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Abstract

We consider a binary classification problem where the labels of training data are elicited from crowd
workers who are strategic at exerting costly effort for coming up with a label or at reporting the resultant
label. The goal of the learner is to learn an un-biased classifier that minimizes 0-1 loss. For a non-strategic
setting, when the error rates of the two classes in the training data are known, Natarajan et al. [2013] have
developed techniques to learn an un-biased classifier from the noisy training data. Moreover, they have
shown that the smaller the error rates are, the better the performance of the classifier. When data sources
are strategic, the error rates of the two classes are a result of their strategic behavior. We hence need to
overcome several interwinding challenges: How to incentivize effort exertion so that workers produce labels
with low errors? How to incentivize workers to truthfully report the labels that they have obtained? Even
when workers follow a known strategy of effort exertion and label reporting, the error rates of the two
classes are unknown to the learner. How to estimate the error rates so that the method of Natarajan et al.
[2013] can be adapted to train an unbiased classifier?

We solve this problem by proposing a peer-prediction-style mechanism, where a worker’s reported label
of a data point is scored against the label given by a reference classifier that is constructed using techniques
similar to those of Natarajan et al. [2013]. The mechanism has several desirable properties: (1) Every worker
exerting effort and truthfully reporting is a Bayesian Nash equilibrium (BNE). (2) Colluding on reporting
the same label disregard of their obtained labels is not an equilibrium strategy. (3) The obtained classifier’s
0-1 loss converges to the optimal unbiased one. (4) We do not need completely redundant assignment of
tasks; we assign a relatively much smaller number of tasks to more than one worker in our mechanism, in
contrast to reassigning all tasks for many peer-prediction mechanisms. (5) Our mechanism is also robust
to permutation strategies. In addition to the above technical merits, we view our work as an initial move
towards using machine learning techniques for designing peer prediction mechanisms.

1 Introduction and formulation

Suppose the learner is targeting a decision function f : X → { − 1,+1} for a binary classification task, that
takes a feature vector x ∈ X as input and outputs a prediction on label y. (x, y) has an unknown joint
distribution D. Denote the 0-1 loss of f as RD(f) = E(x,y)∼D[1(sgn(f(x)) 6= y)], and the minimum risk over
concept class F as R∗ := minf∈F RD(f). We define f∗ := argminf∈FRD(f). The learner would like to obtain
a f such that RD(f) approaches R∗ as the size of the training data grows. Before running an algorithm, the
learner needs to collect a set of training data. Suppose a total of N data points are independently drawn
according to D. The learner however only knows their feature vectors {xi}Ni=1 but not the corresponding
labels {yi}Ni=1 ∈ {−1,+1}N . The learner resorts to a crowd of workers for labeling these data.

We have all-together T homogeneous crowd workers {1, 2, ..., T}. We assign one data point xi to each worker
i and ask for a label ŷi. A data point may be assigned to more than one worker (but at most two). Once
assigned a task, worker i observes a signal ỹi. Such observations come from a flipping error model. Workers
are effort sensitive: they can choose to exert effort ei = 1 to improve the quality of their outputs, or they
can shirk from doing so (ei = 0). Exerting effort incurs cost c > 0, and this is a common knowledge
to all workers and the learner. Different effort levels lead to different label flipping error rates: Pr(ỹi =
−1|yi = +1, ei) = p+(ei), Pr(ỹi = +1|yi = −1, ei) = p−(ei), and exerting effort leads to better error rate:
p+(1) < p+(0), p−(1) < p−(0). Assuming p+(1) + p−(1) < 1. This condition is equivalent with Bayesian
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informativeness in that p+(1) + p−(1) < 1 ⇔ Pr(yi = s|ỹi = s) > Prior(s), s ∈ {+,−}, when worker i
exerts effort.1 That is it requires that a worker’s observation is informative with respect to the true label.
Interestingly we find this condition is also needed for the de-bias technique for classification. The error rates
p+(ei) and p−(ei) are common knowledge to all workers, but are unknown to the learner. After observing
the signals , each worker i decides on which signal to report. The reporting could depend on its observations,
such as truthfully reporting his observation, or reverting it, or randomizing over two options. A particularly
undesirable reporting strategy is an uninformative strategy, which has the same report distribution for all
observed signals. Denote worker i’s report as ŷi. Workers can be incentivized via payment, and they would
like to maximize their expected payment minus cost.

When the workers are non-strategic (ŷi = ỹi), and their label flipping errors p+, p− are known to the learner,
the problem of learning a good un-biased classifier from data with flipping errors has been resolved in Natarajan
et al. [2013]. The naive approach of directly minimizing empirical 0-1 loss over reported data not only is
technically difficult but also would give a biased classifier. Natarajan et al. [2013] tackle the problem by first
finding a convex and classification-calibrated2 loss function l(t, y) (with prediction t and label y as the inputs),
then defining the following surrogate loss function l̃: 3

l̃(t, y) :=
(1− p−y)l(t, y)− pyl(t,−y)

1− p+ − p−
,

and finally finding a classifier f̃∗
l̃

via minimizing the empirical risk with respect to the surrogate loss:

f̃∗
l̃

= argminf

1

N

N∑
j=1

l̃(f(xj), ỹj).

They show that the 0-1 risk of f̃∗
l̃

converges to R∗ with guarantee; further the smaller the flipping errors
are, the faster the convergence of the classifier. The introduce of a convex loss function l helps to remove
computational difficulties, and the surrogate loss function counters the bias. More specifically, by showing
Eỹ[l̃(t, ỹ)] = l(t, y), where ỹ is the contribution from non-strategic workers with known flipping erros, and y
is the ground-truth label, they establish that f̃∗

l̃
converges to the unbiased minimizer f∗l := argminfRl,D(f).

Since l is classification calibrated, this gives the convergence of the 0-1 loss for f∗l , and thus for f̃∗
l̃
. Note f∗l

cannot be obtained directly, due to the errors in the training data.

For our setting with strategic workers, we need to overcome several interwinding challenges for our problem:
How to incentivize effort exertion so that workers produce labels with low errors? How to incentivize workers
to truthfully report the labels that they have obtained? Even when workers follow a known strategy of effort
exertion and label reporting, the error rates of the two classes are unknown to the learner. How to estimate the
error rates so that the method of Natarajan et al. [2013] can be adapted to train an unbiased classifier? This
set of questions can potentially be answered by separating the effort elicitation (and possibly the estimation
of flipping error) problem from the classification task, and apply several recent peer prediction mechanisms
(Dasgupta and Ghosh [2013]; Kong and Schoenebeck [2016]; Shnayder et al. [2016]) to elicit labels. In these
mechanisms, exerting effort and truthful reporting form an equilibrium (and in many cases a highest-payoff
equilibrium for the workers). We depart from above line of works and propose a solution to resolve the learning
and information elicitation problems jointly. Further we demonstrate the benefits of leveraging the learning-
specific structure and properties for designing information elicitation mechanisms. Specifically we show that
by scoring workers via comparing their answers to a reference prediction given by a reference classifier (instead
of a peer worker), we are able to (1) provide better incentives (collusion is not an equilibria, in contrast to
it being a bad equilibria4), and (2) make the elicitation step more efficient (less redundant assignments). (3)
Under certain cases, our mechanism is shown to be robust to permutation strategies, which remained as a
concern for adversarial classification (e.g., spam classification).

1We will use +1/− 1 and +/− interchangeably for the signals.
2l is classification-calibrated if there exists a convex, invertible, nondecreasing transformation φl with φl(0) = 0 s.t. φl(RD(f)−

R∗) ≤ Rl,D(f) − minf Rl,D(f), where Rl,D(f) = E(x,y)∼D[l(f(x), y)].
3It is required that p+ + p− < 1.
4Dominant strategy incentive compatibility for effort exertion can also be established.
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2 Mechanism and results

Mechanism 1 (ML Peer)

For each worker i:
1. Estimate flipping errors p̃i,+, p̃i,− based on reported data from workers j 6= i (will be detailed later).
2. Define the following surrogate loss function l̃(·, ·) based on above estimations:

l̃(t, y) :=
(1− p̃i,−y)l(t, y)− p̃i,yl(t,−y)

1− p̃i,+ − p̃i,−
.

3. Train a classifier f̃∗
l̃,−i using {xj , ŷj}j∈U\{i} via empirical risk minimization:5

f̃∗
l̃,−i = argminf

1
N−1

∑
j∈U\{i} l̃(f(xj), ŷj), where U is the set that contains unique samples.

4. Score worker i: Cp · 1(f̃∗
l̃,−i(xi) = ŷi), where Cp > 0 is a configurable constant.

Assume RD|y(f∗|y) < 1/2, ∀y ∈ {−1,+1}, i.e., f∗ achieves a 0-1 loss that is less than 1/2 for each of the label
class; and l is class-dependent classification calibrated fro each y ∈ {−1,+1}. Assume workers have perfect
knowledge of the mechanism. Denote by ∆ := miny{1/2−RD|y(f∗|y)} > 0, ∆p := min{p+(0)−p+(1), p−(0)−
p−(1)} > 0, and (ML Peer) achieves the following results (where we use Const(·) to denote a constant that
depends only on its inputs):
Theorem 2.1. (1)When K ≥ Const1(P+,P−, δp,∆p,∆, N), N ≥ Const2(P+,P−, δp,∆p,∆),
Cp ≥ Const3(K,N, δp,∆p,∆, c), , every worker exerting effort and truthfully reporting is a BNE. (2) Reporting
symmetric uninformative pure signal is not an equilibrium. (3) Reporting symmetric uninformative mixed
signal with randomization probability p 6= 1/2 is also not an equilibrium. (4) Under certain conditions,
permutation strategy is also not an equilibrium.

Intuitive reasoning: when workers j 6= i are exerting effort and truthfully reporting, and when the estimations
on p+, p− are accurate enough, we can show the trained classifier f̃∗

l̃,−i’s 0-1 loss converges to R∗, so f̃∗
l̃,−i labels

data correctly with probability being strictly more than 1/2. As ỹi is compared to an answer that is more
likely to be correct, when the payment constant Cp is large enough, worker i is better off exerting effort.

Now we briefly explain the steps on estimating p̃i,+, p̃i,−. Our estimation is based on the following two
quantities that can be computed from the contributed data directly:

• Matching probability : this is the probability when a task is assigned to two different workers, the chance
of the outputs match each other. Denote this quantity as q. In order to evaluate the matching on the
same task, we need to re-assign the tasks. First we separate the tasks into two sets: we will randomly
select K (e.g., K = O

(
logN

)
to ensure enough samples for an accurate estimation) tasks to re-assign.

Denote the set of re-assignment as S, and denote the uniquely assigned set as U (i.e., U contains each
task exactly once, |U| = N). We assume T = |U|+ |S| for simplicity, so each worker is assigned exactly
one task. Estimate for worker i: q̃i :=

∑
t∈S\{i} 1(there is a match on task t)/|S\{i}|.

• Fraction of +1/-1 labels that we observe, denoting as P+, P−; denote P̃ i
+, P̃

i
− as the corresponding

estimations for worker i: P̃ i
− :=

∑
t∈U\{i} 1(t has label 0)/|U\{i}|.

Denote the prior distribution of labels as P+,P− (known by learner), we have the following sets of equations:

(1): P+(p2i,+ + (1− pi,+)2] + P−(p2i,− + (1− pi,−)2] = q̃i, (2): P+pi,+ + P−1(1− pi,−) = P̃ i
−.

When workers are arbitrarily reporting, the solution for above system of equations leads to meaningless
numbers, or simply there does not exist a solution. However when workers are reporting accordingly to
certain symmetric strategies, the first equation characterizes the probability of observing a matching signal,
while the second one characterizes the fraction of observed negative samples. Note that the second equation
is also equivalent with P+(1 − pi,−) + P−1pi,− = P̃ i

+. Particularly we can characterize its solution for the
following three cases, which correspond to our three sets of results, namely BNE, uninformative strategy proof
and permutation proof. For details please refer an extended version of this work Liu and Chen [2016].
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