Efficiency of active learning for the allocation of workers on crowdsourcing classification tasks

Edoardo Manino† Long Tran-Thanh† Nicholas R. Jennings‡

Abstract

Crowdsourcing has been successfully employed in the past as an effective and cheap way to execute classification tasks and has therefore attracted the attention of the research community. However, we still lack a theoretical understanding of how to collect the labels from the crowd in an optimal way. In this paper we focus on the problem of worker allocation and analyse two active learning policies proposed in the empirical literature. In the end we are able to show their equivalence and prove their superiority over an existing theoretical result by Karger et al. [2011].

Introduction and background

Crowdsourcing has emerged as an effective way of completing a large number of simple and repetitive tasks by hiring workers from an online community in exchange for a small payment. Despite the unreliability of the single members, as a whole these crowds have been proved capable of producing valuable solutions at a fraction of the cost of traditional methods. A common way of interacting with the workers is to present them with a series of classification tasks and use their answers to infer the correct labels. This model has been successfully employed for various purposes including image labeling [Sorokin and Forsyth, 2008], ballot voting in complex workflows [Dai et al., 2011] and filtering [Parameswaran et al., 2012]. Even so, we still lack a principled approach towards the management of the crowd during the label collection process, and how to efficiently allocate the workers on the available tasks.

One of the main obstacles to the realisation of such a goal is the heterogeneity in the quality of the answers collected from the crowd [Ipeirotis et al., 2010]. As a large number of them may be incorrect, the employer is forced to require multiple labels for each task in order to come up with a reliable conclusion. Over the past decades several statistical methods have been proposed to efficiently aggregate those labels and reduce the number of misclassified items [Dawid and Skene, 1979, Liu et al., 2012]. However, these methods are designed to be used after the labels have been collected from the crowd, and give no indication on how to optimise the collection process itself.

This second question has recently received more attention in the literature [Slivkins and Vaughan, 2013]. On the theoretical side, Karger et al. [2011] analyse a scenario with homogeneous tasks and propose to assign the same number of workers on each task, showing that this approach is order-optimal to the best allocation knowing the quality of the workers in advance. Conversely, when the tasks are heterogeneous, Ho et al. [2013] advocate the use of online primal-dual techniques to improve the efficiency of the allocation. However, the authors of these two papers fail to use the labels provided by the crowd as a potential source of information to improve the allocation process.

In contrast, such piece of information has been extensively used in more empirical-oriented works on crowdsourcing [Kamar et al., 2012, Chen et al., 2013]. In particular Welinder and Perona [2010] propose an algorithm that computes the confidence in the classifications after every new label, and allocates more workers on the most uncertain tasks. Simpson and Roberts [2014] address the same problem from a different perspective and introduce a greedy algorithm to maximise the amount of information
collected from the crowd. Notably these two approaches belong to the family of active learning policies [Settles, 2010], but the authors provide no theoretical guarantee on their performances.

In this paper we fill this gap by analysing these two empirical approaches from the theoretical perspective. Specifically we show that for binary classification tasks the two active learning policies are equivalent, and we prove that, in an ideal scenario, they achieve a greater efficiency than the uniform allocation proposed by Karger et al. [2011].

An active learning policy for worker allocation

We analyse here a setup where we have to discover the true binary label \(\ell_1^* \in \{+1, -1\} \) of a whole set of independent, homogeneous tasks \(i \in [1, M] \) given a total budget \(B \). The interaction with the crowd proceeds in a series of rounds, where a new worker \(j \) becomes available, is allocated to a task \(i \) under a fixed payment \(c = 1 \), and produces a label \(\ell_{ij} \) which is correct with probability \(p_{ij} \). Additionally, we assume the presence of an oracle that reveals the value of \(p_{ij} \) as soon as the round begins. We predict the label of each task as \(\hat{\ell}_{i} = \text{sign} \Phi_i \) where \(\Phi_i = \sum_j \ell_{ij} w_j \) is the weighted sum of the labels collected for \(i \) so far, and \(w_j = \log(p_{ij}/(1-p_{ij})) \) are the optimal weights [Nitzan and Paroush, 1982].

We can now adapt the worker allocation policy of Simpson and Roberts [2014] to our setup by choosing the task \(i \) that maximises the amount of information collected at each round. To do so we interpret the effect of the next incoming label as a random variable \(x_j = \pm w_j \) which will modify the current posterior probability \(\mathbb{P}(\ell_i^* = +1) = \exp(\Phi_i)/(\exp(\Phi_i) + 1) \), and measure its information gain as the Kullback-Leibler divergence between the two distributions:

\[
\mathcal{I}(i, x_j) = \frac{x_j \exp(\Phi_i + x_j)}{\exp(\Phi_i + x_j) + 1} + \log\left(\frac{\exp(\Phi_i) + 1}{\exp(\Phi_i + x_j) + 1}\right) \tag{1}
\]

As the sign of \(x_j \) is unknown a priori, we need to choose the task \(i \) that maximises Equation 1 in expectation, i.e. \(i^* = \text{argmax}_i(\mathbb{E}_{x_j}(\mathcal{I}(i, x_j))) \). Fortunately it is possible to perform such computation explicitly by taking into account the current posterior on \(i \) and the probability \(p_{ij} \) of observing the correct label. Moreover it can be shown that the expected information gain is a symmetric function around its maximum in \(\Phi_i = 0 \) for any \(w_j \neq 0 \) (we omit the derivation here for lack of space). As a consequence we can make the optimal greedy decision using the alternative formula \(i^* = \text{argmin}_i(|\Phi_i|) \) which corresponds to selecting the task with the most uncertain classification, a popular active learning policy [Lewis and Gale, 1994, Welinder and Perona, 2010].

Comparison with Karger’s uniform allocation

In order to better understand the properties of the policy introduced above, let us restrict our attention to the case where all the workers have the same probability \(p_{ij} = p \) and define \(q = 1 - p \). Furthermore let us denote \(\Phi_B = \min_i(|\Phi_i|) = |k\log(p/q)| \) as the minimum confidence threshold at the end of the crowdsourcing process, for some \(k \in \mathbb{N} \).

From the point of view of a single task \(i \), the active learning policy keeps allocating new workers on \(i \) in short bursts of activity, until \(|\Phi_i| \) reaches at least \(\Phi_B \). We can interpret this behaviour as a bounded random walk in a Markov domain with states in the ordered set \(S = \{-k, \ldots, 0, \ldots, +k\} \), where the first and last state have the special property of terminating the random walk. As far as the transition probabilities are concerned, we can move only between neighbouring states with probability \(p \) of going towards the correct label (which we conventionally set to \(\ell_i^* = +1 \)) and \(q \) of going in the opposite direction. We can summarise them in a sparse tridiagonal matrix \(T_k \) which has the first and last row empty, as in the example that follows:

\[
T_2 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
q & 0 & p & 0 & 0 \\
0 & q & 0 & p & 0 \\
0 & 0 & q & 0 & p \\
0 & 0 & 0 & 0 & 0
\end{pmatrix} \tag{2}
\]
With a number of tasks $M \to \infty$, the average number of labels R_{act} consumed by the random walk to reach confidence Φ_B converges to its expected value:

$$\mathbb{E}(R_{\text{act}}) = \sum_{r=1}^{\infty} r \left(e_s^T (T_k)^r (e_{-k} + e_{+k}) \right) = \frac{(2P_{\text{act}} - 1)\Phi_B}{(2p - 1) \log(p/q)}$$

(3)

where e_s is an indicator vector for the state $s \in S$ and $P_{\text{act}} = \exp(\Phi_B)/(\exp(\Phi_B) + 1)$ is the probability of making a correct prediction.

Finally, we can compare the efficiency of this active learning policy with Karger’s uniform allocation. Let us assume that our budget B is such that we can uniformly allocate an odd number of workers $R_{\text{uni}} \geq 3$ on each task: the probability of having a majority on the correct class is thus $P_{\text{uni}} = \sum_{r=\lceil R_{\text{uni}}/2 \rceil}^{R_{\text{uni}}} p^r q^{R_{\text{uni}}-r}$. Under the same budget constraints we can use Equation 3 to compute the probability P_{act} of predicting the correct class for the active learning policy. The results in Figure 1 show that the value of P_{act} is consistently above P_{uni} for any $p \in (0.5, 1)$, hence proving that this policy is more efficient than the uniform one in allocating a given budget B.

Conclusions

In this paper we analysed an active learning policy for the allocation of workers on binary classification tasks, and proved its equivalence to two approaches from the empirical literature on crowdsourcing. Furthermore we showed that, when the quality of the crowd is homogeneous, this policy outperforms Karger’s uniform allocation in terms of prediction accuracy. Future works include extending the proof to crowds with heterogeneous workers, and addressing a more realistic scenario where we can only access noisy estimates of their quality.

References

