
Crowdsourced Security Vulnerability Discovery:
Modeling and Organizing Bug-Bounty Programs

Mingyi Zhao1, Aron Laszka2, Thomas Maillart2, Jens Grossklags1

1Pennsylvania State University, 2University of California, Berkeley

1 Introduction

Despite significant progress in software-engineering practices, software utilized for desktop and mobile
computing remains insecure. At the same time, the consumer and business information handled by these
programs is growing in its richness and monetization potential, which triggers significant privacy and
security concerns. In response to these challenges, companies are increasingly harvesting the potential
of external (ethical) security researchers through bug bounty programs to crowdsource efforts to find
and ameliorate security vulnerabilities [5,10]. These so-called white hat hackers are often rewarded with
monetary bounties and public recognition.

Broadening the appeal of crowdsourced security, several commercial bug bounty platforms have
emerged (e.g., HackerOne, BugCrowd, Cobalt) and successfully facilitate the process of building and
maintaining bug bounty programs for organizations. For example, on HackerOne, more than 20,000
security vulnerabilities have been reported and fixed for hundreds of organizations. Contributions came
from over 2500 different white hat hackers who received bounties of over $7.3M as of May 2016.

Over the last two years, we have begun to systematically study these platforms from an empirical
perspective to evidence their growing popularity and practical contributions to the security of deployed
code [10,9]. While empirical results imply that bug bounty programs make a significant contribution to
security, there also exists several obstacles for running and scaling bug bounty programs. One challenge
is to reduce the number of invalid (or low quality) submissions from the crowd. To address this chal-
lenge, we have built an economic model for bug bounties and analyzed multiple existing “crowd quality
control” policies [8]. We also proposed a new policy and showed the advantages of this new policy over
existing ones.

Another challenge of running bug bounty programs is to efficiently allocate valuable but scarce
hacker effort over time, and across organizations with different crowdsourcing requirements. In addition,
in contrast to many crowdsourcing scenarios, bug discovery requires sophisticated participants, who are
partially competing with each other. The competition often leads to multiple hackers discovering the
same bug. One bug bounty platform, BugCrowd, has reported that 30% to 40% of the submissions
are duplicates [2]. However, of all duplicates only the first report is rewarded. Therefore, an efficient
allocation shall decrease the amount of duplicated effort, while expanding and also diversifying the
manpower. We think that addressing this challenge, like other human computation problems [3], requires
rigorous mathematical modeling, in order to quantify the strength and limitations of bug bounty and to
design more efficient mechanisms. In this paper, we present our ongoing research on modeling and
optimizing bug bounty programs.

2 The Bug Bounty Model

Bug bounty utilities. We assume that there are unknown bugs1 waiting to be discovered in a software
product (e.g., a website). The organization responsible for this product creates a bug bounty program.

1 Usually, bug bounty programs only focus on security bugs, or vulnerabilities. For brevity, we will use the more general
word “bug.” In addition, we will assume that all bugs have equal impact. This assumption will be relaxed in future work.

It then invites participants from a pool of hackers H at the start of each time step t (t = 1, 2, . . .). We
define an allocation plan as a vector A = {H1, H2, . . .}, where Ht ⊆ H is the set of hackers invited for
time step t. At the end of t, invited hackers submit rt bug reports in total to the program. Among these
reports, some are duplicates because multiple hackers could find the same issue. On the other hand, the
organization is only interested in unique discoveries, whose number is denoted by ut, and ut ≤ rt. rt
and ut are calculated by the bug discovery model to be discussed shortly. The organization rewards each
unique bug discovery with bounty b (e.g., average around $424 in 2015 [10]), and fixes all discovered
bugs at the end of each time step. The organization also incurs cost co for processing a submitted report.
We also assume that the organization gains V value by fixing a bug. However, the value decreases over
time since it is more likely that malicious parties will find and exploit the bug. We use δ ∈ (0, 1) to
model this time discount. We can write the utility function of an organization from bug bounty as

Uo =
∞∑
t=1

((δt−1V − b)ut − cort). (1)

Similarly, we assume that it costs ch for a hacker to find and submit a bug. So the utility function of
all invited hackers is

Uh =
∞∑
t=1

(but − chrt). (2)

Bug discovery model. To calculate the expected utilities, we first need to establish a bug discovery
model. A bug can be represented as a single or a group of inputs that triggers a specific error in the
software or hardware system. Since the input space of any non-trivial system is prohibitively large, a
hacker usually discovers bugs based on tools with randomization (e.g., fuzzing), heuristics, experiences,
and luck. We propose a bug discovery model. We assume that, for bug i, each invited hacker discov-
ers it with probability pi independently in one time step, as long as bug i has not been discovered in
previous time steps. Probability pi not only models the randomness in bug discovery, but also captures
the difficulty of discovering a bug. Previous research has shown that bugs have different discovery diffi-
culty [1,11]. Particularly, we inferred that in practice pi follows a discrete power law distribution [11]:

pi =
i−α

ζ(α)
, (3)

where α is the scaling factor and ζ is the Riemann Zeta function. α reflects the size of the system’s attack
surface and the system’s security quality, and can potentially be estimated from factors like codebase
size, maturity of the security development life cycle, etc. Also, we implicitly sort all bugs in descending
order of their discovery probability, so bug 1 is the easiest to be found. In addition, a bug belongs to one
type from a set of vulnerability types denoted by S [10]. We assume that the probability of a bug being
of type s is qs, where qs is exogenous and known, and obviously

∑
s∈S qs = 1. qs can be estimated from

earlier bug discovery data, obtained through internal security testing or from similar organizations.

h1

h2

h3

...
hackers

s1

s2

s3

...
bug types

b1

b2

b3

...
bugs

p1

p2

p3

Fig. 1. Illustration of the vulnerability discovery model.

Hacker diversity. Existing literature has revealed that
hackers have diverse expertise, use different tools, etc.,
so they are good at discovering different types of
bugs [4,10,6,7]. We let Sh be the set of vulnerability
types that hacker h ∈ H can discover, so the probability
that hacker h discovers bug i is pi if s ∈ Sh, where s is
the type of bug i, and it is 0 if s 6∈ Sh. Sh can be ob-
tained from data accumulated on bug bounty platforms.
Figure 1 illustrates the vulnerability discovery model.

2

3 Preliminary Results and Discussion

Expected utilities. We calculate expected utilities of the organization and hackers as follows. First, we
define Ht,s as the set of hackers allocated for time t with the expertise to find bugs of type s. In other
words, Ht,s = {h ∈ Ht|s ∈ Sh}. We then define NDi,t := (1− pi)|Ht,s| as the probability that none of
the hackers in Ht discover bug i at t. For the organization, the expected utility E[Uoi|bug i is of type s]
for discovering bug i of type s, and the total expected utility E[Uo] from a bug bounty program given an
allocation plan are, respectively:

E[Uoi|bug i is of type s] =
∞∑
t=1

(
t−1∏
k=1

NDi,k

)(
(δt−1V − b) (1−NDi,t) − co (|Ht,s|pi)) (4)

E[Uo] =
∞∑
i=1

∑
s∈S

qs E[Uoi|bug i is of type s]. (5)

Similarly, for all hackers, we have

E[Uhi|bug i is of type s] =
∞∑
t=1

(
t−1∏
k=1

NDi,k

)
(b (1−NDi,t) − ch (|Ht,s|pi)) (6)

E[Uh] =
∞∑
i=1

∑
s∈S

qs E[Uhi|bug i is of type s]. (7)

0 100 200 300 400 500
−150

−100

−50

0

50

100

Number of Hackers

E
xp

ec
te

d
U

til
ity

E[Uo]

E[Uh]

Fig. 2. Expected utilities with different number of hackers. Param-
eters used: V = 20, b = 5, δ = 0.99, co = ch = 1, α = 2.

Bug bounty optimization. The practical goal
of our work is to help organizations optimize
their bug bounty programs. A basic, but of-
ten voiced idea is to attract as many hack-
ers as possible. We evaluate this notion using
our model and data collected from one bug
bounty platform, i.e., Wooyun [10]. Figure 2
shows that the expected utilities of the invit-
ing organization and the invited hackers exhibit
inverted U-shapes, and do not scale linearly
with the number of hackers. Rather, they start
to decrease after a certain number of hackers
have joined. The reason is that as more hack-
ers are invited, the number of duplicates in-
creases, which raises the cost of processing re-
ports by the organization, and also decreases
the expected bounty received by hackers. This
result suggests that, for bug bounty programs and possibly for some other crowdsourcing scenarios
that require expertise and competition, more participation is not always better. Instead, the bug bounty
program shall carefully design its allocation plan to control the competition among participants and to
diversify its workforce. In addition, the bug bounty program also needs to offer enough reward for a bug,
such that the expected utility of hackers is greater than zero, even as discovering bugs is getting harder
over time. We are defining this problem as maxA,b:E[Uh]≥0 E[Uo], which is subject of our ongoing work.

3

References

1. Brady, R., Anderson, R., Ball, R.: Murphy’s law, the fitness of evolving species, and the limits of software reliability. Tech.
Rep. 471, University of Cambridge, Computer Laboratory (1999)

2. Bugcrowd: The state of bug bounty (July 2015)
3. Chen, Y., Ghosh, A., Kearns, M., Roughgarden, T., Vaughan, J.W.: Mathematical foundations for social computing. Com-

munications of ACM (2016)
4. Edmundson, A., Holtkamp, B., Rivera, E., Finifter, M., Mettler, A., Wagner, D.: An empirical study on the effectiveness

of security code review. In: 5th International Conference on Engineering Secure Software and Systems (ESSoS), pp.
197–212. Springer (2013)

5. Finifter, M., Akhawe, D., Wagner, D.: An empirical study of vulnerability rewards programs. In: 22nd USENIX Security
Symposium. pp. 273–288 (2013)

6. Hafiz, M., Fang, M.: Game of detections: How are security vulnerabilities discovered in the wild? Empirical Software
Engineering pp. 1–40 (2015)

7. Huang, K., Siegel, M., Madnick, S., Li, X., Feng, Z.: Poster: Diversity or concentration? Hackers’ strategy for working
across multiple bug bounty programs. In: 37th IEEE Symposium on Security and Privacy (S&P) (2016)

8. Laszka, A., Zhao, M., Grossklags, J.: Banishing misaligned incentives for validating reports in bug-bounty platforms. In:
21st European Symposium on Research in Computer Security (ESORICS). Springer (2016)

9. Maillart, T., Zhao, M., Grossklags, J., Chuang, J.: Given enough eyeballs, all bugs are shallow? Revisiting Eric Raymond
with bug bounty markets. In: 15th Annual Workshop on the Economics of Information Security (WEIS) (2016)

10. Zhao, M., Grossklags, J., Liu, P.: An empirical study of web vulnerability discovery ecosystems. In: 22nd ACM Confer-
ence on Computer and Communications Security (CCS). pp. 1105–1117. ACM (2015)

11. Zhao, M., Liu, P.: Empirical analysis and modeling of black-box mutational fuzzing. In: 8th International Symposium on
Engineering Secure Software and Systems (ESSoS). pp. 173–189. Springer (2016)

4

	Crowdsourced Security Vulnerability Discovery: Modeling and Organizing Bug-Bounty Programs

