Human Computation with an
Application to Passwords

Manuel Blum

Santosh Vempala, Jeremiah Blocki
Elan Rosenfeld, Michael Wehar, Samira Samadi, Bhiksha Raj

11/5/16 © Manuel Blum 2016 5/55

Human Computation with an
Application to Password Generation

» This talk is about human computation. my
goal is to apply CS ideas to what humans can
compute in their heads.

* (I hope to extend this eventually to allow writing. At first only required
writing will be allowed: think Crossword Puzzles, Sudoku, and various
Crypto Protocols. In that case, what’s written is then available for
further computation and output. There is no eraser and no other

paper/pencil.)

e My running Example will be Password

Generation. In this example, | would like all
computation to be done entirely in the head. This
means no paper or pencil. Even the generated
password is to be invisible.

Password Generation

Major point: password generation is best

. . \
viewed as a function from \\@/
challenge =»response §& °

website =» password

| require functions to be humanly computed

(computed in one’s head w/o paper pencil) ./,
-

11/5/16 © Manuel Blum 2016

Password Generation

* | need to show you that it is possible for a
normal human being (me) to generate — and
regenerate — random looking passwords
quickly on the fly.

* | do this by applying a (publishable) humanly
usable algorithm that | call a (public) schema,

which uses a randomly chosen (private) key as /
parameter, to the website name.

* | want you to observe that | can use schema + key
to generate a random-looking password response

to any website quickly this way.

Password Generation

For this demonstration | need a volunteer — someone
whom you trust is not in cahoots with me — to run my
Python Program. This is to prove to you that I'm not
cheating, and to check my work (because | make mistakes).

| also need:

1. Someone to give me a 5 or 6 letter word typical of
a website name, like AMAZON or JASON, maybe
your own hame, to use as challenge;

2. Someone to write challenge and my response on
board behind me. You will see that | can create
passwords w/o paper, pencil or notes.

7307

Do you see any pattern?

MAGIC1 =>» 436115 278376
MAGIC2 =>» 292849 405629
MAGIC3 =>» 984239 642019
MAGIC4 =>» 123404 881985
MAGIC5 =» 311575 154499
MAGIC6 =» 609092 393253
MAGIC7 =» 040782 529504
MAGIC8 =» 778658 766869
MAGIC9 =» 565927 917135

11/5/16 © Manuel Blum 2016

An Easy-to-Use but Insecure
Algorithm for Generating Passwords

If you know the alphabet ABCDEF..XYZ,
then you can map each letter of the challenge
(website) to the next letter in the alphabet:

Example: EBAY = FCBZ
Unfortunately, AAAA =>BBBB

Also, unfortunately, if all of you did this,

you would all have the same passwords.
The weakness is that this public schema does
not use a private key!

A Public Schema for Generating
Passwords must use a secret random KEY

For example, memorize a random phone number as KEY.
Example: Key = (246) 357-0189.

Use Key as shift:
EBAY = E+2 B+4 A+6 Y+3 E+5 B+7 A+0 ...
= (GFG) BJI-AZMK (= GFGBJIAZMK)
AAAA = (CEG)DFH-ABIJ (= CEGDFHAB I))

D6

Now AAAA is not a problem © .
@@
Short challenges =» 10 letter passwords '

and

To do this, you must memorize a phone number.
Are you willing to memorize a phone # you use frequently?

Many different Algorithms for
Generating Passwords are possible

For example, memorize a random permutation on the
letters, like "THE QUICK BROWN FX JMPS V LAZY DG."
EBAY = QRZD 2% but

AAAA = ZZZZ OUCH !

To fix the AAAA and password length problems, as already

suggested, memorize a random phone number like Yy
(246) 357-0189, then use it as a shift.

e 4
How much harder is it to memorize and use “THE QUICK
BROWN FX...” than to memorize the key to a password vault?

It’s slightly harder. A social security number? Slightly harder.
How about 100 passwords? A lot harder !!

To satisfy password requirements
start every password with aA1@bB2$
Attaching aA1@bB2S to every password gets
you nearly 100% from every password checker.

To test a password schema,

use not one but BOTH of the following tests:

1. Check if Google recognizes (typical) passwords that the
schema generates.

2. Usea password checker like
passwordmeter.com

Caution: Run tests 1 and 2 on faux passwords!

This completes PART ONE of this talk

PART TWO: Human Usability

PART TWO: Human Usability

| will shortly present A Model for Human Computation.

En route, you may rightly ask: How will this model help me? Will it
help me solve crossword puzzles or Sudoku better? Will it help me play a

better game of chess?

NO. The model of human computation won’t help you play chess better,
just as the model of a Turing machine won’t help you do matrix inversion
faster.

In LOGIC, the importance of the Turing machine is in distinguishing what
is computable from what is not.

In THEORETICAL COMPUTER SCIENCE, the importance of the Turing
machine is in distinguishing what is efficiently solvable from what is not.

In this COG SCI COMP SCI area, the model of human computation is
for distinguishing what is humanly computable from what is not, and for
estimating the human effort required to do what is humanly computable.

What the Model of Human
Conscious Computation Does

It provides a way to estimate human usability of a
schema without having to test 100 people for each new
schema or for each modification of a schema.*

Of course, we need to validate our model experimentally,
but we can then count steps and prove human
usability mathematically.

The model is needed to prove the impossibility of
schemas (humanly usable algorithms) for certain

problems. Example: are zero knowledge protocols
achievable with humanly usable schemas?

How the Theory of Human
Conscious Computation Differs
from Computer Science Theory

1. A major difference between computers and humans:
besides that computers are much faster than humans in
doing arithmetic operations, computers are constantly
improving in speed and memory, whereas human
replacements are the same old model. On this account,

2. When counting steps to determine the complexity of schemas,

specific constants are crucial. O(n) is not good enough.
Step counting must specify constants much more precisely, e.g.

use cen + O(1) for a specific ¢ rather than O(n).

Human Conscious Computation
versus Computer Science Theory

3. Guiding us is the following Major Open Problem: can
humans compute 1-way functions (in their head) that a

powerful supercomputer cannot invert? Think about it.
Do you think it possible? Is it even imaginable?

4. Similarly, can a human generate pseudo-random
numbers that are indistinguishable from truly random
numbers? More formally, can a human in a few minutes
transform 20-digit random nos into 40-digit pseudo-
random numbers that a supercomputer working for an
hour cannot distinguish from truly random 40-digit nos?

A Model of Human
Conscious Computation

For human usability, | need to present a
model of human conscious computation®.
This model is a Turing machine with two

distinct memories in place of tape.

* Unconscious computation: ride a bike.

* Conscious computation: multiply a 2-digit number
by a 1-digit number in your head. Recall image of the Mona Lisa.

16

11/5/16 © Manuel Blum 2016

The two memories of our
Turing machine are:

1. Long term or permanent memory (LTM), which
is hard to write (can only be written to slowly) but easy to
read (can be read quickly). Retention in LTM requires
rehearsals on Wozniak's doubling schedule.

2. Short term or working memory (STM), which is
easy to read & write, but tiny: 7£2 chunks. Storage is fleeting:
items in STM are pushed out by new deposits.

As computer scientists you recognize STM as \9/
cache (but STM is much more than cache). N

Long term memory LTM

Long term permanent memory (LTM) is virtually infinite
but permanence requires rehearsals on Wozniak's doubling
schedule. LTM is used to store both Schema and Data.

Virtually infinite means that LTM can store info (like a
secret key) for life - until the human can no longer use it (the
password) anyway.

References:

o Piotr Wozniak (not Steve Wozniak) Super Memo:

o Magician Juan Tamariz teaches

how to memorize a random 1:1 map
from the 52 cards to {1,2,3,...,52}in 3
hours.

Short Term Memory STM

What | write in BLUE, fascinating as it is, is not strictly
part of the model. Description of the model is in black.

From the literature, the contents of STM are what we are
consciously aware of.

STM is the stage in the theater of consciousness

IN THE

(Bernard Baars). YHEATER OP

CONSCIOUSNESS

The contents of STM are actors performing on
that stage.

Audience members are the many processes of
the brain. They pay attention to the stage.
Any audience member with relevant info can
pass it back to the stage*.

*In this sense, STM is much more than cache.

11/5/16 © Manuel Blum 2016 19

The items in STM are what
psychologists call chunks.

N

* Chunks are pointers into memory. (2~

NS

 STM can send info to and receive info from
wherever that info is located in memory.

Question: why does short-term memory have room for only
712 chunks, not more? Are there reasons
why this number is so small... ?

Is it really better to pay full attentiontoa s
few important things than divided attention j 2l 1%
to many more things? (=

11/5/16 © Manuel Blum 2016 20

The CS model: PREParation and
PROCessing

Games and crypto-problems (Crossword Puzzles, speed chess, Password

generation) have 2 parts: PREP and PROC. ™ Lh_f,iéj k

1. PREParation hasto do with 1. obtaining/generating data, and
2. writing schema and data into permanent LTM. E.g. Learn/play chess 1

2. PROCessing has to do with applying schema (in LTM) with associated data
(in LTM) to the input and generate output. Observe board; make move.

Our measure of human effort is human compute time.

1. HPREP is the preparation time —including rehearsals — to write schema and data
into LTM. For password generation, we place an upper bound of at most 3 hours,
preferably 1 hour - including rehearsals — on what is permissible #PREP.

2. HPROC is the processing time it takes to apply the schema to the input and to
generate the output. For password generation, we place upper bound of at most
6 secs/letter, preferably 2 secs/letter, on permissible #PROC.

11/5/16 © Manuel Blum 2016 21

PREP

PREParation stores the SCHEMA and associated DATA
iIn LTM.

For solving crossword puzzles, the SCHEMA is the set
of instructions one somehow acquires — by googling,
reading, talking to friends, or thinking about the
problem. Typical instructions include: “search first for
short words,” and “an answer could be a phrase.”

The DATA includes such stuff as a dictionary of short
words committed to memory.

For password generation, the SCHEMA is a humanly
usable (publici.e. publishable) algorithm and the
DATA is a private KEY (a parameter of the schema).

Properties of PREP

Instructions must be as detailed for humans as they are for
computers. For example, for humans to memorize a random map
from letters to digits, | would create a 26x10 chart of letters to digits,

then show only the 26 cells that must be memorized. Here are:

wW->0,1,2,3,4,5,6,7,8,9
v 2

ol 2
%L ky@ Co.
7 Y% %

11/5/16 © Manuel Blum 2016

23

Properties of PREP

A major challenge to schema designer is to
make required memorizations easy and fun.

For example, to memorize 2 independent random
functions from the standard 26 letters =210 digits can be

confusing.

o Instead, memorize a single randort\\f/unction
f: 26 letters =»2-digit numbers. \9\’—
Then set f; = msd(f) and f, = Isd(f). =

o Another possibility is to let F map capital letters and
f map lower case letters to digits.

To estimate PREP time, point out a familiar

memorization activity of the same sort. @_
Best is a scholarly study to measure time. N

Definition of #PREP

HPREP := a triple consisting of

1. Work to generate random numbers, e.g. (humber of
tosses of a k-sided die) x (log, k) for generation of
numbersin {1,...,k}.

2. Work to store data in permanent memory. This depends
crucially on the data structures used for storage, which
must be specified. Singly linked lists are much cheaper to
memorize than hash functions. State work as “a singly-
linked list of length L” or “a hash function of N items”.

3. Work to store schema in usable form in permanent
memory, e.g. number of lines of code in the schema.

PROC

PROCessing (e.g. transforming challenge =2 response) is a fast
execution of schema. For this reason, it does NOT write to LTM:

It may read and write to STM.
It may use the pointers in STM to read - but not write - LTM.

PROCessing uses a pointer from STM into schema (stored in LTM)
plus it uses pointers into relevant data.

In password computation, PROCessing the schema includes cycling
thru the challenge (the website name) and outputting the response

(the password).

Our model requires schema have at most 3 pointers in STM.
This requirement is necessary for the schema to be humanly usable.

For computation of a password, | bound the total number of steps
a schema may take — so that the schema takes at most a minute
to transform a 10 letter challenge into a 10 letter password.

11/5/16 © Manuel Blum 2016 26

Definition of #PROC

#PROC := total number of steps to execute
the given schema. This number counts the
total number of atomic operations executed
by the schema, e.g. jump or conditional jump,
reset a given pointer in STM to head of a
given data structure in LTM, read an item in
STM or LTM, write or rewrite a variable in
STM, such as x := x+1.

Properties of Schemas and STM

4.15. 2-3 pointers*. Pointers into a singly-linked list can
shift right (or circle round to the start of the list) but they
cannot shift left*.

4.17. The model enables to count PROCessing steps.

Steps are simple: each takes at most 1 sec. Typical
* Shift a pointer into a linked list, be it challenge or data, steps
by one symbol to the right. 1
* Reset a pointer into challenge to start or end of challenge. 1
e Add or multiply 2 digits mod 10. 1
* Add or multiply 2 digits mod 9 or 11. 2

"Whence come these properties and rules?
From constructing password schemas.

11/5/16 © Manuel Blum 2016 28

Properties of Schemas

Instructions must be as detailed for humans, as they
are for computers.

* For example, instructions for storing data in LTM
must assert whether the data is stored in a singly
linked list (like the alphabet) or random access (like
names ot faces).

* |n password generation, discuss possible starting
locations in a challenge. For example,
Start 1 past 15t vowel.
Start 2 past 15t letter that has a verticali.e. BDEFH
Start 1 past 2"9 letter that rhymes with eeei.e. BCDEGPTV Z.
Start from 15t occurrence of a letter in SHRDLU.

In general, spell out all possibilities from which a random
selection must be made.

11/5/16 © Manuel Blum 2016 29

Example 1: Telephone Schema

PREP: store Schema. Create and memorize a random
hash function (key) h mapping 26 letters & 10 digits. Create
and memorize random hash function (key) T mapping 10
digits & 10 digits. For human usability, view T initially as a
random 10-digit Telephone # T =412 596-4063.

Treat challenge as a circular linked list.

PROC: (Input Challenge = CMU)

Evaluate Schema on Challenge: Steps

e c:= 1%t letter of Challenge (=CM U), a linked list 1

e t:= 1stdigit of Telephone# (T=4 1 2...) ccvvveeeeervneecnnnnn 1

* Repeat until T is exhausted (10 times):ccovveveeevvveernrrennen. 1
o h(c) := mapped value of C. .c.oovveeeeeeeceee e, 1
osum:=h(c)+tmod 10oovviiiiiiii e 1
O OULPUL SUM ... e e e e e 1
O INCrE@MENT C ..ottt st st st et s Roughly 20
oldncrementt ... ——— 1 to 60 secs

Example 2:
STML (Skip-To-My-Lou) Schema;
not to be confused with
STM (Short Term Memory).

 STML is our current best suggestion for humanly usable
and secure (in a manner to be explained) “Pseudo

Random Generators (PRG)”, 1-way functions, and
Password Generators.

* It's definition depends on the STML Subroutine.

6. The STML (Skip-To-My-Lou) Subroutine

* Preprocessing: Memorize a random f: letters = digits.

The STML subroutine is easier to understand if the input, e.g.
AMAZING, is replaced by its mapped value: f(AMAZING) = 1316947

* Processing: Given a challenge consisting of a string of letters -
now viewed as a string of digits - apply the following algorithm:

1. Set SUM = last digit of challenge

2. Set current digit (pointer) = first digit of challenge

3. Repeat until current digit shifts past last digit of challenge:
1. Set SUM = SUM + current digit (mod 10)
2. IfSUM is at least 5, output SUM
3. Shift current digit in challenge one digit to the right.

STML Idea in an Example

Example: We assume letters are hashed to digits.
Suppose the challenge is 31415926.

The running sum is 6+3=9, 9+1=0, 0+4=4, 4+1=5...
resulting in 31415926 = 90450917 = 9597

Processing measure of complexity = [apply map +
set SUM + shift pointer + (n-1) x (apply map + add
mod 10 + compare to 5 + output (maybe) + shift
pointer)] =3 + (n-1)(1+1.5+1+0.5+1) = 5n-2.

STML Subroutine in an Example

 Example: We assume letters are hashed to digits,

123 456 7890
W W

T= 758 429-1360, T is memorized as hash function.
Suppose the challenge (post hashing) is 31415926.
* The running sum is T(6)+3=2, T(2)+1=5+1=6, T(6)+4=3,
T(3)+1=9... resulting in 31415926 = 59867978

* The following computation not only counts steps, but also shows in
which order operations are performed: Processing measure of
complexity = [apply map + set SUM + shift pointer + (n-1) x (apply
map + add mod 10 + compare to 5 + output (maybe) + shift pointer)]
=3+ (n-1)(1+1.5+1+0.5+1) = 5n-2 steps. For n=10, 5n-2 =48, time t
is in the range 16 secs < t < 48 secs.

6. The STML (Skip-To-My-Lou) Subroutine

* Preprocessing: Memorize a random f: letters =» digits.
Memorize a random T: digits = digits.

The STML subroutine is easier to understand if the input, e.g.
AMAZING, is replaced by its mapped value: f: AMAZING = 1316947

* Processing: Given a challenge consisting of a string of letters -
now viewed as a string of digits - apply the following algorithm:

1. Set SUM = last digit of challenge

2. Set current digit (pointer) = first digit of challenge

3. Repeat until current digit shifts past last digit of challenge:
1. Set SUM =T(SUM) + current digit (mod 10)
2. If SUM is at least 5, output SUM
3. Shift current digit in challenge one digit to the right.

The n =»2n STML "PRG”

WIlg, we assume that the random map x from the 26 letters to the 10 digits
has already been applied to the challenge, C, so C is a random seed/string
of digits of a length n (to be determined).

The initial output F,(C) of the PRG is the output of Skip-To-My-Lou applied
with key x to challenge C. This string F,(C) is not long enough to be the
complete output of the PRG. Indeed, its expected length is just half the
length of C. To produce a longer string, at the cost of one more (expensive)
pointer, the idea is to run STML on many substrings of C and concatenate
the results. The substrings of C have to be chosen in a humanly usable way.
For a seed C of length n, let C, be the substring of characters obtained by
skipping the first i characters of C, then including the next i characters,
skipping the next i, including the next i, and so on. E.g., C, is the substring
of characters in even positions, C, is the substring of characters obtained by
alternately skipping two and including two, and so on... stopping when n/2
digits are skipped.

The STML (Skip To My Lou) Schema

Theorem: An adversary with an ordinary laptop who knows
that the user is using STML on integer challenges of length 10,
mapping 10 letter challenges to 20 letter passwords, can with
high probability invert a password in just a few hours.

Open Question: Is it possible for a modern (2016)

supercomputer working for a week to invert a 40 digit
password?

Theorem (Michael Wehar): The STML schema, which
takes n digit challenges to 2n digit responses, can recover a/the
challenge from the response in O(n'3steps). Consequently,
STML is not what cryptographers would call a true pseudo-
random sequence generator.

Part three Security

Part three Security

* Big difference between computers and humans: besides
that they are much faster than humans in doing arithmetic operations,
computers are constantly improving in speed and memory, while human
replacements are the same old model. For this and other reasons,

* When counting steps to determine the complexity of schemas, speciﬁc

constants are important. O(n) is not good enough. Step counts
must specify constants better, e.g. cen + O(1) for specific c is better than
O(n).

* 1-way functions are examples. A typical 1-way function is multiplication
of 2 primes. But any two numbers that a human can multiply in their
head can be factored in a fraction of a second by a laptop. The whole
question whether humans can compute 1-way functions (in their head)
that a powerful supercomputer cannot invert is open. Is it possible? Is it
even imaginable? Santosh’s STML suggests a candidate schema to do it.

To deal with security, we define a

measure of the Quality Q of a Schema.

C
C

Examples: D may be the set of all strings of

The definition of a Schema’s Quality assumes that

nallenges are sampled from a Distribution of
nallenges called the Dictionary, D.

length 10 on the 26 letters, each with probability
1/26°, or D may be the set of all website names
with their associated probabilities of being called.

Password Schema Quality Q

Password Schema Quality Q is then defined in terms of a game
between an "all-powerful” adversary and a trusted judge.

The adversary is a Turing machine that is "all-powerful” in the
sense that 1. it has unbounded but finite running time, and 2. it
knows the public Schema, but 3. it does not know the private Key.

The judge knows the private key. Initially, the judge draws a
random sample from D and gives it to the adversary. After each
such draw, the adversary makes 10 guesses at the password. If
none is correct, then the judge gives the adversary the correct
password and draws another challenge. This repeats until adversay
makes a correct guess.

Q is defined to be the expected number of draws with
replacement from D until the adversary guesses correctly.

The Quality Q of various Schemas

For the schema that maps each letter

(like X) to a digit (like 4), independent of
the location of X in the challenge (so X > 4
implies XXX = 444), we know that Q = 7.
The lower bound (Q £ 7) is info theoretic.
The upper bound (Q = 7) is proved by
supplying an optimal program for the
adversary, due to Elan Rosenfeld.

The Quality Q of various Schemas

For the schema that maps each letter
(like X) to a digit that depends solely on
the letter and its position in the challenge
(e.g. XX ->41, YY -> 59; so XY -> 49), we
know Q =14. The lower bound of 14 is
info theoretic, and the upper bound of
14, which is harder to prove, is again due
to Elan Rosenfeld.

Future Directions

Major Open Question: Can a human generate

pseudo-random sequences in her head?

More formally: Does there exist a publishable schema such that a
human with just A FEW HOURS PREP (to learn the public schema and to
generate and memorize a private random key) and A FEW MINUTES
PROC per input seed can transform a dozen private random 20-digit
numbers/seeds into corresponding 40 digit numbers such that a 2016
supercomputer running for an hour cannot distinguish the dozen 40-digit
pseudo-random numbers from a dozen truly random 40 digit numbers?

Manuel’s principal interest is to extend the model of human computation
to applications in which the computation is not done entirely in the head.

Santosh’s principal interest is to investigate how far one can go in doing
cryptography in one’s head. He looks to construct secure humanly usable

Pseudo Random Generators, 1-way functions, Trapdoor functions, etc.

11/5/16

© Manuel Blum 2016

45

