

Programming with People

Emery Berger University of Massachusetts Amherst

T

"is this a giraffe?"

isGiraffe(*image*)

True

True

True

False

Step 3: Get paid for your work

After the requester approves your work, money is deposited into your Amazon Payments account.

(**Scala**)

AutoMan programmer-specified

Total \$ for computation

(**Scala**)

AutoMan programmer-specified

Total \$ for computation

95% Confidence lev (*p* < 0.05) (per function) **Confidence** level

US minimum wage, Adaptive doubling

AUTOMAN isGiraffe

US minimum wage, Adaptive doubling

US minimum wage, Adaptive doubling *prevents gaming*

30s, \$0.06 (\$7.25 / 120) 60s, \$0.12

E[gain] = base (P_{avail})^{round} * multiplier^{round}

E[gain] = base (1/2)^{round} * multiplier^{round}

$E[gain] = base (1/2)^{round}$ * 2^{round}

E[gain]= base

E[gain]= base no incentive to wait

True 95% confidence

None
More than one
One

NoneMore than oneOne

None More than one One

None
More than one
One

More than one
None
One

Which are from Sesame Street?

- Oscar the Grouch
 -] Kermit the Frog
 - Spongebob Squarepants
 - Cookie Monster
 -] The Count

2^k choices

Which are from Sesame Street?

- ✓ Oscar the Grouch
- ☑ Kermit the Frog
- Spongebob Squarepants
- Cookie Monster
- 🔽 🛛 The Countt

2^k choices

Which are from Sesame Street?

- ✓ Oscar the Grouch
 - Kermit the Frog
- Spongebob Squarepants
- Cookie Monster
 -] The Count

2^k choices

What does this license plate say?

What characters are printed on this license plate?

XXXXXX

[A-Z0-9]{6}

 36^6 choices = 2176782336

AUTOMAN: spawns 3 tasks @ \$0.06; 30s work

AUTOMAN: spawns 3 tasks @ \$0.06; 30s work

AUTOMAN: spawns 3 more tasks

AUTOMAN: spawns 3 more tasks

7m

AUTOMAN: spawns 3 more tasks

7m 18m 50s

AUTOMAN: spawns 3 more tasks

AUTOMAN: spawn 1 more task @ \$0.12, 60s work

Which one of these doesn't belong? [95% conf.]

AUTOMAN: spawn 1 more task @ \$0.12, 60s work

read_plate(

Cit

You are using the Mechanical Turk Developer Sandbox. This site is for test and development only. Learn more »

What are the characters printed on this license plate? (CARS ONLY, NO DASHES, DOTS OR SPACES places)

val plate_texts = s3_urls.par.map
{ url => get_plate_text(url) }

plate_texts.foreach { text =>
println(text) }

MediaLab LPR database

"extremely difficult" dataset

144 plates

Accuracy: 91.6%

Average cost: 12.08 cents

Latency: < 2 minutes per image

>12.2%!

How many giraffes are in this picture?

Which are from *Sesame Street*?

- Oscar the Grouch
 Kermit the Frog
 Spongebob Squar
- Spongebob Squarepants
 - Cookie Monster
 -] The Count

1. take a photo 2. algorithms (???) 3. return estimate

1. take a photo 22. naturation of the source of the source

Im2Calories: towards an automated mobile vision food diary

Once we have determined that the image contains a meal, we try to analyze its contents. The first step is to determine which restaurant the user is in. In this paper, we use Google's Places API [27] for this. We then retrieve the menu of the nearest restaurant from the web,⁵ parse the $\int K$ food items, and retrieve images for me

orban evin Murphy

n

ur me? nal (nes tł re ior es fi ifier, s challen case, we net

omes use ase ATT-U vork. aurants of the food a system. Our approach utilizes several deep learn

Jiving segmentation and as their labels. The

wh

use

1. take a photo 2. mochinenterestring 3. return estimate

1. take a photo

2. c20 walsoursing

3. return estimate

"How many calories are in this donut?"

1. take a photo 2. crowdsourcing 3. return estimate

VoxPL

Extends AutoMan DSL with estimates

def numCalories(url: String) = Estimate (
 confidenceInterval = SymmetricCI(50),
 text = "How many calories are
 in the food pictured?",
 imageUrl = url

"How many calories are in this donut?"

What would it take to trust that median value of 278.5 is a good estimate?

The set of the state of the set o

What would it take to trust that median value of 278.5 is a good estimate?

"Donut contains 278.5±5206kccdl"."

"Donut contains 278.5±50 kcal."

If confidence interval not precise enough, how do we make it tighter? Confidence interval = function of sample size...

For tighter intervals, ask more people!

"Donut contains 278.5±5206kkcdu!"

VoxPL Algorithm

Increase sample size until either

- 1) interval meets user-defined "tightness" constraint
- 2) or budget exhausted

```
def numCalories(url: String) = Estimate (
confidenceInterval = SymmetricCI(50),
confidence = 0.95,
budget = 5.00,
text = "How many calories are
     in the food pictured?",
imageUrl = url,
statistic = L1Median
```

(mandatory parameters are in red)

All functions expressible in VoxPL produce valid estimates & empirical confidence intervals

Also ensures that dynamic sample size calculation does not bias results (Bonferroni)

Calorie counting

Difficult visual search

Facial feature recognition

Vox Populi reproduction (NPR Planet Money)

Calorie Counter

- 208 images of school lunches w/ground truth kcal (thanks to Joe Price @ Brigham Young U.)
- IM2Calories MAE: 152.95, SE: 15.61
- VoxPL MAE: 103.08, SE: 6.00

Calorie Counter

 VoxPL dynamically finds right sample size - can be much cheaper! ±250, median cost: \$0.32; ±50 cost: \$1.28

Automatic budgeting, scheduling, and quality control http://github.com/plasma-umass/AutoMan

DANIEL BAROWY CHARLIE CURTSINGER EMERY BERGER ANDREW McGREGOR

UMassAmherst

DANIEL GOLDSTEIN SIDDHARTH SURI (VoxPL)

<u>File Edit V</u>iew <u>N</u>avigate <u>C</u>ode Analyze <u>R</u>efactor <u>B</u>uild R<u>u</u>n Tools VC<u>S W</u>indow <u>H</u>elp 📲 🔚 banana_question 🔻 🕨 🌋 🧐 🖿 AutoMan 🗅 🖿 apps 👌 🖬 banana_question 👌 🖿 src 👌 🎦 main 👌 🗖 scala 👌 🥥 banana_question.scala ፼...- ☺ ≑ | ☆ - ⊮ o banana guestion.scala RUNNING (15) 🗖 AutoMan (~/\/ TIMEOUT (19) idea object banana_question extends App { 🔻 🗖 apps val opts = Utilities.unsafe_optparse(args, "banana_question.jar 🕨 📑 anpr [AN 🔻 🗖 banana val a = MTurkAdapter { mt.acce s_key id = o ('kr t.s cr _s es key or sec on company sec of sec 🕨 🧮 ргоје Image: Second 🕨 🗖 taro 🔒 build. HowMar 0.06 Ion Aug 12:18:25 GMT+0200 2015 🖽 Databası def which_one(text: String) = a.RadioButtonQuestion { q => License q.budget = <u>5.00</u> et = 5.00 T IEOUT Mon Aug 12: 3:35 MT+0200 tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana "Balana", (C,/ nyu).com/70, , T inter tion /b hana (C,/ nyu).co **E**Dimple o q.text = text SimpleS a.Operon('cucumber, "cucumber", "http://tinyurl.com/77bgu 🗅 AutomanM General Console Calculators IntelliJ Debugger 🕨 🗖 libautoman q.question_timeout_multiplier = 20 Task States: DUPLICATE REJECTED CANCELLED RUNNING ANSWERED 🕨 🧮 project [Au Task Id Last 60 seconds 4ca999f9. Image: Section Sect ece0f001. which one("Which one of these does not belong?").answer match a4c284a1 🛾 target 2efb3f87 " + value) d2e9f3f9. 32884d5a cost, conf) => 19fd18c3. cd3ccfbe. 3e7b0fde. DUGS: e6ab3a2d. cf3d8be0. 22c195f3 earing schette of fifteut the guestic Run 🔚 banana_guestion f88c-10ba-4cfe-adaf-6064b4 CEST 2015: IN D: SCHEDULER: question_id = 721fdlff-1d06-4eec-b183-46b2017e2773, Task 8a863388-c653-4405-b2cb-1fb654385a92 ch question_id = 721fd1ff-1d06-4eec-b183-46b2017e2773, Posting 15 tasks to backend. estion_id = 721fd1ff-1d06-4eec-b183-46b2017e2773, Creating disqualification. question_id = 721fd1ff-1d06-4eec-b183-46b2017e2773, Retrieving answers for 15 running tasks from AID Server state_update has been called now! Received 34 tasks updates Contraction pool thread yield.

Torminal Contraction Cont

<u>File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help</u>

extra slides

Timer: 00:00:00 of 30 seconds	Want to work on this HIT?	Want to see other Skip HIT	HITs? Total	Total Earned: \$54.88 HITs Submitted: 1043
Which one of these does not belong? Requester: Dan Barowy Qualifications Required: None	Reward:	\$0.06 per HIT	HITs Available:	3 Duration: 30 seconds

Is this a picture of a cowboy?

How many goats?

