
Deliberation for Social Choice

Brandon Fain∗ Ashish Goel† Kamesh Munagala‡

Abstract

In large scale collective decision making, social choice is a normative study of how one ought
to design a protocol for reaching consensus. However, in instances where the underlying decision
space is too large or complex for ordinal voting, standard voting methods of social choice may be
impractical. In such circumstances, one would like to have a general way of discovering socially
preferable outcomes without relying on an understanding of the fundamental structure of the
space. We propose deliberation, modeled by many bargaining scenarios among small sets of
agents, as a natural solution to this problem. We describe the general method and analyze its
outcomes in canonical spaces; our main result is that deliberation finds a 1.207-approximation
to the social welfare optimum in median graphs.

Introduction. Suppose you are a city council member in Urbanopolis, a large city offering a
complex variety of public services. You are in charge of transportation services and have been
tasked to (i) choose a set of 5 new projects out of 10 proposed for the city to initiate before the
next fiscal year and (ii) determine the allocation of existing transportation funds to 20 ongoing
transportation initiatives and services. Mindful of the public interest, you decide to elicit the best
way forward based on the consensus of the citizens of Urbanopolis. This example highlights two
problems in social choice theory. In (i), the decision space is combinatorial; there are 252 possible
sets of projects, far too many to put to any ordinal vote. Furthermore, projects likely exhibit
substitutions or complements, so any assumption of additive utility for cardinal utility elicitation
and subsequent welfare optimization seems ill founded. In (ii), the decision space is continuous, at
least within some range, and multidimensional. Assuming that utility is some metric over the space
seems reasonable enough, but the imposition of any particular model of utility seems arbitrary.

Intuitively, neither of these problems are hard for humans. That is to say, if any small set of
interested agents look at the proposals, think for a bit, and discuss with one another, we suspect
that agents can determine reasonable socially preferable outcomes. We seek to develop practical
mechanisms based on this insight. We propose a mechanism that we term sequential deliberation.

Sequential Deliberation. There is a decision space S of feasible outcomes (these may be
projects, sets of projects, or continuous allocations) called decision points or alternatives and a
set N of agents. We assume each agent has a hidden cardinal utility for each outcome. Sequential
deliberation proceeds for T rounds and each round can be viewed as bargaining between the agents
with a disagreement outcome.
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1. In each round t = 1, 2, . . . , T :

(a) A pair (or more generally, a subset) of agents ut and vt are chosen at random.

(b) These agents are presented with a disagreement alternative ot.

(c) They are asked to output a consensus alternative, and they are told that if they
fail to reach a consensus, the alternative output will be ot.

(d) Let at denote the alternative that is output in round t. We set ot+1 = at, where
we assume o1 is the bliss point of a random agent.

2. The final social choice is aT .

Figure 1: A framework for sequential deliberation.

Sequential deliberation as outlined in Figure 1 is easily implementable. Clearly, this framework
is an instantiation of a more general framework that leads to alternative design choices. For example,
the size of the subset that is chosen at each round can vary. Further, the disagreement outcome ot

can be an arbitrary function of the history up to that point, including simply choosing a random
alternative. Finally, the ultimate social choice could be some other function of {a1, a2, . . . , aT }, for
instance, putting them to vote.

Analytic Model. In order to analyze sequential deliberation, we need a model for preferences as
well as a model for bargaining. We assume that the set S of alternatives are vertices of a median
graph. A median graph has the following property: For each triplet of vertices u, v, w, there is a
unique point that is common to the three shortest paths, those between u, v, between v, w, and
between u,w. This point is the median of u, v, w. Several natural graphs are median graphs,
including grid graphs in arbitrary dimensions, trees, and hypercubes [5].

Each agent u has a bliss point pu ∈ S, and his disutility for an alternative a ∈ S is simply
d(pu, a), where d(·) is the distance function on the median graph. (Note that this disutility can
have an agent-dependent scale factor.) The model for bargaining is simply Nash bargaining. Given
a disagreement alternative o, agents u and v will choose that alternative a that maximizes:

Nash product = (d(pu, o)− d(pu, a))× (d(pv, o)− d(pv, a))

The Nash product maximizer need not be unique; in the case of ties we postulate that agents select
the outcome that is closest to the disagreement outcome. Note that our model is fairly general.
First, the bliss points of the agents in N form an arbitrary subset of S. Further, the alternative
chosen by bargaining need not correspond to any bliss point, so that agents are exploring the
space of alternatives when they deliberate. The social cost of an alternative a ∈ S is given by
SC(a) =

∑
u∈N d(pu, a). Let a∗ ∈ S be the minimizer of social cost, that is, the social optimum.

We measure the quality of outcome a as

Quality(a) =
SC(a)

SC(a∗)

where we use the expected social cost if a is the outcome of a randomized algorithm.

Our Results. In our analytic model (Nash bargaining on a median graph), sequential deliberation
(see Figure 1) is superior to one-shot deliberation (a1 where o1 is the bliss point of a random agent),
which in turn is superior to any mechanism restricted to choosing the bliss point of some agent.
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Nash Bargaining. On a median graph, Nash bargaining between agents u and v using disagree-
ment outcome o finds the median of pu, pv, o.

Baseline. A baseline algorithm is to choose a bliss point pu of a random agent u ∈ N . There exist
median graphs on which this has quality at least 2. It is easy to check that the quality is
always at most 2, so the bound of 2 is tight. A stronger statement holds: Any mechanism
restricted to choosing the bliss point of some agent cannot have quality better than 2.

Sequential Deliberation. For sequential Nash bargaining on a median graph, the expected qual-
ity of outcome aT has an upper bound approaching 1.207 as T →∞.

One-shot Deliberation. If T = 1, the expected quality of bargaining on a median graph is upper
bounded by 1.316 and this bound is tight.

It is important to note that while we present analytic results for deliberation in specific decision
spaces, the process of deliberation is well defined regardless of the underlying decision space and
the mediator’s understanding of the space. At a high level, this flexibility and generality in practice
are key advantages of sequential deliberation.

Related Work. While the real world complexities of the model are beyond the analytic confines
of this work, deliberation as an important component of collective decision making and democracy
is studied in political science. For examples (by no means exhaustive), see [3, 9]. The combinatorial
version of the problem is intimately related to the combinatorial public projects problem on which
there is a long line of work [8, 7, 1, 2]. However, these results focus on truthful mechanism design and
the winner determination problem, whereas we emphasize preference elicitation and the discovery
of preferable outcomes for social choice in a broader setting.

Two-person bargaining has been a classical game theoretic problem since its framing by Nash
in 1950 [6] as a two-person game wherein there is a disagreement outcome and two agents must
cooperate to reach a decision; failure to cooperate results in the adoption of the disagreement out-
come. Nash postulates four axioms that a bargaining solution ought to satisfy: Pareto optimality,
symmetry (between the agents), invariance with respect to affine transformations of utility (that is,
the outcome should not depend on the scale an agent uses to report his utility), and independence
of irrelevant alternatives (informally that the presence of a feasible outcome that agents do not se-
lect does not influence their decision). Nash proved that the solution maximizing the Nash product
(essentially maximizing the geometric mean of utility, normalized by the disagreement outcome) is
the unique solution to the bargaining problem satisfying these axioms. We use this classical result
to characterize our deliberation process.

Our paper is inspired by the triadic consensus results of Goel and Lee [4]. In that work, the
authors focus on small group interactions with the goal of reaching consensus. In their model, three
people deliberate at the same time, and they choose a fourth individual to whom they grant their
votes. This individual takes these votes and participates in future rounds, until all votes accumulate
with one individual, who is the consensus outcome. The analysis proceeds through a median graph,
on which the authors show that the quality of the consensus approaches 1. However, the protocol
crucially assumes individuals know the positions of other individuals, and requires the space of
alternatives to coincide with the space of individuals. We make neither of these assumptions – this
makes our protocol more practical, but at the same time, restricts our quality to be bounded away
from 1.
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