stochastic multi-armed-bandit problem with non-stationary
rewards. In Advances in neural information processing systems, pp. 199–207, 2014.

[9] Besbes, O., Gur, Y., and Zeevi, A. Non-stationary stochastic optimization. Operations research,
63(5):1227–1244, 2015.

[10] Cella, L. and Cesa-Bianchi, N. Stochastic bandits with delay-dependent payoffs. In International
Conference on Artificial Intelligence and Statistics, pp. 1168–1177. PMLR, 2020.

[11] Cesa-Bianchi, N. and Lugosi, G. Combinatorial bandits. Journal of Computer and System
Sciences, 78(5):1404–1422, 2012.

[12] Chen, W., Hu, W., Li, F., Li, J., Liu, Y., and Lu, P. Combinatorial multi-armed bandit with
general reward functions. In Advances in Neural Information Processing Systems, pp. 1659–
1667, 2016.

[13] Chen, W., Wang, Y., Yuan, Y., and Wang, Q. Combinatorial multi-armed bandit and its
extension to probabilistically triggered arms. The Journal of Machine Learning Research, 17
(1):1746–1778, 2016.

[14] Chouldechova, A. Fair prediction with disparate impact: A study of bias in recidivism prediction
instruments. Big data, 5(2):153–163, 2017.

[15] Combes, R., Shahi, M. S. T. M., Proutiere, A., et al. Combinatorial bandits revisited. In
Advances in Neural Information Processing Systems, pp. 2116–2124, 2015.

[16] Combes, R., Proutière, A., and Fauquette, A. Unimodal bandits with continuous arms: Order-
optimal regret without smoothness. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 4(1):1–28, 2020.

[17] Cortes, C., DeSalvo, G., Kuznetsov, V., Mohri, M., and Yang, S. Discrepancy-based algorithms
for non-stationary rested bandits. arXiv preprint arXiv:1710.10657, 2017.

[18] Cowgill, B. and Tucker, C. E. Economics, fairness and algorithmic bias. preparation for:
Journal of Economic Perspectives, 2019.

[19] Cowgill, B. and Zitzewitz, E. Incentive effects of equity compensation: Employee level evidence
from google. Dartmouth Department of Economics working paper, 2009.

[20] D’Amour, A., Srinivasan, H., Atwood, J., Baljekar, P., Sculley, D., and Halpern, Y. Fairness is
not static: deeper understanding of long term fairness via simulation studies. In Proceedings of
the 2020 Conference on Fairness, Accountability, and Transparency, pp. 525–534, 2020.

[21] Duran, S. and Verloop, I. M. Asymptotic optimal control of markov-modulated restless bandits.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2(1):1–25, 2018.

[22] Elzayn, H., Jabbari, S., Jung, C., Kearns, M., Neel, S., Roth, A., and Schutzman, Z. Fair
algorithms for learning in allocation problems. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, pp. 170–179, 2019.

[23] Fuster, A., Goldsmith-Pinkham, P., Ramadorai, T., and Walther, A. Predictably unequal? the
effects of machine learning on credit markets. 2018.

[24] Gael, M. A., Vernade, C., Carpentier, A., and Valko, M. Stochastic bandits with arm-dependent
delays. In International Conference on Machine Learning, pp. 3348–3356. PMLR, 2020.

[25] Garivier, A. and Moulines, E. On upper-confidence bound policies for switching bandit
problems. In International Conference on Algorithmic Learning Theory, pp. 174–188, 2011.

11

[26] Gelman, A., Fagan, J., and Kiss, A. An analysis of the new york city police department’s
“stop-and-frisk” policy in the context of claims of racial bias. Journal of the American statistical
association, 102(479):813–823, 2007.

[27] Gillen, S., Jung, C., Kearns, M., and Roth, A. Online learning with an unknown fairness metric.
In Advances in Neural Information Processing Systems, pp. 2600–2609, 2018.

[28] Goel, S., Rao, J. M., Shroff, R., et al. Precinct or prejudice? understanding racial disparities in
new york city’s stop-and-frisk policy. The Annals of Applied Statistics, 10(1):365–394, 2016.

[29] Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., and Schölkopf, B. Covariate
shift by kernel mean matching. Dataset shift in machine learning, 3(4):5, 2009.

[30] Gupta, S. and Kamble, V. Individual fairness in hindsight. In Proceedings of the 2019 ACM
Conference on Economics and Computation, pp. 805–806, 2019.

[31] Heidari, H., Nanda, V., and Gummadi, K. P. On the long-term impact of algorithmic decision
policies: Effort unfairness and feature segregation through social learning. arXiv preprint
arXiv:1903.01209, 2019.

[32] Ho, C.-J., Slivkins, A., and Vaughan, J. W. Adaptive contract design for crowdsourcing markets:
Bandit algorithms for repeated principal-agent problems. Journal of Artificial Intelligence
Research, 55:317–359, 2016.

[33] Hu, L. and Chen, Y. A short-term intervention for long-term fairness in the labor market. In
Proceedings of the 2018 World Wide Web Conference, pp. 1389–1398, 2018.

[34] Joseph, M., Kearns, M., Morgenstern, J. H., and Roth, A. Fairness in learning: Classic and
contextual bandits. In Advances in Neural Information Processing Systems, pp. 325–333, 2016.

[35] Joulani, P., Gyorgy, A., and Szepesvári, C. Online learning under delayed feedback. In
International Conference on Machine Learning, pp. 1453–1461, 2013.

[36] Kannan, S., Roth, A., and Ziani, J. Downstream effects of affirmative action. In Proceedings of
the Conference on Fairness, Accountability, and Transparency, pp. 240–248, 2019.

[37] Kleinberg, J., Ludwig, J., Mullainathan, S., and Sunstein, C. R. Discrimination in the age of
algorithms. Journal of Legal Analysis, 10, 2018.

[38] Kleinberg, R. and Immorlica, N. Recharging bandits. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science, pp. 309–319, 2018.

[39] Kleinberg, R., Slivkins, A., and Upfal, E. Multi-armed bandits in metric spaces. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pp. 681–690, 2008.

[40] Kocsis, L. and Szepesvári, C. Discounted ucb. In 2nd PASCAL Challenges Workshop, volume 2,
2006.

[41] Kolobov, A., Bubeck, S., and Zimmert, J. Online learning for active cache synchronization. In
International Conference on Machine Learning, pp. 5371–5380. PMLR, 2020.

[42] Lai, T. L. and Robbins, H. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985.

[43] Levine, N., Crammer, K., and Mannor, S. Rotting bandits. In Advances in neural information
processing systems, pp. 3074–3083, 2017.

[44] Li, F., Liu, J., and Ji, B. Combinatorial sleeping bandits with fairness constraints. IEEE
Transactions on Network Science and Engineering, 2019.

[45] Liu, L. T., Dean, S., Rolf, E., Simchowitz, M., and Hardt, M. Delayed impact of fair machine
learning. In International Conference on Machine Learning, pp. 3150–3158, 2018.

[46] Liu, L. T., Wilson, A., Haghtalab, N., Kalai, A. T., Borgs, C., and Chayes, J. The disparate
equilibria of algorithmic decision making when individuals invest rationally. In Proceedings of
the 2020 Conference on Fairness, Accountability, and Transparency, pp. 381–391, 2020.

12

[47] Liu, Y. Fair optimal stopping policy for matching with mediator. In Uncertainty in Artificial
Intelligence, 2017.

[48] Liu, Y. and Ho, C.-J. Incentivizing high quality user contributions: New arm generation in
bandit learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[49] Liu, Y., Radanovic, G., Dimitrakakis, C., Mandal, D., and Parkes, D. C. Calibrated fairness in
bandits. Proceedings of the 4th Workshop on Fairness, Accountability, and Transparency in
Machine Learning, 2017.

[50] Magureanu, S., Combes, R., and Proutiere, A. Lipschitz bandits: Regret lower bound and
optimal algorithms. In Conference on Learning Theory, pp. 975–999, 2014.

[51] Mouzannar, H., Ohannessian, M. I., and Srebro, N. From fair decision making to social equality.
In Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 359–368,
2019.

[52] Obermeyer, Z., Powers, B., Vogeli, C., and Mullainathan, S. Dissecting racial bias in an
algorithm used to manage the health of populations. Science, 366(6464):447–453, 2019.

[53] Ortner, R., Ryabko, D., Auer, P., and Munos, R. Regret bounds for restless markov bandits. In
International Conference on Algorithmic Learning Theory, pp. 214–228, 2012.

[54] Patil, V., Ghalme, G., Nair, V., and Narahari, Y. Achieving fairness in the stochastic multi-armed
bandit problem. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 5379–5386, 2020.

[55] Pike-Burke, C. and Grünewälder, S. Recovering bandits. arXiv preprint arXiv:1910.14354,
2019.

[56] Pike-Burke, C., Agrawal, S., Szepesvari, C., and Grunewalder, S. Bandits with delayed,
aggregated anonymous feedback. In International Conference on Machine Learning, pp.
4105–4113, 2018.

[57] Schmit, S. and Riquelme, C. Human interaction with recommendation systems. In International
Conference on Artificial Intelligence and Statistics, pp. 862–870, 2018.

[58] Seznec, J., Locatelli, A., Carpentier, A., Lazaric, A., and Valko, M. Rotting bandits are no
harder than stochastic ones. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 2564–2572, 2019.

[59] Slivkins, A. Contextual bandits with similarity information. The Journal of Machine Learning
Research, 15(1):2533–2568, 2014.

[60] Slivkins, A. and Upfal, E. Adapting to a changing environment: the brownian restless bandits.
In Conference on Learning Theory, pp. 343–354, 2008.

[61] Tang, W. and Ho, C.-J. Bandit learning with biased human feedback. In Eighteenth International
Conference on Autonomous Agents and Multi-Agent Systems, 2019.

[62] Tekin, C. and Liu, M. Online algorithms for the multi-armed bandit problem with markovian
rewards. In Proceedings of the 48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), 2010.

[63] Verloop, I. M. et al. Asymptotically optimal priority policies for indexable and nonindexable
restless bandits. The Annals of Applied Probability, 26(4):1947–1995, 2016.

[64] Vernade, C., Cappé, O., and Perchet, V. Stochastic bandit models for delayed conversions.
arXiv preprint arXiv:1706.09186, 2017.

[65] Wang, Q. and Chen, W. Improving regret bounds for combinatorial semi-bandits with proba-
bilistically triggered arms and its applications. In Advances in Neural Information Processing
Systems, pp. 1161–1171, 2017.

13

[66] Zhang, X., Khaliligarekani, M., Tekin, C., et al. Group retention when using machine learning
in sequential decision making: the interplay between user dynamics and fairness. In Advances
in Neural Information Processing Systems, pp. 15243–15252, 2019.

[67] Zhang, X., Tu, R., Liu, Y., Liu, M., Kjellström, H., Zhang, K., and Zhang, C. How do fair
decisions fare in long-term qualification? 2020.

14

Setup Notations Explanations

basic setup

K;T the number of (base) arms; time horizon
k; t arm index; time round t k ∈ [K], t ∈ [T]
P probability simplex P ∈ [0, 1]K

ε discretization parameter ε ∈ [0, 1]
Pε probability simplex after discretization with ε Pε ⊂ P
p meta arm/mixed strategy p ∈ P
p∗ optimal meta arm
p∗ε optimal meta arm in Pε
rk(·) expected reward function of arm k rk : [0, 1]→ [0, 1]
λk arm k’s hyperparameter on tradeoff the expected reward and fairness

pk, pk(t) the probability on pulling arm k, at time t pk, pk(t) ∈ [0, 1]
Lrk the Lipschitz constant of rk
Lπk the Lipschitz constant of πk
L∗ the maximum L∗ = max(1 + Lrk + |λk|Lπk)
r̃t the realized reward at time t
r̂t the importance weighted reward

r̄t(pk) the empirical reward mean of discretized arm pk
Reg(t) cumulative regret till time t

∆p the badness of meta arm p t
p(t) = {pk(t)}k∈[K] the meta arm deployed in time round t
f(t) = {fk(t)}k∈[K] actions impact function

action
dependent
bandit

nt(pk) the number of times when pulling arm k with prob pk till time t
Nt(p) number of pulls of meta arm p till time t
S(pk) the set of all meta arms which contain pk S(pk) = {p, pk ∈ p}

Nt(S(pk)) total number of pulls of all meta arms in S(pk) Nt(S(pk)) =
∑

p∈S(pk)Nt(p)

pmin(p) pmin(p) = arg minp∈p nt(pk) for some t
U t(p) the empirical reward mean of meta arm p
U(p) the expected reward of meta arm p

history
dependent
bandit

γ time-discounted factor γ ∈ (0, 1)
L the length of phase L ∈ N+

sa the length of approaching stage sa ∈ N+

ρ the ratio of estimation stages over each phase ρ ∈ (0, 1)
m the index of each phase

Γt(pk) the set of all indexes which arm k is pulled with prob pk
p(γ) = {p(γ)

k }k∈[K] the time-discounted empirical frequency
r̄estm (pk) the empirical reward mean of discretized arm pk in all estimation stages
Uest
t (p̂) the empirical reward mean of meta arm p in all estimation stages

nestm (pk) the number of rounds that arm k is pulled with prob pk in the first m phases

Table 1: The summary of notations.

A Related Work

Our learning framework is based on the rich bandit learning literature [3, 42]. However, instead of
making the standard assumption of i.i.d. or adversarial rewards, we consider the setting in which
the arm reward depends on the action history. The settings most similar to ours are non-stationary
bandits, including restless bandits [60, 8, 25, 63, 21], in which the reward of each arm changes over
time regardless of whether the arm is pulled, and rested bandits [43, 58, 17], in which the reward of
arm evolves only when it is pulled. In contrast, our model encodes a generic dependency of actions
taken in the past and our setting is sort of a mix between the above two. On one hand, the reward of
each arm is restless, because even if we do not select a particular arm at step t, the arm’s underlying
state will continue to evolve (this is represented by our definition of f(t)), which will change the
expected reward to be seen in the future. On the other hand, the changing of rewards does depend on
actions, so in this sense, it is related to rested bandit. Technically, due to the presence of historical
bias, we allow the learner to learn the optimal strategy in a continuous space which is built on the
probabilistic simplex over all arms. Meanwhile, our work distinguishes from prior works in that
our proposed framework does not require the exact knowledge of dependency function except to the
extent of a Lipschitz property and a convergence property.

Our formulation bears similarity to reinforcement learning since our impact function encodes memory
(and is in fact Markovian [53, 62]), although we focus on studying the exploration-exploitation
tradeoff in bandit formulation. Our techniques and approaches share similar insights with Lipschitz
bandits [39, 59, 50, 16] and combinatorial bandits [11, 15, 13, 12] in that we also assume the Lipschitz
reward structure and consider combinatorial action space. However, our setting is different since the
arm reward explicitly depends on the learner’s action history. We have a detailed regret comparisons
with the regret of directly applying techniques in combinatorial bandits to our setting in Section 4.

There are several works that formulate delayed feedback in online learning [35, 64, 56, 38, 55, 24, 10,
41]. We discuss the ones that are mostly related to ours. In particular, Pike-Burke et al. [56] considers

15

the setting in which the observed reward is a sum of a number of previously generated rewards which
happen to arrive in the given round. Joulani et al. [35] and Vernade et al. [64] focus on the setting
where either feedback or reward is delayed. Our work differs from the above works in that, in our
setting, the reward of the arm is influenced by the action history while the above works still consider
stationary rewards (though the reward realization could be delayed). There have also been works
that study the setting that explores different generative process of reward distribution of arms, e.g.,
the reward of the arm depends on strategic or biased human behavior [32, 48, 61]. The more closer
works to ours include considering the arm of the reward is an increasing concave function of the time
since it was last played Kleinberg & Immorlica [38], or decreases as it was played more time [43, 58].
Our work differs from the above in that we formalize an impact function that permits more general
form of the reward evolvement as a function of the history of arm plays.

Our work also has implications in algorithmic fairness. one related line of works have studied fairness
in the sequential learning setting, however they do not consider long-term impact of actions [34, 7,
49, 30, 27, 44]. For the explorations of delayed impacts of actions, the studies so far have focus
on addressing the one-step delayed impacts or a multi-step sequential setting with full information
[31, 33, 45, 51, 18, 6]. Our work differs from the above and studies delayed impacts of actions in
sequential decision making under uncertainty.

B Lagrangian Formulation

While our setting follows standard bandit settings and aims to maximize the utility, it can be extended
to incorporate fairness constraints as commonly seen in the discussion of algorithmic fairness. For
example, consider the notion of group fairness, which aims to achieve approximate parity of certain
measures across groups. Let πi(fi(t)) ∈ [0, 1] be the fairness measure for group i (which could
reflect the socioeconomic status of the group). One common approach is to impose constraints to
avoid the group disparity. Let τ ∈ [0, 1] be the tolerance parameter, the fairness constraints at t can be
written as: |πi(fi(t))− πj(fj(t))| ≤ τ,∀i, j ∈ [K]. πi(·) is unknown a priori and is dependent on
the historical impact. Incorporating the fairness constraints would transform the goal of the institution
as a constrained optimization problem:

max
p∈P

T∑
t=1

Ut(p(t)) s.t. |πi(fi(t))− πj(fj(t))| ≤ τ,∀i, j ∈ [K],∀t ∈ [T].

We can then utilize the Lagrangian relaxation: impose the fairness requirement as soft constraints
and obtain an unconstrained optimization problem with a different utility function. As long as we
also observe (bandit) feedback on the fairness measures at every time step, the techniques developed
in this work can be extended to include fairness constraints.

To simplify the presentation, we fix a time t and drop the dependency on t in the notations.

Definition B.1. The LagrangianL : P×Λ2 → R where Λ ⊆ R(K2)
+ of our problem can be formulated

as:

L(p, λ) :=

K∑
k=1

pkrk(fk)−
(K2)∑
c=1

λ+
c (πic(fic)− πjc(fjc)− τ)−

(K2)∑
c=1

λ−c (πjc(fjc)− πic(fic)− τ) ,

where λ+, λ− ∈ Λ. The notation (ic, jc) ∈ {(i, j)1≤i<j≤K} is a pair of combination and c ∈
[K(K − 1)/2] is the index of each pair of this combination.

The problem then reduces to jointly maximize over p ∈ P and minimize over λ+, λ− ∈ Λ. Rear-
ranging and with a slight abuse of notations, we have the following equivalent optimization problem:

max
p∈P

min
λ+,λ−

K∑
k=1

pk(t)rk(fk(t)) + λkπk(fk(t)) + τ

(K2)∑
c=1

(λ+
c + λ−c), (8)

where λk := −∑c:ic=k
(λ+
c −λ−c) +

∑
c:jc=k

(λ+
c −λ−c). Due to the uncertainty of reward function

rk(·) and fairness measure πk(·) (recall that our fairness criteria is defined as the parity of socio-
economic status cross different groups, which we can only observe the realization drawn from an

16

unknown distribution), we treat the above optimization problem as a hyperparameter optimization:
similar to choosing hyperparameters (the Lagrange multipliers: λ+ and λ−) based on a validation
set in machine learning tasks. Therefore, given a fixed set of λ+ and λ−, the problem in (8) can be
reduced to the following:

max
p∈P

K∑
k=1

pk(t) · rk(fk(t)) + λk · πk(fk(t)). (9)

C Negative Results

In this section, we show that an online algorithm which ignores its action’s impact would suffer linear
regret. We consider two general bandit algorithms: TS (Thompson Sampling) and a mean-converging
family of algorithms (which includes UCB-like algorithms). These are the two most popular and
robust bandit algorithms that can be applied to a wide range of scenarios. We prove the negative
results respectively. In particular, we construct problem instances that could result in linear regret if
the deployed algorithm ignore the action’s impact.
Example 1. Considering the following Bernoulli bandit instance with two arms, indexed by arm 1
and arm 2, i.e., K = 2. For any ε ∈ [0, 1/2), define the expected reward of each arm as follows:

• arm 1: r1(p) = p/(1− ε) · 1(p ≤ 1− ε) + (2− ε− p) · 1(p ≥ 1− ε), ∀p ∈ [0, 1]

• arm 2: r2(p) = p/(2ε) · 1(p ≤ ε) + (− 1
2p+ 1

2 (1 + ε)) · 1(p ≥ ε), ∀p ∈ [0, 1]

It is easy to see that p∗ = {1− ε, ε} is the optimal strategy for the above bandit instance.

We first prove the negative result of Thompson Sampling using the above example. The Thompson
Sampling algorithm can be summarized as below.

Algorithm 4 Thompson Sampling

1: Si = 0, Fi = 0.
2: for t = 1, 2, . . . , do
3: For each arm i = 1, 2, sample θi(t) from the Beta(Si + 1, Fi + 1) distribution.
4: Play arm at := arg maxi θi(t) and observe reward r̃t.
5: If r̃t = 1, then Sat = Sat + 1, else Fat = Fat + 1.
6: end for

Lemma C.1. For the reward structure defined in Example 1, Thompson Sampling would suffer linear
regret if it doesn’t consider the action’s impact it deploys at every time round, namely, it takes the
sample mean as the true mean reward of each arm.

Before we proceed, we first prove the following strong law of large numbers in Beta distribution. We
note that the below two lemmas are not new results and can be found in many statistical books. We
provide proofs here for the sake of making the current work self-contained.
Lemma C.2. Consider the Beta distribution Beta(aα+1, bα+1) whose pdf is defined as f(x, α) =

[xa(1−x)b]α

B(aα+1,bα+1) , where B(·) is the beta function, then for any positive (a, b) such that a+ b = 1, when
α→∞, the limit of f(x, α) can be characterized by Dirac delta function δ(x− a).

Proof. By Stirling’s approximation, we can write the asymptotics of beta function as follows:

B(x, y) ∼
√

2π
xx−0.5yy−0.5

(x+ y)x+y−0.5
.

Thus, when α → ∞, i.e., for large aα + 1 and bα + 1, we can approximate the pdf f(x, α) in the
following:

f(x, α) ∼
√
a+ 2

2πab
hα(x),

where h(x) := (x/a)a
(

1−x
b

)b
. It’s easy to see that h(x) has a unique maximum at a, by invoking

Lemma C.3 will complete the proof.

17

Lemma C.3. Let h : [0, 1]→ R+ be any bounded measurable non-negative function with a unique
maximum at x∗, and suppose h is continuous at x∗. For λ > 0 define hλ(x) = Cλh

λ(x) where Cλ
normalizes such that

∫ 1

0
hλ(x)dx = 1. Consider any continuous function f defined on [0, 1] and ε >

0, then we have limλ→∞
∫
h(x)≤h(x∗)−ε hλ(x)f(x)dx = 0 and limλ→∞

∫ 1

0
hλ(x)f(x)dx = f(x∗).

Proof. For any δ > 0, we have∣∣∣∣ ∫ 1

0

hλ(x)f(x)dx− f(x∗)

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

hλ(x)
(
f(x)− f(x∗)

)
dx

∣∣∣∣
≤
∣∣∣∣ ∫
|x−x∗|≤δ

hλ(x)
(
f(x)− f(x∗)

)
dx

∣∣∣∣+

∣∣∣∣ ∫
|x−x∗|>δ

hλ(x)
(
f(x)− f(x∗)

)
dx

∣∣∣∣
≤
∣∣∣∣ ∫
|x−x∗|≤δ

hλ(x)
(
f(x)− f(x∗)

)
dx

∣∣∣∣+ max
∣∣f(x)− f(x∗)

∣∣∣∣∣∣ ∫
|x−x∗|>δ

hλ(x)dx

∣∣∣∣.
For any δ > 0, and due to the continuous property of f on x∗, which further implies that there exists
a constant c > 0 such that |f(x)− f(x∗)| < δ/2 whenever |x−x∗| < c. Thus, given c > δ, we have∣∣∣∣ ∫ 1

0

hλ(x)f(x)dx− f(x∗)

∣∣∣∣ ≤ ε/2 + max
∣∣f(x)− f(x∗)

∣∣∣∣∣∣ ∫
|x−x∗|>δ

hλ(x)dx

∣∣∣∣.
It suffices to show that the second term in RHS of above inequality will converge to 0 as λ → ∞.
Let ||h||∞,δ denote the L∞ norm of h when h is restricted to {|x − x∗| > δ}. Note that for any
nonnegative integrable functions h, we have

lim
λ→∞

(∫ 1

0

hλ(x)dx

)1/λ

= ||h||∞.

Recall the definition of Cλ = 1∫ 1
0
hλ(x)dx

, thus, we have limλ→∞ C
1/λ
λ = 1

||h||∞ , which immediately
showing that (∫

|x−x∗|>δ
hλ(x)dx

)1/λ

= C
1/λ
λ

(∫
|x−x∗|>δ

hλ(x)dx

)1/λ

,

which further implies that ||h||∞,δ/||h||∞ < 1. Thus, there must exist λ0 such that ∀λ > λ0,(∫
|x−x∗|>δ

hλ(x)dx

)1/λ

< γ < 1. (10)

Since γ < 1, we then have limλ→∞ γλ = 0, this implies the second term of RHS of (10) converging
to 0 as λ→∞.

We now ready to prove Lemma C.1.

Proof. We prove this by contradiction. Let Reg(T) denote the expected regret incurred by TS
up to time round T , and Nt(p) =

∑t
s=1 1(p(s) = p) denote the number of rounds when the

algorithm deploys the (mixed) strategy p ∈ ∆K . Furthermore, let Si(t)(resp. Fi(t)) denote the
received 1s(resp. 0s) of arm i up to time round t. Recall that in Thompson Sampling, we have
P(at = 1) = P

(
θ1(t) > θ2(t)

)
. By the reward function defined in Example 1, it’s immediate to see

that

S1(T) ≥ (1− ε)NT (p∗); F1(T) ≤ T −NT (p∗); S2(T) ≥ 0.5εNT (p∗); F2(T) ≥ 0.5εNT (p∗).

Now suppose Thompson Sampling achieves sublinear regret, i.e., Reg(T) = o(T), which implies
following

lim
T→∞

T −NT (p∗)

T
= 0.

18

Thus, by the strong law of large numbers and invoking Lemma C.2, the sample θ1(T + 1) ∼
Beta(S1(T), F1(T)) and θ2(T + 1) ∼ Beta(S2(T), F2(T)) will converge as follows:

lim
T→∞

θ1(T + 1) = 1; lim
T→∞

θ2(T + 1) = 0.5.

Then it’s almost surely that limT→∞ P(aT+1 = 1) = limT→∞ P
(
θ1(T + 1) > θ2(T + 1)

)
= 1.

This leads to following holds for sure

S1(s+ 1) = S1(s) + 1,∀s > T.

Thus, consider the regret incurred from the (T + 1)−th round to (2T)−th round, the regret will be

Reg(2T)− Reg(T) =

2T∑
s=T+1

U(p(s)) = 0.5Tε,

where the second equality follows that p(s) = (1, 0) holds almost surely from T + 1 to 2T . This
shows that limT→∞

E[Reg(2T)]
2T = ε/4, which contradicts that the algorithm achieves the sublinear

regret.

We now show that a general class of algorithms, which are based on mean-converging, will suffer
linear regret if it ignores the action’s impact. This family of algorithms includes UCB algorithm in
classic MAB problems.
Definition C.4 (Mean-converging Algorithm [57]). Define Ik(t) = {s : as = k, s < t} as the set of
time rounds such the arm k is chosen. Let r̄k(t) = 1

|Ik(t)|
∑
s∈Ik(t) r̃s be the empirical mean of arm

k up to time t. The mean-converging algorithm A assigns sk(t) for each arm k if following holds
true:

• sk(t) is the function of {r̃s : s ∈ Ik(t)} and time t;

• P(sk(t) = r̄k(t)) = 1 if lim inft
|Ik(t)|
t > 0.

Lemma C.5. For the reward structure defined in Example 1, the mean-converging Algorithm will
suffer linear regret if it mistakenly take the sample mean as the true mean reward of each arm.

Proof. We prove above lemma by contradiction. Let NAt (p) denote the number of plays with
deploying the strategy p by algorithmA till time t. Suppose a mean-converging AlgorithmA achieves
sublinear regret, then it must have limT→∞NAT (p∗)/T > 0 and limT→∞

(
T −NAT (p∗)

)
/T =

o(T). By the definition of mean-converging algorithm and recall the reward structure defined in
Example 1, the score sT (1) assigned to arm 1 by the algorithm A must be converging to 1, and the
score of sT (2) assigned to arm 2 must be converging to 0.5. By the strong law of large numbers, it
suffices to show that P(p(t) = {1, 0}) = 1,∀t ≥ T + 1, which implies the algorithm A would suffer
linear regret after T time rounds and thus completes the proof.

D Missing Proofs for Action-Dependent Bandits

D.1 The naive method that directly utilize techniques from Lipschitz bandits

We first give a naive approach which directly applies Lipschitz bandit technique to our action-
dependent setting. Recall that each meta arm p specifies the probability pk ∈ [0, 1] for choosing each
base arm k. We uniformly discretize each pk into intervals of a fixed length ε, with carefully chosen
ε such that 1/ε is an positive integer. Let Pε be the space of discretized meta arms, i.e., for each
p = {p1, . . . , pK} ∈ Pε,

∑K
k=1 pk = 1 and pk ∈ {0, ε, 2ε, . . . , 1} for all k. We then run standard

bandit algorithms on the finite set Pε.
There is a natural trade-off on the choice of ε, which controls the complexity of arm space and the
discretization error. show that, with appropriately chosen ε, this approach can achieve sublinear regret
(with respect to the optimal arm in the non-discretized space P).

Lemma D.1. Let ε = Θ
((

lnT
T

) 1
K+1

)
. Running a bandit algorithm which achieves optimal regret

O(
√
|Pε|T lnT) on the strategy space Pε attains the following regret (w.r.t. the optimal arm in

non-discretized P): Reg(T) = O
(
T

K
K+1 (lnT)

1
K+1

)
.

19

Proof. As mentioned, we uniformly discretize the interval [0, 1] of each arm into interval of a fixed
length ε. The strategy space will be reduced as Pε, which we use this as an approximation for the full
set P . Then the original infinite action space will be reduces as finite Pε, and we run an off-the-shelf
MAB algorithm A, such as UCB1 or Successive Elimination, that only considers these actions in Pε.
Adding more points to Pε makes it a better approximation of P , but also increases regret of A on
Pε. Thus, Pε should be chosen so as to optimize this tradeoff. Let p∗ε := supp∈Pε

∑K
k=1 pkrk(pk)

denote the best strategy in discretized space Pε. At each round, the algorithm A can only hope to
approach expected reward U(p∗ε), and together with additionally suffering discretization error:

DEε := U(p∗)− U(p∗ε).

Then the expected regret of the entire algorithm is:

Reg(T) = T · U(p∗)− Reward(A)

= T · U(p∗ε)− Reward(A) + T (U(p∗)− U(p∗ε))

= E[Regε(T)] + T · DEε,
where Reward(A) is the total reward of the algorithm, and Regε(T) is the regret relative to U(p∗ε).
If A attains optimal regret O(

√
KT lnT) on any problem instance with time horizon T and K arms,

then,

Reg(T) ≤ O(
√∣∣Pε∣∣T lnT) + T · DEε.

Thus, we need to choose ε to get the optimal trade-off between the size of Pε and its discretization
error. Recall that rk(·) is Lipschitz-continuous with the constant of Lk, thus, we could bound the DEε
by restricting p∗ε to be nearest w.r.t p∗. Let L∗ = maxk∈[K](1 + Lk), then it’s easy to see that

DEε = Ω(KL∗ε).

Thus, the total regret can be bounded above from:

Reg(T) ≤ O
(√

(1/ε+ 1)K−1T lnT

)
+ Ω(TKL∗ε).

By choosing ε = Θ

((
lnT

T (L∗)2

) 1
K+1

)
we obtain:

Reg(T) ≤ O(cT
K
K+1 (lnT)

1
K+1).

where c = Θ
(
K(L∗)

K−1
K+1

)
.

D.2 Missing Discussions and Proofs of Theorem 4.2

Step 1: Bounding the error of |U(p)− U(p)|. For any p = {p1, . . . , pK}, define the empirical
reward U t(p) =

∑K
k=1 pkr̄t(pk). The first step of our proof is to bound P(|U t(p)− U(p)| ≤ δ) for

each meta arm p = {p1, . . . , pK} with high probability.9 Using the Hoeffding’s inequality, we obtain

P
(
|U t(p)− U(p)| ≥ δ

)
= P

(∣∣∣∣∑
k

∑
s∈Tt(pk) r̂s(pk)

nt(pk)
−
∑
k

pkr(pk)

∣∣∣∣ ≥ δ)
≤ 2 exp

(
− 2δ2∑

k
1

nt(pk)

)
≤ 2 exp

(
− 2δ2nt(pmin(p))

K

)
,

where pmin(p) := arg minpk∈p nt(pk). By choosing δ =
√

K ln t
nt(pmin(p)) in the above inequality,

for each meta arm p at time t, we have that |U t(p) − U(p)| ≤
√
K ln t/nt(pmin(p)), with the

probability at least 1− 2/t2.

9We use δ to denote the estimation error, as ε has been used as the discretization parameter.

20

Step 2: Bounding the probability on deploying suboptimal meta arm. With the above high
probability bound we obtain in Step 1, we can construct an UCB index for each meta arm p ∈ Pε:

UCBt(p) = U t(p) +

√
K ln t

nt(pmin(p))
. (11)

The above constructed UCB index gives the following guarantee:

Lemma D.2. At any time round t, for a suboptimal meta arm p, if it satisfies nt(pmin(p)) ≥
4K ln t/∆2

p, then UCBt(p) < UCBt(p∗ε) with the probability at least 1− 4/t2. Thus, for any t,

P
(
p(t) = p|nt(pmin(p)) ≥ 4K ln t/∆2

p

)
≤ 4t−2,

where ∆p denotes the badness of meta arm p.

Proof. We prove this lemma by considering two “events” which occur with high probability: (1) the
UCB index of each meta arm will concentrate on the true mean utility of p; (2) the empirical mean
utility of each meta arm p will also concentrate on the true mean utility of p. We then show that the
probability of either one of the events not holding is at most 4/t2. By a union bound we prove above
desired lemma.

UCBt(p) =

K∑
k=1

pkr̄t(pk) +

√
ln t

K

nt(pmin(p))

(a)
≤

K∑
k=1

pkr̄t(pk) + ∆p/2 <

(
K∑
k=1

pkrk(pk) + ∆p/2

)
+ ∆p/2 By Event 1

=

K∑
k=1

p∗k,εrk(p∗k,ε) <

K∑
k=1

p∗k,εr̄t(p
∗
k,ε) +

√
ln t

K

nt(pmin(p∗ε))
By Event 2

= UCBt(p∗ε),

where p∗ε = (p∗1,ε, . . . , p
∗
K,ε). The first inequality (a) comes from that nt(pmin(p)) ≥ 4K ln t

∆2
p

and the

probability of third inequality or fifth inequality not holding is at most 4/t2.

Intuitively, Lemma D.2 essentially shows that for a meta arm p, if its nt(pmin(p)) is sufficiently
sampled with respect to ∆p, that is, sampled at least 4K ln t/∆2

p times, we know that the probability
that we hit this suboptimal meta arm is very small.

Step 3: Bounding the E[nT (pmin(p))]. Ideally, we would like to bound the number of the selec-
tions on deploying the suboptimal meta arm, i.e., NT (p), in a logarithmic order of T . However, if
we proceed to bound this by separately considering each meta arm, the final regret bound will have
an order with exponent in K since the number of meta arms grows exponentially in K. Instead, we
turn to bound E[nT (pmin(p))]. Recall that by the definitions of nT (p) and pmin(p), the pulls of p is
upper bounded by its nT (pmin(p)). This quantity will help us to reduce the exponential K to the
polynomial K. This is formalized in the following lemma.

Lemma D.3. For each suboptimal meta arm p 6= p∗ε , we have that E[nT (pmin(p))] ≤ 4K lnT
∆2

p
+

O(1).

Proof. To simplify notations, for each discretized arm pk, we define the notion of super set S(pk) =
{p : pk ∈ p} which contains all the meta arms that include this discretized arm. For suboptimal meta

21

arm p 6= p∗ε and its pmin(p), we have

E[nT (pmin(p))]

(a)
= 1 + E

[T∑
t=dK/εe+1

1 (p(t) = p,p ∈ S(pmin(p)))

]

= 1 + E
[T∑
t=dK/εe+1

1

(
p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) <

4K ln t

∆2
p

)]

+ E
[T∑
t=dK/εe+1

1

(
p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) ≥ 4K ln t

∆2
p

)]
(b)
≤ 4K lnT

∆2
p

+ E
[T∑
t=dK/εe+1

1

(
p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) ≥ 4K ln t

∆2
p

)]

=
4K lnT

∆2
p

+

T∑
t=dK/εe+1

P
(
p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) ≥ 4K ln t

∆2
p

)

=
4K lnT

∆2
p

+

T∑
t=dK/εe+1

P
(
p(t) = p,p ∈ S(pmin(p))

∣∣∣∣nt(pmin(p)) ≥ 4K ln t

∆2
p

)
P
(
nt(pmin(p)) ≥ 4K ln t

∆2
p

)
(c)
≤ 4K lnT

∆2
p

+
2π2

3
.

We add 1 in the first equality to account for 1 (step (a)) initial pull of every discretized arm by
the algorithm (the initialization phase). In step (b), suppose for contradiction that the indicator
1 (p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) < S) takes value of 1 at more than S − 1 time steps,
where S = 4K lnT

∆2
p

. Let τ be the time step at which this indicator is 1 for the (S−1)-th time. Then the
number of pulls of all meta arms in S(pmin(p)) is at least L times until time τ (including the initial
pull), and for all t ≥ τ , nt(pmin(p)) ≥ S which implies nt(pmin(p)) ≥ 4K ln t

∆2
p

. Thus, the indicator
cannot be 1 for any t ≥ τ , contradicting the assumption that the indicator takes value of 1 more than
L times. This bounds 1 + E

[∑
t≥dK/εe+1 1 (p(t) = p,p ∈ S(pmin(p));nt(pmin(p)) < S)

]
by S.

In step (c), we apply the lemma D.2 to bound the first conditional probability term and use the fact
that the probabilities cannot exceed 1 to bound the second probability term.

We use this connection in the following step to reduce the computation of regret on pulling all
suboptimal meta arms so that to calculate the regret via the summation over discretized arms.

Wrapping up: Proof of Theorem 4.2. We are now ready to prove Theorem 4.2. We first define
notations that are helpful for our analysis. To circumvent the summation over all feasible suboptimal
arms {p}, for each discretized arm pk, we define the notion of super set S(pk) := {p : pk ∈ p}
which contains all suboptimal meta arms that include this discretized arm. With a slight abuse of
notations, we also sort all meta arms in S(pk) as p1,p2, . . . ,pI(pk) in ascending order of their
expected rewards, where I(pk) := |S(pk)| is the cardinality of the super set S(pk). For pl ∈ S(pk),
we also define ∆pk

l := ∆pl where l ∈ [I(pk)], and specifically ∆pk
min := minp∈S(pk) ∆p = ∆pk

I(pk);
∆pk

max := maxp∈S(pk) ∆p = ∆pk
1 . Let Regε(T) denote the regret relative to the best strategy in

the discretized space parameterized by ε. With these notations, we first establish the following
instance-dependent regret.

Lemma D.4. Following the UCB designed in (11), we have the following instance-dependent regret
on the discretized arm space: Regε(T) ≤ dK/εe · (∆max +O(1)) +

∑
pk:∆

pk
min>0 8K lnT/∆pk

min,
where ∆max := maxpk ∆pk

max.

22

Proof. Note that by definition, we can compute the regret Regε(T) as follows:

Regε(T) =
∑
p∈Pε

E[NT (p)]∆p ≤
∑
pk

∑
l∈[I(pk)]

E[NT (pl)]∆
pk
l . (12)

Observe that, by Lemma D.3, for each discretized arm pk, there are two possible cases:

• There exists a meta arm pl ∈ S(pk), and its pmin(pl) = pk. Then by linearity of expectation, we
can bound the expectation of total number of pulls for all pl′ ∈ S(pk) as follows∑

pl′∈S(pk)

E[NT (pl′)] = E[nT (pk)] ≤ 4K lnT

(∆pk
min)2

+O(1).

• There exists no meta arm p ∈ S(pk), and pmin(p) for each p is pk. In this case, for each
pl ∈ S(pk), there always exists another discretized arm p′ that is included in pl such that
p′ = pmin(pl) but p′ 6= pk. Thus, for each pl ∈ S(pk), together with other meta arms which also
include discretized arm p′ as pl, we have that∑

p∈
⋃
p′∈p p

E[NT (p)] =
∑

p∈S(p′)

E[NT (p)]

= E[nT (p′)] ≤ 4K lnT

(∆p′

min)2
+O(1).

The above observations imply that even though we can not find any meta arm p in S(pk) such that
pmin(p) = pk, we can always carry out similar analysis by finding another discretized arm p′ ∈ p but
p′ 6= pk, such that p′ = pmin(p). Thus, for each discretized arm pk, we can focus on the case where
pk is able to attain the minimum nt(pk) for some p ∈ S(pk). For analysis convenience, instead of
looking at the counter of p, i.e., nt(pmin(p)), we will define a counter c(pk) for each discretized arm
pk and the value of c(pk) at time t is denoted by ct(pk). The update of ct(pk) is as follows: For a
round t > dK/εe (here dK/εe is the number of rounds needed for initialization), let p(t) be the meta
arm selected in round t by the algorithm. Let pk = arg minpk∈p(t) ct−1(pk). We increment c(pk) by
one, i.e., ct(pk) = ct−1(pk) + 1. In other words, we find the discretized arm pk with the smallest
counter in p(t) and increment its counter. If such pk is not unique, we pick an arbitrary discretized
arm with the smallest counter. Note that the initialization gives

∑
pk
cdK/εe(pk) = dK/εe. It is easy

to see that for any pk = pmin(p), we have nt(pk) = ct(pk).

With the above change of counters, Lemma D.2 and Lemma D.3 then have the implication on selecting
discretized arm pk /∈ p∗ε given its counter ct(pk). To see this, for each pl ∈ S(pk), we define
sufficient selection of discretized arm pk with respect to pl as pk being selected 4K lnT/

(
∆pk
l

)2
times and pk’s counter c(pk) being incremented in these selected instances. Then Lemma D.2 tells us
when pk is sufficiently selected with respect to pl, the probability that the meta arm pl is selected by
the algorithm is very small. On the other hand, when pk’s counter c(pk) is incremented, but if pk is
under-selected with respect to pl, we incur a regret of at most ∆pk

j for some j ≤ l.

Define CT (∆) := 4K lnT
∆2 , the number of selection that is considered sufficient for a meta arm with

reward ∆ away from the optimal strategy p∗ε with respect to time horizon t. With the above analysis,
we define following two situations for the counter of each discretizad arm:

cl,sufT (pk) :=

T∑
t=dK/εe+1

1 (p(t) = pl, ct(pk) > ct−1(pk) > CT (∆pk
l)) ,

cl,undT (pk) :=

T∑
t=dK/εe+1

1 (p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ≤ CT (∆pk
l)) .

Clearly, we have cT (pk) = 1 +
∑
l∈I(pk)

(
cl,sufT (pk) + cl,undT (pk)

)
. With these notations, we can

write (12) as follows:

Regε(T) ≤ E
[∑
pk

(
∆pk

max +
∑

l∈[I(pk)]

(
cl,sufT (pk) + cl,undT (pk)

)
·∆pk

l

)]
. (13)

23

The proof of this lemma will complete after establishing following two claims:

Claim 1: E
[∑
pk

∑
l∈[I(pk)]

cl,sufT (pk)

]
≤ dK/εe · O(1). (14)

Claim 2: E
[∑
pk

∑
l∈[I(pk)]

cl,undT (pk)∆pk
l

]
≤
∑
pk

((4K lnT)/∆pk
min + 4K lnT (1/∆pk

min − 1/∆pk
max)) .

(15)

We now first prove the Claim 1 as in (14), i.e., for any t > dK/εe, we have following upper bound
over counters of sufficiently selected discretized arms. To see this, by definition of cl,sufT (pk), it
reduces to show that for any T ≥ t > dK/εe,

E
[∑
pk

∑
l∈[I(pk)]

1 (p(t) = pl, ct(pk) > ct−1(pk) > CT (∆pk
l))

]
=
∑
pk

∑
l∈[I(pk)]

P (p(t) = pl, pk = pmin(pl);∀p ∈ pl, ct−1(p) > CT (∆pk
l))

(a)
≤ d4K/εe · t−2,

where the last step (a) is due to Lemma D.2, thus (14) follows from a simple series bound.

We now proceed to analyze the discretized arms that are not sufficiently included in the meta arm
chosen by the algorithm and prove the Claim 2 as in (15). For any under-selected discretized arm pk,
its counter c(pk) will increase from 1 to CT (∆pk

min). To simplify the notation, we set CT (∆pk
0) = 0.

Suppose that at round t, c(pk) is incremented, and ct−1(pk) ∈ (CT (∆pk
j−1), CT (∆pk

j)] for some
j ∈ [I(pk)]. Notice that we are only interested in the case that pk is under-selected. In particular, if
this is indeed the case, p(t) = pl for some l ≥ j. (Otherwise, p(t) is sufficiently selected based on
the counter value ct−1(pk).) Thus, we will suffer a regret of ∆pk

l ≤ ∆pk
j (step (a)). As a result, for

counter ct(pk) ∈ (CT (∆pk
j−1), CT (∆pk

j)], we will suffer a total regret for those playing suboptimal
meta arms that include under-selected discretized arms at most (CT (∆pk

j) − CT (∆pk
j−1)) · ∆pk

j

in rounds that ct(pk) is incremented (step (b)). In what follows we establish the above analysis
rigorously.∑

l∈[I(pk)]

cl,undT (pk)∆pk
l

=

T∑
t=dK/εe+1

∑
l∈[I(pk)]

1 (p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ≤ CT (∆pk
l)) ·∆pk

l

=

T∑
t=dK/εe+1

∑
l∈[I(pk)]

l∑
j=1

1
(
p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ∈ (CT (∆pk

j−1), CT (∆pk
j)]
)
·∆pk

l

(a)
≤

T∑
t=dK/εe+1

∑
l∈[I(pk)]

l∑
j=1

1
(
p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ∈ (CT (∆pk

j−1), CT (∆pk
j)]
)
·∆pk

j

≤
T∑

t=dK/εe+1

∑
l,j∈[I(pk)]

1
(
p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ∈ (CT (∆pk

j−1), CT (∆pk
j)]
)
·∆pk

j

=

T∑
t=dK/εe+1

∑
j∈[I(pk)]

1
(
p(t) ∈ S(pk), ct(pk) > ct−1(pk), ct−1(pk) ∈ (CT (∆pk

j−1), CT (∆pk
j)]
)
·∆pk

j

(b)
≤

∑
j∈[I(pk)]

(CT (∆pk
j)− CT (∆pk

j−1)) ·∆pk
j .

24

Now, we can compute the regret incurred by selecting the meta arm which includes under-selected
discretized arms:∑

pk

∑
l∈[I(pk)]

cl,undT (pk)∆pk
l ≤

∑
pk

∑
j∈[I(pk)]

(CT (∆pk
j)− CT (∆pk

j−1)) ·∆pk
j

=
∑
pk

(
CT (∆pk

min)∆pk
min +

∑
j∈[I(pk)−1]

CT (∆pk
j) · (∆pk

j −∆pk
j+1)

)

≤
∑
pk

(
CT (∆pk

min)∆pk
min +

∫ ∆
pk
max

∆
pk
min

Ct(x)dx

)
=
∑
pk

(
4K lnT

∆pk
min

+ 4K lnT

(
1

∆pk
min
− 1

∆pk
max

))
. (16)

Equipped with the above set of results, the bound of regret (13) follows by combing the bounds
in (14) and (15).

To achieve instance-independent regret bound, we need to deal with the case when the meta-arm gap
∆pk

min is too small, leading the regret to approach infinite. Nevertheless, one can still show that when
∆pk

min ≤ 1/
√
T , the regret contributed by this scenario scales at most O(

√
T) at time horizon T .

Lemma D.5. Following the UCB designed in (11), we have: Regε(T) ≤ O
(
K
√
T lnT/ε

)
.

Proof. Following the proof of Lemma D.4, we only need to consider the meta arms that are played
when they are under-sampled. We particularly need to deal with the situation when ∆pk

min is too small.
We measure the threshold for ∆pk

min based on cT (pk), i.e., the counter of disretized arm pk at time
horizon T . Let {T (pk),∀pk} be a set of possible counter values at time horizon T . Our analysis will
then be conditioned on the event that E(pk) = {cT (pk) = T (pk)}. By definition,

E
[∑
l∈[I(pk)]

cl,undT (pk) ·∆pk
l | E(pk)

]
=

T∑
t=dK/εe+1

∑
l∈[I(pk)]

1 (p(t) = pl, ct(pk) > ct−1(pk), ct−1(pk) ≤ CT (∆pk
l) | E(pk)) ·∆pk

l .

(17)

We define ∆∗(T (pk)) :=
(

4K lnT
T (pk)

)1/2

, i.e., CT (∆∗(T (pk))) = T (pk). To achieve instance-
independent regret bound, we consider following two cases:
Case 1: ∆pk

min > ∆∗(T (pk)), we thus have

E
[∑
l∈[I(pk)]

cl,undT (pk) ·∆pk
l | E(pk)

]
≤ O

(√
4K lnT · T (pk)

)
. (18)

Case 2: ∆pk
min < ∆∗(T (pk)). Let l∗ := min{l ∈ I(pk) : ∆pk

l > ∆∗(T (pk))}. Observe that we
have ∆pk

l∗ ≤ ∆∗(T (pk)) and the counter c(pk) never go beyond T (pk), we thus have

(17) ≤ (CT (∆∗(T (pk)))− CT (∆pk
l∗−1)) ·∆∗(T (pk)) +

∑
j∈[l∗−1]

(CT (∆pk
j)− CT (∆pk

j−1)) ·∆pk
j

≤ CT (∆∗(T (pk))) ·∆∗(T (pk)) +

∫ ∆
pk
max

∆∗(T (pk))

CT (x)dx ≤ O
(√

K lnT · T (pk)
)
. (19)

Thus, combining (18) and (19), we have

E
[∑
pk:∆

pk
min>0

∑
l∈[I(pk)]

cl,undT (pk) ·∆pk
l | E(pk)

]
≤

∑
pk:∆

pk
min>0

O(
√
K lnT · T (pk))

(a)
≤ O(K

√
T lnT/ε),

where (a) is by Jesen’s inequality and
∑
pk
T (pk) ≤ KT/ε. Put all pieces together, we have the

instance-independent regret bound as stated in the lemma. Observe that the final inequality does not
depend on the event E(pk), we thus can drop this conditional expectation.

25

With the above lemma in hand, picking ε = Θ((lnT/T)1/3) will give us desired result in Theorem 4.2.
10

Remark D.6. When only one arm is activated according to p(t), the Hoeffding’s inequality is
adapted as follows:

P
(
|U t(p)− U(p)| ≥ δ

)
≤
∑
k

P
(
|pkr̄(pk)− pkr(pk)| ≥ δ/K

)
≤
∑
k

2 exp
(
−2δ2nt(pk)/K2

)
≤ 2K exp

(
−2δ2nt(pmin(p))/K2

)
.

The below analysis carries over with accordingly changing δ =
√

K ln t
nt(pmin(p)) to δ =

√
K2 ln(

√
Kt)

nt(pmin(p)) ,

and the condition of nt(pmin(p)) in Lemma D.2 is changed to 4K2 ln(
√
Kt)/∆2

p to account
for larger δ. As a result, the instance-independent regret bound in Lemma D.5 is changed to

O
(
K
√
KT ln(

√
KT)/ε

)
. Together with the discretization error, one can then optimize the choice

of ε to get Õ(K4/3T 2/3) regret bound.

D.2.1 Regret Bound Comparison with [13]

In the work [13], the authors study the setting when pulling the meta arm, each base arm in (or
possibly other base arm) this meta arm will be triggered and played as a result. Back to our setting,
this is saying that when pulling a meta arm p = (p1, . . . , pK), each base arm k will be triggered
with its corresponding probability (discretized arm) pk. The authors in [13] discuss a general setting
which allows complex reward structure where only requires two mild conditions. In particular, one
of the condition they need for expected reward of playing a meta arm is the bounded smoothness
(cf., Definition 1 in [13].). In the Theorem 2 of [13], the authors give results when the function
used to characterize bounded smoothness is f(x) = γ · xω for some γ > 0 and ω ∈ (0, 1]. In

more detail, they achieve a regret bound O
(

2γ
2−ω

(
12|M| lnT

p∗

)ω/2
· T 1−ω/2 + |M| ·∆max

)
where

p∗ ∈ (0, 1) is the minimum triggering probability across all base arms and ∆max is the largest
badness of the suboptimal meta arm in discretized space. 11 Adapt to our setting, by inspection, we
have γ = L∗, ω = 1, p∗ = ε, |M| = Θ(K/ε), and ∆max = Θ(KL∗). Substituting these values to
the above bound, ignoring constant factors and combining with the discretization error, we have

O
((

K lnT

ε2

)1/2

· T 1/2 +K2/ε

)
+O(TKε).

Picking ε = Θ(lnT/(KT))1/4 will give us result.

E Proof of Theorem 5.1 for History-dependent Bandits

In this section, we provide the analysis of Theorem 5.1. The analysis follows a similar structure
to the one used in the proof of the regret bound in Theorem 4.2. However, due to the existence of
historical bias, we need to perform a careful computation when handling the high-probability bounds.
Specifically, we need to prove that, after deploying p consecutively for moderate long rounds (tuning
sa), the approximation error

∣∣U(p)− Uest
m (p)

∣∣ is small enough. The analysis is provided below.

Step 1: Bounding the small error of
∣∣U(p)− Uest

m (p)
∣∣ with high-probability. Our first step is

to ensure the empirical mean reward estimation we obtain from the information we collected in all
the estimation stages will approximate well the true mean of meta arm we want to deploy.

To return a high-probability error bound, we first bound the approximation error incurred due to the
dependency of history of arm selection (“historical bias"). This is summarized below.

10Here the choice of ε absorbs Lipschitz constant of rk(·).
11For simplicity, the bound we present here omits a non-significant term.

26

Lemma E.1. Keeping deploying p = {p1, . . . , pK} in the approaching stage with sa rounds, and
collect all reward feedback in the following estimation stage for the empirical estimation of rewards
generated by p, one can bound the approximation error as follows:

E
[∣∣Uest

m (p)− U(p)
∣∣] ≤ Kγsa(L∗ + 1),

where U(p) denote the empirical mean of rewards if the instantaneous reward is truly sampled from
mean reward function according to p.

Proof. The proof of this lemma is mainly built on analyzing the convergence of p(γ) via pulling the
base arms with the same probability consistently. For the ease of presentation, let us suppose t = mL
and let testm := t

L (L − sa) = m(L − sa) be the total number of estimation rounds in the first m
phases. Thus, at the end of the approaching stage, we have

p̂
(γ)
k (t+ sa) =

pk(t+ sa)γ0 + . . .+ pk(t+ 1)γsa−1 + (1 + γ + . . .+ γt−1)γsa p̂
(γ)
k (t)

1 + γ + . . .+ γt+sa−1
,

where p̂(γ)
k (t) = pk(t)γ0+...+pk(1)γt−1

1+γ+...+γt−1 . Recall that during the approaching stage, we consistently pull

arm k with the same probability pk. Thus, the approximation error of p̂(γ)
k (t+ sa) w.r.t. pk can be

computed as:

∣∣p̂(γ)
k (t+ sa)− pk

∣∣ =

∣∣∣∣pk(1− γsa) + p̂
(γ)
k (t)γsa(1− γt)

1− γt+sa − pk
∣∣∣∣ ≤ γsa(1− γt)

1− γt+sa < γsa .

Recall that U(p) =
∑
pk∈p pkrk(pk). In the estimation stage, we approximate all the realized

utility as the utility generated by the meta arm p. However, note that we actually cannot compute
the empirical value of U(p), instead, we use Uest

m (p(t + sa)) of each phase as an approximation
of U(p), i.e., we approximate all p(γ)(t + s),∀s ∈ (sa, L] as p(t + sa) and use p(t + sa) as the
approximation of p. Recall that for any s ∈ (sa, L], we have:

∣∣p̂(γ)
k (t+ s)− pk

∣∣ =

∣∣∣∣γs(1− γt)(p̂(γ)
k (t)− pk)

1− γt+s
∣∣∣∣ ≤ γs(1− γt)

1− γt+s <
γsa(1− γt)
1− γt+sa < γsa .

Thus, the approximation error on the empirical estimation can be computed as follows:

E
[∣∣Uest

m (p(t+ sa))− U(p)
∣∣] = E

[∣∣∣∣ ∑
p
(γ)
k ∈p(t+sa)

p
(γ)
k r̄estt+sa(p

(γ)
k)−

∑
pk∈p

pkr̄
est
t+sa(pk)

∣∣∣∣]

=

∣∣∣∣∑ p
(γ)
k E

[
r̄estt+sa(p

(γ)
k)
]
−
∑

pkE
[
r̄estt+sa(pk)

] ∣∣∣∣
=

∣∣∣∣∑ p
(γ)
k rk(p

(γ)
k)−

∑
pkrk(pk)

∣∣∣∣
=

∣∣∣∣∑(
p

(γ)
k

(
rk(p

(γ)
k)− rk(pk)

)
+ rk(pk)(p

(γ)
k − pk)

) ∣∣∣∣
≤
∑∣∣∣γsaLkp(γ)

k + rk(pk)γsa
∣∣∣ ≤ Kγsa(L∗ + 1).

With the approximation error at hand, we can then bound the error of
∣∣U(p)− Uest

m (p)
∣∣ with high

probability:
Lemma E.2. With probability at least 1− 6(

Lρm
)2 , we have

∣∣U(p)− Uest
m (p)

∣∣ ≤ err + 3

√
K ln

(
Lρm

)
nestm (pmin(p))

,

where pmin(p) = arg minpk∈p n
est
m (pk).

27

Proof. We first decompose
∣∣U(p)− Uest

m (p
(γ)
e)
∣∣ as

∣∣U(p)− U(p)
∣∣+
∣∣U(p)− Uest

m (p)
∣∣ and then

apply union bound.

P
(∣∣U(p)− Uest

m (p(t+ sa))
∣∣ ≥ δ)

≤ P
(∣∣U(p)− U(p)

∣∣+
∣∣U(p)− Uest

m (p(t+ sa))
∣∣ ≥ δ) By triangle inequality

= P
(∣∣U(p)− U(p)

∣∣+
∣∣Uest

m (p(t+ sa))− E[Uest
m (p(t+ sa))]−

(U(p)− E[U(p)]) + E[U(p)]− E[Uest
m (p(t+ sa))]

∣∣ ≥ δ)
≤ P

(
2
∣∣U(p)− U(p)

∣∣+
∣∣Uest

m (p(t+ sa))− E[Uest
m (p(t+ sa))

∣∣ ≥ δ − err
)

(a)
≤ 3P

(
|U(p)− U(p)

∣∣ ≥ δ − err
3

)
≤ 6 exp

(
− 2nestm (pmin(p))(δ − err)2

9K

)
,

where in step (a), we use the Hoeffding’s Inequality on Weighted Sums and Lemma E.1.

Step 2: Bounding the probability on deploying suboptimal meta arm. Till now, with the help
of the above high probability bound on the empirical reward estimation, the history-dependent reward
bandit setting is largely reduced to an action-dependent one with a certain approximation error. Then,
similar to our argument on upper bound of action-dependent bandits, we have the following specific
Lemma for history-dependent bandits:

Lemma E.3. At the end of each phase, for a suboptimal meta arm p, if it satisfies nestm (pmin(p)) ≥
9K ln

(
Lρm

)(
∆p/2−err

)2 , then with the probability at least 1− 12(
Lρm

)2 , we have UCBm(p) < UCBm(p∗), i.e.,

P
(
p(m+ 1) = p|nestm (pmin(p)) ≥ 9K ln

(
Lρm

)(∆p

2 − err
)2) ≤ 12(

Lρm
)2 .

Proof. To prove the above lemma, we construct two high-probability events. Event 1 corresponds to
that the UCB index of each meta arm concentrates on the true mean utility of p; Event 2 corresponds
to that the empirical mean utility of each approximated meta arm p(γ) concentrates on the true mean
utility of p. The probability of Event 1 or Event 2 not holding is at most 4/t2. By the definition
of the constructed UCB, we’ll have

UCBm(p) = Uest
m (p(t+ sa)) + err + 3

√
K ln (Lρm)

nestm (pmin(p))

(a)
≤ Uest

m (p(t+ sa)) + ∆p/2

(b)
< (U(p) + ∆p/2) + ∆p/2 By Event 1

= U(p∗ε)
(c)
< UCBm(p∗ε), By Event 2

where the first inequality (a) is due to nestm (pmin(p)) ≥ 9K ln(Lρm)

(∆p/2−err)2
, and the probability of step (b)

or (c) not holding is at most 12/(Lρm)
2.

The above lemma implies that we will stop deploying suboptimal meta arm p and further prevent it
from incurring regret as we gather more information about it such that UCBm(p) < UCBm(p∗ε).

Step 3: Bounding the E[nestm (pmin(p))]. The results we obtain in Step 2 implies following guar-
antee:

Lemma E.4. For each suboptimal meta arm p 6= p∗, we have following:

E[nestm (pmin(p))] ≤ 9K ln
(
Lρm

)(
∆p/2− err

)2 +
2π2

L− sa
.

28

Proof. For notation simplicity, suppose t = mL. For each suboptimal arm p 6= p∗ε , and suppose
there exists pmin(p) /∈ p∗ε such that pmin(p) = arg minpk∈p n

est
t (pk), then

E[nestt (pmin(p))]

= (L− sa)E

[
m∑
i=1

1 (p(i) = p,p ∈ S(pmin(p)))

]

= (L− sa)E

[
m∑
i=1

1

(
p(i) = p,p ∈ S(pmin(p));nesti (pmin(p)) <

9K ln (i(L− sa))

(∆p/2− err)
2

)]
+

(L− sa)E

[
m∑
i=1

1

(
p(i) = p,p ∈ S(pmin(p));nesti (pmin(p)) ≥ 9K ln (i(L− sa))

(∆p/2− err)
2

)]
(a)
≤ 9K ln (testm)

(∆p/2− err)
2 + (L− sa)E

[
m∑
i=1

1

(
p(i) = p,p ∈ S(pmin(p));nesti (pmin(p)) ≥ 9K ln (i(L− sa))

(∆p/2− err)
2

)]

=
9K ln (testm)

(∆p/2− err)
2 + (L− sa)

m∑
i=1

P

(
p(i) = p,p ∈ S(pmin(p))

∣∣∣∣nesti (pmin(p)) ≥ 9K ln (i(L− sa))

(∆p/2− err)
2

)
·

P

(
nesti (pmin(p)) ≥ 9K ln (i(L− sa))

(∆p/2− err)
2

)

≤ 9K ln (testm)

(∆p/2− err)
2 + (L− sa)

m∑
i=1

12

(i(L− sa))
2 ≤

9K ln (testm)

(∆p/2− err)
2 +

2π2

L− sa
.

In step (a), suppose for contradiction that the indicator
1 (p(i) = p,p ∈ S(pmin(p));nesti (pmin(p)) < S) takes value of 1 at more than S − 1 time
steps, where S = 9K ln(i(S−sa))

(∆p/2−err)2
. Let τ be the phase at which this indicator is 1 for the

(S − 1)-th phase. Then the number of pulls of all meta arms in S(pmin(p)) is at least L
times until time τ (including the initial pull), and for all i > τ , ni(pmin(p)) ≥ S which
implies nesti (pmin(p)) ≥ 9K ln(i(S−sa))

(∆p/2−err)2
. Thus, the indicator cannot be 1 for any i ≥ τ , con-

tradicting the assumption that the indicator takes value of 1 more than S times. This bounds
1 + E [

∑m
i=1 1 (p(i) = p,p ∈ S(pmin(p));nesti (pmin(p)) < S)] by S.

Wrapping up: Proof of Theorem 5.1. Following the similar analysis in Section 3, we can also
get an instance-dependent regret bound for history-dependent bandits:
Lemma E.5. Following the UCB designed in Algorithm 3, we have following instance-dependent
regret on discretized arm space for history-dependent bandits:

Regε(T) ≤ O
(
K∆max

Lερ2

)
+
∑
pk

(
9K ln (Tρ)

ρ

(
∆pk

min

(∆pk
min/2− err)

2 +
2

∆pk
min/2− err

))
.

Proof. For notation simplicity, we include all initialization rounds to phase 0 and suppose the time
horizon T = ML. Note that by definitions, we can compute the regret Regε(T) as follows:

Regε(T) =
∑
p∈Pε

E[NT (p)]∆p ≤
∑
pk

∑
pl∈S(pk)

E[NT (pl)]∆
pk
l . (20)

where Nt(p) = K + L
∑M
m=1 1 (p(m) = p), where K here accounts for the initialization. Follow

the same analysis in action-dependent bandits, we can also define a counter cest(pk) for each
discretized arm pk and the value of cest(pk) at phase m is denoted by cestm (pk). But different from
the action-dependent bandit setting, we update the counter cest(pk) only when we start a new phase.
In particular, for a phase m ≥ 1, let p(m) be the meta arm selected in the phase m by the algorithm.
Let pk = arg minpk∈p(m) c

est
m (pk). We increment cestm (pk) by one, i.e., cestm (pk) = cestm−1(pk) + 1.

In other words, we find the discretized arm pk with the smallest counter in p(m) and increment its
counter. If such pk is not unique, we pick an arbitrary discretized arm with the smallest counter. Note

29

that the initialization gives
∑
pk
cest0 (pk) = dK/εe. It is easy to see that for any pk = pmin(p), we

have nm(pk) = Lρ · cm(pk).

Like in action-dependent bandits, we also define Cest
M (∆) := 9K ln(MLρ)

Lρ(∆/2−err)2 , the number of selection
that is considered sufficient for a meta arm with reward ∆ away from the optimal strategy p∗ε with
respect to phase horizon M . With the above notations, we define following two situations for the
counter of each discretized arm:

cest,l,sufM (pk) :=

M∑
m=1

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk) > Cest

M (∆pk
l)
)

(21)

cest,l,undM (pk) :=

M∑
m=1

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), cestm−1(pk) ≤ Cest

M (∆pk
l)
)
. (22)

Clearly, we have cestM (pk) = 1 +
∑
l∈I(pk)

(
cest,l,sufM (pk) + cest,l,undM (pk)

)
. With these notations, we

can write (20) as follows:

Regε(T) ≤ E

∑
pk

∆pk
max + L ·

∑
l∈[I(pk)]

(
cest,l,sufM (pk) + cest,l,undM (pk)

)
·∆pk

l

 . (23)

We now first show that for any m ≥ 1, we have following upper bound over counters of sufficiently
selected discretized arms:

E
[
L ·
∑
pk

∑
l∈[I(pk)]

cl,sufM (pk)

]
≤ O

(
K

Lερ2

)
. (24)

To see this, by definition of cest,l,sufM (pk), it reduces to show that for any M ≥ m > 1,

E
[
L ·
∑
pk

∑
l∈[I(pk)]

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk) > Cest

M (∆pk
l)
)]

= L ·
∑
pk

∑
l∈[I(pk)]

P
(
p(m) = pl, pk = pmin(pl);∀p ∈ pl, Lρ · cestm−1(p) >

9K ln (MLρ)(
∆pk
l /2− err

)2)
(a)
≤ d12LK/εe · (MLρ)−2,

where the last step (a) is due to Lemma E.3, thus (24) follows from a simple series bound.

We now proceed to analyze the discretized arms that are not sufficiently included in the meta arm
chosen by the algorithm. For any under-selected discretized arm pk, its counter cest(pk) will increase
from 1 to Cest

M (∆pk
min). To simplify the notation, we set Cest

M (∆pk
0) = 0. Suppose that at phase

m ≥ 1, cest(pk) is incremented, and cestm−1(pk) ∈ (Cest
M (∆pk

j−1), Cest
M (∆pk

j)] for some j ∈ [I(pk)].
Notice that we are only interested in the case that pk is under-selected. In particular, if this is indeed
the case, p(m) = pl for some l ≥ j. (Otherwise, p(m) is sufficiently selected based on the counter
value cestm−1(pk).) Thus, we will suffer a regret of ∆pk

l ≤ ∆pk
j (step (a)). As a result, for counter

cestm (pk) ∈ (Cest
M (∆pk

j−1), Cest
M (∆pk

j)/L], we will suffer a total regret for those playing suboptimal
meta arms that include under-selected discretized arms at most (Cest

M (∆pk
j)− Cest

M (∆pk
j−1)) ·∆pk

j

in rounds that cestm (pk) is incremented (step (b)). In what follows we establish the above analysis

30

rigorously.∑
l∈[I(pk)]

cest,l,undM (pk)∆pk
l

=

M∑
m=1

∑
l∈[I(pk)]

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), cestm−1(pk) ≤ Cest

M (∆pk
l)
)
·∆pk

l

=

M∑
m=1

∑
l∈[I(pk)]

l∑
j=1

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), cestm−1(pk) ∈ (Cest

M (∆pk
j−1), Cest

M (∆pk
j)]
)
·∆pk

l

(a)
≤

M∑
m=1

∑
l∈[I(pk)]

l∑
j=1

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), cestm−1(pk) ∈ (Cest

M (∆pk
j−1), Cest

M (∆pk
j)]
)
·∆pk

j

≤
M∑
m=1

∑
l,j∈[I(pk)]

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), cestm−1(pk) ∈ (Cest

M (∆pk
j−1), Cest

M (∆pk
j)]
)
·∆pk

j

=
M∑
m=1

∑
j∈[I(pk)]

1
(
p(m) ∈ S(pk), cestm (pk) > cestm−1(pk), cestm−1(pk) ∈ (Cest

M (∆pk
j−1), Cest

M (∆pk
j)]
)
·∆pk

j

(b)
≤

∑
j∈[I(pk)]

(Cest
M (∆pk

j)− Cest
M (∆pk

j−1)) ·∆pk
j .

Now, we can compute the regret incurred by selecting the meta arm which includes under-selected
discretized arms:

L ·
∑
pk

∑
l∈[I(pk)]

cest,l,undM (pk) ·∆pk
l

≤ L ·
∑
pk

∑
j∈[I(pk)]

(Cest
M (∆pk

j)− Cest
M (∆pk

j−1)) ·∆pk
j

= L ·
∑
pk

(
Cest
M (∆pk

min)∆pk
min +

∑
j∈[I(pk)−1]

Cest
M (∆pk

j) · (∆pk
j −∆pk

j+1)

)

≤ L ·
∑
pk

(
Cest
M (∆pk

min)∆pk
min +

∫ ∆
pk
max

∆
pk
min

Cest
M (x)dx

)

=
∑
pk

(
9K ln (MLρ)

ρ (∆pk
min/2− err)

2 ·∆
pk
min + 9K ln (MLρ) /ρ ·

∫ ∆
pk
max

∆
pk
min

1

(x/2− err)2
dx

)

=
∑
pk

(
9∆pk

minK ln (MLρ)

ρ (∆pk
min/2− err)

2 +
9K ln (MLρ)

ρ

(
2

∆
pk
min

2 − err
− 2

∆pk
max/2− err

))

≤
∑
pk

(
9K ln (MLρ)

ρ

(
∆pk

min

(∆pk
min/2− err)

2 +
2

∆pk
min/2− err

))
.

Combing the bound established in (24) will complete the proof.

The instance-independent regret on discretized arm space is summarized in following lemma:
Lemma E.6. Following the UCB designed in Algorithm 3, the instance-independent regret is given as
Regε(T) ≤ O

(
K ·

√
T ln(Tρ)/(ρε) +K/(Lερ2)

)
.

Proof. Following the proof action-dependent bandits, we only need to consider the meta arms that
are played when they are under-sampled. We particularly need to deal with the situation when ∆pk

min
is too small. We measure the threshold for ∆pk

min based on cestM (pk), i.e., the counter of disretized

31

arm pk at phase horizon M . Let {M(pk),∀pk} be a set of possible counter values at time horizon
M . Our analysis will then be conditioned on the event that E(pk) := {cestM (pk) = M(pk)}. By
definition,

E
[∑
l∈[I(pk)]

cest,l,undM (pk) ·∆pk
l | E(pk)

]
=

M∑
m=1

∑
l∈[I(pk)]

1
(
p(m) = pl, c

est
m (pk) > cestm−1(pk), cestm−1(pk) ≤ Cest

M (∆pk
l) | E(pk)

)
·∆pk

l .

(25)

We define ∆∗(M(pk)) := 2
(

9K ln(MLρ)
Lρ·M(pk)

)1/2

+ 2err. thus we have Cest
M (∆∗(M(pk))) = M(pk).

To achieve instance-independent regret bound, we consider following two cases:
Case 1: ∆pk

min > ∆∗(M(pk)), clearly we have ∆pk
min/2 > err. Thus,

L · E
[∑
l∈[I(pk)]

cest,l,undM (pk) ·∆pk
l | E(pk)

]
≤ O

(√
K ln(Tρ) · LM(pk)

ρ

)
. (26)

Case 2: ∆pk
min < ∆∗(M(pk)). Let l∗ := min{l ∈ I(pk) : ∆pk

l > ∆∗(M(pk))}. Observe that we
have ∆pk

l∗ ≤ ∆∗(M(pk)) and the counter cest(pk) never go beyond M(pk), we thus have

L · (25) ≤ L(Cest
M (∆∗(M(pk)))− Cest

M (∆pk
l∗−1)) ·∆∗(M(pk)) +

∑
j∈[l∗−1]

L(Cest
M (∆pk

j)− Cest
M (∆pk

j−1)) ·∆pk
j

≤ LCest
M (∆∗(M(pk))) ·∆∗(M(pk)) + L

∫ ∆
pk
max

∆∗(M(pk))

Cest
M (x)dx

≤ O
(√

K ln(Tρ) · LM(pk)

ρ

)
. (27)

Combining (26) and (27), and with Jesen’s inequality and
∑
pk
M(pk) ≤ KM/ε will give us desired

result. Put all pieces together, we have the instance-independent regret bound as stated in the
lemma. The final inequality does not depend on the event E(pk), we thus can drop this conditional
expectation.

Combining with the discretization error, we have

Reg(T) ≤ O
(
K ·

√
T ln(Tρ)/(ρε) +K/(Lερ2)

)
+O(KεT).

Picking

ε = O
(

ln(Tρ)

Tρ

)1/3

; sa = O

1/3 ln
(

ln(Tρ)
Tρ

)
− ln(L∗K)

ln γ

 .

We will obtain the results as stated in the theorem.

F Lower Bound of Action-Dependent Bandits

In this section, we derive the lower regret bound of bandits with action-dependent feedback, showing
that the upper regret bound of our Algorithm 1 is optimal in the sense that it matches this lower
bound in terms of the dependency on T and K. Note that, by importance-weighting technique, we
can construct an unbiased estimation of each base arm’s reward. In the below discussion, we rephrase
our problem as the combinatorial Lipschitz bandit with constraint, henceforth called CombLipBwC,
which directly operates on the observations of all base arms:
Definition F.1 (CombLipBwC). Let action set P available to the learner be a continuous space,
consisted of K unit-range base arms, i.e., P ⊂ [0, 1]K . At each time, the learner needs to select a
meta arm p(t) = {p1(t), . . . , pK(t)} in which each discretized arm pk(t) ∈ [0, 1] is selected from
k-th unit range, with the constraint such that

∑
k pk(t) = 1. And then the learner will observe

rewards {r̃t(pk(t))}k∈[K] for all base arms with the mean of each E[r̃t(pk(t))] = rk(pk(t)).

32

Our main result of this section is summarized in the following theorem:
Theorem F.2. Let T >2K and K≥4, there exists a problem instance such that for any algorithm A
for our action-dependent bandits , we have infAReg(T) ≥ Ω(KT 2/3).

The high-level intuition for deriving the above lower bound is that we first construct a reduction from
CombLipBwC to a discretized combinatorial bandit problem with the action constraint

∑
k pk(t) = 1

- we refer to this latter problem setting as CombBwC. Then we show that the regret incurred within
CombLipBwC is lower bounded by the regret incurred with CombBwC. To finish the proof, we bound
the worst-case regret from below of CombBwC by taking an average over a conveniently chosen class
of problem instances.

F.1 Randomized problem instances and definitions

We now construct a reduction for proving the lower bound of CombLipBwC. Specifically, we will
construct a distribution D over a set of problem instances (we also call each instance an adversary,
since the instances are adversarially constructed) of CombLipBwC, while each problem instance will
be uniquely mapped to a problem instance in CombBwC. The construction is similar to the one used
in [39].

These new instances are associated with 0− 1 rewards. For each base arm k ∈ [K], all the discretized
arms p have mean reward rk(p) = 1/2 except those near the unique best discretized arm p∗k with
rk(p∗k) = 1/2 + ε. Here ε > 0 is a parameter to be adjusted later in the analysis. Due to the
requirement of Lipschitz condition, a smooth transition is needed in the neighborhood of each p∗k.
More formally, we define the following function rk(·) for base arm k:

rk(p) =

{
1/2, ∀p ∈ [0, 1] : |p− p∗k| ≥ ε/Lk
1/2 + ε− Lk · |p− p∗k|, ∀p ∈ [0, 1] : |p− p∗k| < ε/Lk

(28)

Fix Np ∈ N and partition all base arms [0, 1] into Np disjoint intervals of length 1/Np. Then the
above functions indicate that each interval with the length of 2ε will either contain a bump or be
completely flat. For the sake of simplifying presentation, in the analysis below, we’ll focus on the
case where the Lipschitz constant is Lk = 1,∀k ∈ [K]. Formally,
Definition F.3. We define 0-1 rewards problem instances I(p∗, ε) for CombLipBwC indexed by a
random permutation p∗ = {p∗k}k∈[K], which satisfies following property:

•
∑
k p
∗
k = 1 and each p∗k takes the value from {(2j − 1)ε}j∈[Np].

• The reward function of base arm k is defined in (28), and the optimal action of arm k is p∗k.

In combinatorial bandits, the learner selects a subset of ground arms subject to some pre-defined
constraints. Adapting to our model, we denote this discretized action spaceM as the set of K ×Np

binary matrices {0, 1}K×Np :

M = {a ∈ {0, 1}K×Np : ∀k ∈ [K],

Np∑
j=1

ak,j = 1},

where ak,j ∈ {0, 1} is the indicator random variable such that ak,j = 1 means that the j-th discretized
arm probability is selected for the k-th base arm. Note that this space has not included the action
constraint that we’re planning to impose on CombLipBwC.

We now construct the problem instances for CombBwC such that each problem instance I(p∗, ε) in
CombLipBwC has a corresponding problem instance in CombBwC.
Definition F.4. We define 0-1 rewards problem instances J (l∗, ε) for CombBwC indexed by l∗ =
{l∗k}k∈[K], such that l∗k = (p∗k/ε + 1)/2. Therefore, l∗k ∈ [Np] and the mean reward of J (l∗, ε) is
defined as follows: for any t ∈ {1, . . . , T},

E[r̃t(lk(t))] =

{
1/2, lk(t) 6= l∗k
1/2 + ε, lk(t) = l∗k

(29)

Observe that with one more action constraint, the feasible action space of CombBwC will be a
constrained space ofM, which we denote by Π = {a ∈ {0, 1}K×Np : ∀k ∈ [K],

∑Np
j=1 ak,j =

1,
∑K
i=1 lk,jak,j = K − 1 +Np}.

33

We now next show that for any algorithm AI trying to solve the problem instance I(p∗, ε) in
CombLipBwC, we can construct an algorithm AJ that needs to solve a corresponding problem
instance J (p∗, ε) in CombBwC.

The intuition of the construction routine is as follows. With the above defined KNp intervals in
hand and the deliberately designed reward structure, whenever an algorithm chooses a meta arm
p = {p1, . . . , pK} such that each discretized arm pk falls into an interval of this base arm k, choosing
the center of this interval is best. Thus, if we restrict to discretized arms that are centers of the
intervals of all base arms, we then have a family of problem instances of CombBwC, where the reward
function is exactly defined in (29).

Routine A routine inbetween AI and AJ
Input: A CombLipBwC instance I, a CombBwC instance J and an algorithm AI for solving I.
for round t = 1, . . . do
AI selects a meta arm p(t) = {p1(t), . . . , pK(t)};
AJ selects arm l(t) = {l1(t), . . . , lK(t)} such that pk(t) ∈

[
(2lk(t)− 1)ε− ε, (2lk(t)− 1)ε+

ε
)
,∀k ∈ [K];
AJ observes {r̃(lk(t))};
AI observes {r̃(pk(t))};

end for

Furthermore, with above construction routine, we have following guarantee:

Lemma F.5. The regret incurred byAI , which is for the problem instance I(p∗, ε), is lower bounded
by the regret incurred by AJ for the problem instance J (l∗, ε):

E[Reg2ε(T)|I,AI] ≥ E[Reg2ε(T)|J ,AJ]. (30)

Proof. As we can see, each instance J (l∗, ε) corresponds to an instance I(p∗, ε) of CombLipBwC.
In particular, each k-th base arm in J corresponds to the base arm k in I , and more specifically, each
discretized arm j ∈ [Np] in k-th base arm corresponds to the all possible discretized arms p such that
p ∈ [(2j − 1) · ε− ε, (2j − 1) · ε+ ε). In other words, we can view J as a discrete version of I. In
particular, we have rk(j|J) = rk(p),∀p ∈ [(2j − 1)ε− ε, (2j − 1)ε+ ε), where rk(·) is the reward
function for base arm k in I, and rk(·|J)is the reward function for base arm k in J .

Given an arbitrary algorithm AI for a problem instance I of CombLipBwC, we can use it to construct
an algorithm AJ to solve the corresponding problem instance J in CombBwC. To see this, at each
round, AI is called and an action is selected p(t). This action corresponds to an action l(t) in
CombBwC such that for each discretized arm pk(t) ∈ p(t), it falls into the interval [(2lk(t)− 1)ε−
ε, (2lk(t) − 1)ε + ε) where lk(t) ∈ l(t). Then algorithm AJ will observe {r̃(lk(t))} and receive
the reward

∑
k r̃(lk(t)). After that,

∑
k r̃(lk(t)) and p(t) will be further used to compute reward∑

k r̃(pk(t)) such that E[
∑
k r̃(pk(t))] =

∑
k∈[K] r(lk(t)), and feed it back to AI .

At each round, let p(t) and l(t) denote the action chosen by the AI and AJ , since we have
rk(lk(t)) ≥ rk(pk(t)) and best arm of the problem instance I and J has the same mean reward
K(1/2 + ε), this completes the proof.

F.2 Lower bound the E[Reg2ε(T)|J ,AJ]

With Lemma F.5 stating the relationship between E[Reg2ε(T)|I,AI] and E[Reg2ε(T)|J ,AJ]
as derived in (30), we can lower bound the E[Reg2ε(T)|AI] via deriving the lower bound for
E[Reg2ε(T)|AJ].

The structure of the proof is similar to that of [2], while the main difference is that we construct a
different set of adversaries to bound the probability of the learner on achieving “good event” (will be
specified later). At a high level, our proof builds on the following 4 steps: from step 1 to 3 we restrict
our attention to the case of deterministic strategies for the learner, and then we show how to extend
the results to arbitrary and randomized strategies by Fubini’s theorem in step 4.

34

Step 1: Regret Notions. We will also call that the learner is playing against the l∗-adversary when
the current instance is J (l∗, ε). We denote by El∗ [·] the expectation with respect to the reward
generation process of the l∗-adversary. Without the loss of generality, we assume K is an even
number. We write P(2h−1,2h),l∗ for the probability distribution of (j2h−1,t, j2h,t) when the learner
faces the l∗-adversary. Thus, against the l∗-adversary, we have

El∗ [Reg2ε(T)] = El∗

T∑
t=1

K/2∑
h=1

2ε1({j2h−1,t 6= l∗2h−1, j2h,t 6= l∗2h}) = T · 2ε
K/2∑
h=1

(
1− P(2h−1,2h),l∗(GT)

)
,

where GT denotes the good event such that {j2h−1,T = l∗2h−1, j2h,T = l∗2h} holds simultaneously
for base arm 2h− 1 and 2h. For a particular distribution l∗ ∼ D for all random adversaries, and let
P(l∗) denote the support of the adversary l∗. Because the maximum value is always no less than the
mean, we have

sup
l∗∈Jε

El∗ [Reg2ε(T)] ≥ T · 2ε
K/2∑
h=1

(
1−

∑
l∗∈Jε

P(l∗) · P(2h−1,2h),l∗(GT)

)
. (31)

Step 2: Information Inequality Let P−(2h−1,2h),l∗ be the probability distribution of
(j2h−1,t, j2h,t) against the adversary which plays like the l∗-adversary except that in the (2h −
1, 2h)−th base arms, where the rewards of all discretized arms are drawn from a Bernoulli distribu-
tion of parameter 1/2. We refer to it as (−h, l∗)-adversary. Let Jε denote the set of all possible l∗

adversaries and D be the distribution over l∗ in which l∗ is sampled uniformly at random.

Lemma F.6. Let n−h(K − 1 + Np −m),∀m ∈ {2, . . . , 1 + Np} denote the total number of the
combinations of

(
jk
)
k 6=2h−1,2h

such that
∑
i 6=2h−1,2h jk = K − 1 +Np −m. Then we have

1

|Jε|
∑
l∗∈Jε

P(2h−1,2h),l∗(GT) ≤
Np+1∑
m=2

n−h(K−1+Np−m)

|Jε|
+ cε

√√√√ T

|Jε|

Np+1∑
m=2

n−h(K−1+Np−m),

(32)

where c is a constant.

Proof. Let KL(·) be the Kullback-Leibler divergence operator. By Pinsker’s inequality, we have

P(2h−1,2h),l∗(GT) ≤ P−(2h−1,2h),l∗(GT) +

√
1

2
KL(P−(2h−1,2h),l∗ ,P(2h−1,2h),l∗), ∀l∗ ∈ Jε.

Then by the concavity of the square root,

1

|Jε|
∑
l∗∈Jε

P(2h−1,2h),l∗(GT)

≤ 1

|Jε|
∑
l∗∈Jε

P−(2h−1,2h),l∗(GT) +

√
1

2|Jε|
∑
l∗∈Jε

KL(P−(2h−1,2h),l∗ ,P(2h−1,2h),l∗).

We introduce nh(m),∀m ∈ {2, . . . , 1 + Np} to denote the total number of combinations of
(j2h−1, j2h) such that j2h−1 + j2h = m. Then by definition, it is easy to see that nh(m) = m− 1,
and furthermore

Np+1∑
m=2

nh(m) · n−h(K − 1 +Np −m) = |Jε|. (33)

35

Let D be the distribution over l∗ in which l∗ is sampled uniformly at random, i.e., P(l∗) = 1
|Jε| , then

by the symmetry of the adversary (−h, l∗), we have

∑
l∗∈Jε

P(l∗) · P−(2h−1,2h),l∗(GT) =

Np+1∑
m=2

∑
l∗:

∑
k 6=2h−1,2h l

∗
k=K−1+Np−m

P(l∗) · P−(2h−1,2h),l∗(GT)

=

Np+1∑
m=2

1

nh(m)

∑
l∗:

∑
k 6=2h−1,2h l

∗
k=K−1+Np−m

P(l∗)

=

Np+1∑
m=2

1

nh(m)

nh(m) · n−h(K − 1 +Np −m)

|Jε|

=

Np+1∑
m=2

n−h(K − 1 +Np −m)

|Jε|
. By (33)

Step 3: Bounding KL(P−(2h−1,2h),l∗ ,P(2h−1,2h),l∗) via the chain rule. We now proceed to bound
the value of KL(P−(2h−1,2h),l∗ ,P(2h−1,2h),l∗).

Lemma F.7. KL(PT−(2h−1,2h),l∗ ,P
T
(2h−1,2h),l∗) ≤ cε2T

1−4ε2P−(2h−1,2h),l∗(GT), where c is the constant
value.

Proof. Given any sequence of observed rewards up to time T , which denoted byWT ∈ {1, . . . ,K}T ,
the empirical distribution of plays, and, in particular, the probability distribution of (j2h−1,t, j2h,t)
conditional on the fact that WT will be the same for all adversaries. Thus, if we denote by
PT(2h−1,2h),l∗ (or PT−(2h−1,2h),l∗) the probability distribution ofWT when the learner plays against the
l∗-adversary (or the (−h, l∗)-adversary), we can easily show that KL(P−(2h−1,2h),l∗ ,P(2h−1,2h),l∗) ≤
KL(PT−(2h−1,2h),l∗ ,P

T
(2h−1,2h),l∗). Then we apply the chain rule for Kullback-Leibler divergence

iteratively to introduce the probability distributions Pt(2h−1,2h),l∗ of the observed rewards Wt

up to time t and then will arrive desired result. More formally, we reduce to bound the
KL(PT−(2h−1,2h),l∗ ,P

T
(2h−1,2h),l∗),

KL(PT−(2h−1,2h),l∗ ,P
T
(2h−1,2h),l∗)

= KL(P1
−(2h−1,2h),l∗ ,P

1
(2h−1,2h),l∗)+

T∑
t=2

∑
wt−1∈{1,...,K}t−1

Pt−1
−(2h−1,2h),l∗(wt−1)KL

(
P−(2h−1,2h),l∗(·|wt−1),P(2h−1,2h),l∗(·|wt−1)

)
= KL(B∅,B

′

∅)1(j2h−1,1 = l∗2h−1, j2h,1 = l∗2h)+

T∑
t=2

∑
wt−1:j2h−1,t−1=l∗2h−1,j2h,t−1=l∗2h

Pt−1
−(2h−1,2h),l∗(wt−1)KL(Bwt−1

,B′wt−1
)

= KL(B∅,B
′

∅)1(G1) +

T∑
t=2

∑
wt−1:Gt−1

Pt−1
−(2h−1,2h),l∗(wt−1)KL(Bwt−1

,B′wt−1
),

where Bwt−1 and B′wt−1
are two Bernoulli random variables with parameters in {1/2, 1/2 + ε}. Due

to the fact that KL(p, q) ≤ (p−q2)
q(1−q) , we will have

KL(Bwt−1
,B′wt−1

) ≤ c ε2

1− 4ε2
,

where c is a constant. Taking the summation will complete the proof.

36

Wrapping up: Proof of Theorem F.2 on Deterministic Strategies. Observe that we can bound
Np+1∑
m=2

n−h(K − 1 +Np −m)/|Jε| = Ω(1/Np),

which follows the fact that: given a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn, one will have
n
∑
aibi ≥

∑
ai
∑
bi. Plugging back into Eqs. (32) and (31) and substituting ε = Θ(T−1/3) will

get the desired result.

Step 4: Fubini’s theorem for Random Strategies. For a randomized learner, let Erand denote the
expectation with respect to the randomization of the learner. Then

1

|Jε|
∑
l∗∈Jε

E
T∑
t=1

(
l(t)T rt − (l∗)T rt

)
= Erand

1

|Jε|
∑
l∗∈Jε

El∗

T∑
t=1

(
l(t)T rt − (l∗)T rt

)
.

where rt = (r1(l1(t), . . . , rK(lK(t))), and value of the reward for not realized arms are computed
from Eq (5). The interchange of the integration and the expectation is justified by Fubini’s Theorem.
For every realization of learner’s randomization, the results of all earlier steps still follow. This will
give us the same lower bound for Erand

1
|Jε|

∑
l∗∈Jε El∗

∑T
t=1

(
l(t)T rt− (l∗)T rt

)
as we have shown

above.

G Proof of the lower bound in history-dependent bandits

For history-dependent bandits, we show that for a general class of utility function which satisfies the
strictly proper property (we will shortly elaborate this property), solving history-dependent bandits is
as least hard as solving action-dependent bandits. Armed with the above derived lower bound of
action-dependent case, we can then conclude the lower bound of history-dependent case. Strictly
Proper Utility Function is defined as below.
Definition G.1 (Strictly Proper Utility). For any mixed strategy p ∈ P and any q 6= p, the functions
{rk} are strictly proper if following holds,∑

pk∈p
pkrk(pk) >

∑
pk∈p,qk∈q

pkrk(qk). (34)

With above defined strictly proper utility at hand, we now ready to prove the Theorem 6.1 for
history-dependent case.

Proof. Let Ih denote a history-dependent bandits instance whose utility function satisfies above
defined strictly proper property, and Ia denote the associated action-dependent bandit instance whose
utility function is the same as that in Ih. Let f∗(t) = {f∗k}k∈[K] be the discounted frequency at time
t when the learner keeps deploying the best-in-hindsight strategy p∗ and L∗ = maxLk. Then we
can show that

E[Reg(T)|Ih] =

T∑
t=1

Ut(p
∗)−

T∑
t=1

Ut(p(t))

=

T∑
t=1

∑
p∗k∈p∗

p∗k · rk(f∗k (t))−
T∑
t=1

∑
k

pk(t) · rk(fk(t))

>

T∑
t=1

∑
p∗k∈p∗

p∗k · rk(f∗k (t))−
T∑
t=1

∑
k

pk(t) · rk(pk(t))

≥
T∑
t=1

∑
p∗k∈p∗

p∗k · rk(p∗k)− γ2(1− γ2T−2)KL∗

1− γ2
−

T∑
t=1

∑
k

pk(t) · rk(pk(t))

= E[Reg(T)|Ia]− γ2(1− γ2T−2)KL∗

1− γ2
= Ω(KT 2/3),

37

where the first inequality is due to the strict proper property of utility function, and the third inequality
is due to the fact that the history-dependent bandits shares the same best-in-hindsight strategy as that
in the action-dependent bandit and Lemma E.1. By the regret reduction from the history-dependent
bandits to the action-dependent bandit, we can conclude the lower bound of the history-dependent
case.

H Optimal dynamic policy v.s. best policy in hindsight

As we mentioned, for action-dependent bandits, the optimal dynamic policy can be characterized by
a best-in-hindsight (mixed) strategy computing from following constrained optimization problem:
maxp∈P

∑K
k=1 pkrk(pk). While for history-dependent bandits, it is possible that the optimal policy

p∗ may not be well-defined due to the fact of reward dependence on action history. However, we
argue that when competing against with best-in-hindsight policy, notwithstanding in the face of this
kind of reward-history correlation, the value of the optimal strategy is always well-defined in the
limit, and this limit value is also characterized by the best-in-hindsight (mixed) strategy computed
from action-dependent bandits. To gain intuition, note that the time-discounted frequency f(t) will
be exponentially approach to the fixed strategy p the learner deploys. As we explain in Section 5,
after consistently deploying p with s rounds, the frequency f(t+ s) will be converging to p with the
exponential decay error γs. Thus, to achieve highest expected reward, the learner should deploy the
optimal strategy computed as in action-dependent case.

I EVALUATIONS

We conducted a series of simulations to empirically evaluate the performance of our proposed solution
with a set of baselines.

I.1 Evaluations for action-dependent bandits

We first evaluate our proposed algorithm on action-dependent bandits against the following state-of-
the-art bandit algorithms.

• EXP3: One natural baseline is applying EXP3 [4] on the space of base arms. While EXP3 is
designed for adversarial rewards, it is competing with the best fixed arm in hindsight and might
not work well in our setting since the optimal strategy is randomized.

• EXP3-Meta-Arm (mEXP3): To make a potentially more fair comparison, we also implement
EXP3 on the meta-arm space. We denote it as mEXP3 in the following discussion.

• CUCB [13, 65]: This algorithm is designed to solve combinatorial semi-bandit problem, which
chooses m arms out of M arms at each round and receives only the rewards of selected arms.
Mapping to our setting, M = K/ε represents the total number of discretized arms, m = K is the
number of base arms, and the selection of m arms is constrained to satisfy the probability simplex
constraint.

In the simulations, we set K = 2 for simplicity. Moreover, rk(pk) is chosen such that rk(pk) is
maximized when 0 < pk < 1. In particular, we define rk(pk) as a scaled Gaussian function :
rk(pk) = f(pk|τk, 0.5)/Ck, where f(x|τ, σ2) is the pdf of Gaussian distribution with the mean τ
and variance σ2, and Ck = f(τk|τk, σ2) is a constant ensuring rk(pk) ∈ [0, 1],∀pk ∈ [0, 1]. For
each arm k, τk is uniformly draw from 0.45 to 0.55 and the instantaneous reward is drawn from a
Bernoulli distribution with the mean of rk(pk(t)), i.e., r̃t(pk(t)) ∼ Bernoulli(rk(pk(t))). And the
ratio ρ is set to 0.2. For each algorithm we perform 40 runs for each of independent 40 values of the
corresponding parameter, and we report the averaged results of these independent runs, where the
error bars correspond to ±2 standard deviations.

The results, shown in Figure 2(a), demonstrate that our algorithm significantly outperforms the
baselines. As expected, mEXP3 works better than EXP3 algorithm when T is large, since the former
searches the optimal strategies in the meta arm space. Our algorithm outperforms mEXP3 and CUCB
since we utilize the problem structure, which reduces the amount of explorations.

38

I.2 Evaluations for history-dependent bandits

We now evaluate our proposed algorithm for history-dependent bandits via comparing against the
following baselines from non-stationary bandits. Note that, while CUCB performs reasonably well
in action-dependent case, it does not apply in history-dependent case, since we cannot select the
time-discounted frequency (which maps to the arm in CUCB) as required in CUCB.

• Discounted UCB [25, 40]: Discounted UCB (DUCB) is an adaptation of the standard UCB poli-
cies that relies on a discount factor γDUCB ∈ (0, 1). This method constructs an UCB : r̄t(k, γDUCB) +
ct(k, γDUCB) for the instantaneous expected reward, where the confidence is defined as ct(k, γDUCB) =

2
√

ξ ln(nt)
Nt(k,γDUCB) , for an appropriate parameter ξ, Nt(k, γDUCB) =

∑t
s=1 γ

t−s
DUCB1(as=k), and the dis-

counted empirical average is given by r̄t(k, γDUCB) = 1
Nt(k,γDUCB) ·

∑t
s=1 γ

t−s
DUCBr̃s(k)1(as=k).

• Sliding-Window UCB [25]: Sliding-Window UCB (SWUCB) is a modification of DUCB, instead
of averaging the rewards over all past with a discount factor, SWUCB relies on a local empirical
average of the observed rewards, for example, using only the τ last plays. Specifically, this
method also constructs an UCB : rt(k, τ) + ct(k, τ) for the instantaneous expected reward. The
local empirical average is given by rt(k, τ) = 1

Nt(k,τ)

∑t
s=t−τ+1 r̃s(k)1(as=k), Nt(k, τ) =∑t

s=t−τ+1 γ
t−s
DUCB1(as=k) and the confidence interval is defined as ct(k, γDUCB) = 2

√
ξ ln(min(t,τ))
Nt(k,τ) .

We use grid searches to determine the algorithms’ parameters. For example, in DUCB, the discount
factor was chosen from γDUCB ∈ {0.5, 0.6, . . . 0.9}, while the window size of SWUCB was chosen
from τ ∈ {102, . . . , 5 × 102}. Besides above algorithms, we also implement the celebrated non-
stationary bandit algorithm EXP3.

We chose K and rk(pk) to be the same as the experiments in action-dependent case. And the discount
factor is chosen as γDUCB = 0.8 and the window size for SWUCB is chosen as 200 via the grid
search, and ξ is set to 1. We examine the algorithm performances under different γ (the parameter
in time-discounted frequency), with smaller γ indicating that arm rewards are more influenced by
recent actions. As seen in Figures 2(b)-2(d), our algorithm outperforms all baselines in all γ but
the improvement is more significant with small γ. This is possibly due to that most non-stationary
bandit algorithms have been focusing on settings in which the change of arm rewards over time is not
dramatic.

We also examine our algorithm with larger number of base arms K with comparing to above baseline
algorithms and the performance of our algorithm on different ratios ρ. The results are presented in
Figure 3 and show that our algorithm consistently performs better than other baselines when K goes
large. The results also suggest that our algorithm is not sensitive to different ρ, though one could see
the regret is slightly lower when ρ is increasing, which is expected from our regret bound.

39

	1 Introduction
	2 Problem Setting
	2.1 Exemplary Application of Our Setup

	3 Overview of Main Results
	4 Action-Dependent Bandits
	5 History-Dependent Bandits
	5.1 History-Dependent UCB
	5.2 Extension to General Impact Functions

	6 Matching Lower Bounds
	7 Numeric Experiments
	8 Conclusion and Future Work
	A Related Work
	B Lagrangian Formulation
	C Negative Results
	D Missing Proofs for Action-Dependent Bandits
	D.1 The naive method that directly utilize techniques from Lipschitz bandits
	D.2 Missing Discussions and Proofs of Theorem 4.2
	D.2.1 Regret Bound Comparison with chen2016combinatorial

	E Proof of Theorem 5.1 for History-dependent Bandits
	F Lower Bound of Action-Dependent Bandits
	F.1 Randomized problem instances and definitions
	F.2 Lower bound the Lg

	G Proof of the lower bound in history-dependent bandits
	H Optimal dynamic policy v.s. best policy in hindsight
	I EVALUATIONS
	I.1 Evaluations for action-dependent bandits
	I.2 Evaluations for history-dependent bandits

