Strategic Classification with Crowdsourcing

Yang Liu
(joint work with Yiling Chen)

yangl@seas.harvard.edu
Harvard University

Nov. 2016
(Non-strategic) Classification

Non-strategic classification

\[y_i = f^*(x_i), \quad f^* : \mathbb{R}^d \to \{-1, +1\} \]

• Observing a set of training data, to learn \(f \)

\[
\tilde{f} = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} l(f(x_i), y_i).
\]
Strategic classification

When data comes from strategic data sources...

- Outsource x_i to get a label \tilde{y}_i.
- Crowdsourcing, survey, human reports etc.

Such training data carries noise

- *Intrinsic*: due to limited worker expertise.
- *Strategic*: lack of incentives.
Strategic classification

When data comes from strategic data sources...

- Outsource x_i to get a label \tilde{y}_i.
- Crowdsourcing, survey, human reports etc.

Such training data carries noise

- *Intrinsic*: due to limited worker expertise.
- *Strategic*: lack of incentives.
The leaner wants to learn a good, unbiased classifier

- Workers’ observations come from a flipping error model p_+, p_-.
- Workers are effort sensitive.
- Elicit high quality data from workers. (better performance)
Goal to achieve

The learner wants to learn a good, unbiased classifier

- Workers’ observations come from a flipping error model p_+, p_-.
- Workers are effort sensitive.
- Elicit high quality data from workers. (better performance)
Goal to achieve

The learner wants to learn a good, unbiased classifier

- Workers’ observations come from a flipping error model p_+, p_-.
- Workers are effort sensitive.
- Elicit high quality data from workers. (better performance)

Information elicitation without verification

- Peer prediction: $\text{SCORE}(\tilde{y}_i, \tilde{y}_j)$
- DG13, RF15, SAFP16, KS16...
- Exerting effort to have a high quality data usually a good equilibria.
Our method

Joint learning and information elicitation:

- $\text{SCORE}(\tilde{y}_i, \tilde{y}_j) \Rightarrow \text{SCORE}(\tilde{y}_i, \text{Machine})$
- "Machine Prediction"
- How to obtain a good machine answer?

$\text{SCORE}(\tilde{y}_i, \text{Machine})$
Classification with flipping errors [Natarajan et al. 13]

- Suppose workers are truthfully reporting, how to de-bias?

\[
\tilde{l}(t, y) := \frac{(1 - p_{-y})l(t, y) - p_{y}l(t, -y)}{1 - p_{+} - p_{-}}, \quad p_{+} + p_{-} < 1.
\]

- Why does it work? [un-biased in expectation]

\[
\mathbb{E}_{\tilde{y}}[\tilde{l}(t, \tilde{y})] = l(t, y), \forall t.
\]

- Find \(\tilde{f}_{\tilde{l}}^* \) via minimizing the empirical risk w.r.t. \(\tilde{l}(t, y) \):

\[
\tilde{f}_{\tilde{l}}^* = \arg\min_{f} \tilde{R}_{\tilde{l}}(f) := \frac{1}{N} \sum_{j=1}^{N} \tilde{l}(f(x_j), \hat{y}_j).
\]
Classification with flipping errors [Natarajan et al. 13]

• Suppose workers are truthfully reporting, how to de-bias?

\[\tilde{l}(t, y) := \frac{(1 - p_{-y})l(t, y) - p_y l(t, -y)}{1 - p_+ - p_-}, \quad p_+ + p_- < 1. \]

• Why does it work? [un-biased in expectation]

\[\mathbb{E}_{\tilde{y}}[\tilde{l}(t, \tilde{y})] = l(t, y), \forall t. \]

• Find \(\tilde{f}_I^* \) via minimizing the empirical risk w.r.t. \(\tilde{l}(t, y) \):

\[\tilde{f}_I^* = \arg\min_f \hat{R}_I(f) := \frac{1}{N} \sum_{j=1}^{N} \tilde{l}(f(x_j), \hat{y}_j). \]
Classification with flipping errors [Natarajan et al. 13]

• Suppose workers are truthfully reporting, how to de-bias?

\[\tilde{l}(t, y) := \frac{(1 - p_{-y})l(t, y) - p_y l(t, -y)}{1 - p_+ - p_-}, \quad p_+ + p_- < 1. \]

• Why does it work? [un-biased in expectation]

\[\mathbb{E}_{\tilde{y}}[\tilde{l}(t, \tilde{y})] = l(t, y), \forall t. \]

• Find \(\tilde{f}_\tilde{l}^* \) via minimizing the empirical risk w.r.t. \(\tilde{l}(t, y) \):

\[\tilde{f}_\tilde{l}^* = \arg\min_f \hat{R}_{\tilde{l}}(f) := \frac{1}{N} \sum_{j=1}^{N} \tilde{l}(f(x_j), \hat{y}_j). \]
Our mechanism

For each worker i:

- Estimate flipping errors $\tilde{p}_{i,+}, \tilde{p}_{i,-}$ based on $\{x_j, \tilde{y}_j\}_{j \neq i}$.
- Train $\tilde{f}_{i,-i}^*$ using [Natarajan et al. 13] with data from $j \neq i$.

\[\hat{y}_i \quad \tilde{f}_{i,-i}^*(x_i) \]
How to estimate error rate

How do we estimate without ground-truth?

\[
P_+[p_{i,+}^2 + (1 - p_{i,+})^2] + P_-[p_{i,-}^2 + (1 - p_{i,-})^2] = \text{Pr(matching)}
\]

\[
P_+p_{i,+} + P_-(1 - p_{i,-}) = \text{Fraction of -1 labels observed}
\]

- Lemma: There is a unique pair of \(\tilde{p}_{i,+}, \tilde{p}_{i,-}\) s.t. \(\tilde{p}_{i,+} + \tilde{p}_{i,-} < 1\)

\(\Rightarrow\) Bayesian informative: \(\Leftrightarrow\) \(\text{Pr}(y_i = s | \tilde{y}_i = s) > \text{Prior}(s), s \in \{+, -\}\)
How to estimate error rate

How do we estimate without ground-truth?

\[\mathcal{P}_+[p_{i,+}^2 + (1 - p_{i,+})^2] + \mathcal{P}_-[p_{i,-}^2 + (1 - p_{i,-})^2] = \Pr(\text{matching}) \]
\[\mathcal{P}_+ p_{i,+} + \mathcal{P}_- (1 - p_{i,-}) = \text{Fraction of -1 labels observed} \]

- Lemma: There is a unique pair of \(\tilde{p}_{i,+}, \tilde{p}_{i,-} \) s.t. \(\tilde{p}_{i,+} + \tilde{p}_{i,-} < 1 \)
 \(\Rightarrow \) Bayesian informative: \(\iff \) \(\Pr(y_i = s | \tilde{y}_i = s) > \text{Prior}(s), \; s \in \{+, -\} \)
How to estimate error rate

How do we estimate without ground-truth?

\[
P_+[p_i^2 + (1 - p_i)^2] + P_-[p_i^2 + (1 - p_i)^2] = \Pr(\text{mismatch})
\]
\[
P_+p_i + P_-(1 - p_i) = \text{Fraction of -1 labels observed}
\]

- Lemma: There is a unique pair of $\tilde{p}_{i,+}, \tilde{p}_{i,-}$ s.t. $\tilde{p}_{i,+} + \tilde{p}_{i,-} < 1$

$\Rightarrow \text{Bayesian informative: } \Leftrightarrow \Pr(y_i = s|\tilde{y}_i = s) > \text{Prior}(s), \ s \in \{+, -\}$
Results

Effort exertion is a BNE.

Benefits of doing so?

- Less redundant assignment: not all tasks are re-assigned \Rightarrow budget efficient.

- Better incentive: Reporting symmetric uninformative signal & permutation signal is not an equilibrium.

- More learning flavor: no requirement of knowing workers’ data distribution.

- Better privacy preserving etc...
Results

Effort exertion is a BNE.

Benefits of doing so?

- Less redundant assignment: not all tasks are re-assigned \Rightarrow budget efficient.
- Better incentive: Reporting symmetric uninformative signal & permutation signal is not an equilibrium.
- More learning flavor: no requirement of knowing workers’ data distribution.
- Better privacy preserving etc...
Results

Effort exertion is a BNE.

Benefits of doing so?

- Less redundant assignment: not all tasks are re-assigned \(\Rightarrow \) budget efficient.
- Better incentive: Reporting symmetric uninformative signal & permutation signal is not an equilibrium.
- More learning flavor: no requirement of knowing workers’ data distribution.
- Better privacy preserving etc...
Results

Effort exertion is a BNE.

Benefits of doing so?

- Less redundant assignment: not all tasks are re-assigned \Rightarrow budget efficient.
- Better incentive: Reporting symmetric uninformative signal & permutation signal is not an equilibrium.
- More learning flavor: no requirement of knowing workers’ data distribution.
- Better privacy preserving etc...
Results

Effort exertion is a BNE.

Benefits of doing so?

- Less redundant assignment: not all tasks are re-assigned ⇒ budget efficient.
- Better incentive: Reporting symmetric uninformative signal & permutation signal is not an equilibrium.
- More learning flavor: no requirement of knowing workers’ data distribution.
- Better privacy preserving etc...
A case study: collusion is not an equilibria

Suppose $j \neq i$ collude by reporting -1

\[
\mathcal{P}_+(p_{i,+}^2 + (1 - p_{i,+})^2] + \mathcal{P}_-(p_{i,-}^2 + (1 - p_{i,-})^2] = 1.
\]

\[
\mathcal{P}_+ p_{i,+} + \mathcal{P}_- (1 - p_{i,-}) = 1.
\]

\[
\Rightarrow \tilde{p}_{i,+} = 1
\]

\[
\Rightarrow \text{the solution interprets the missing of } +1 \text{ as high error rate.}
\]

\[
\tilde{l}(t, y = -1) := \frac{(1 - \tilde{p}_{i,+})l(t, -1) - \tilde{p}_{i,-} l(t, +1)}{1 - \tilde{p}_{i,+} - \tilde{p}_{i,-}} = l(t, +1)
\]

\[
\Rightarrow \text{the surrogate loss punishes this particular class}
\]

\[
\Rightarrow \text{better to report } +1 \text{ to match.}
\]
A case study: collusion is not an equilibria

Suppose $j \neq i$ collude by reporting -1

$$\mathcal{P}_+\left(p_{i,+}^2 + (1 - p_{i,+})^2\right) + \mathcal{P}_-\left(p_{i,-}^2 + (1 - p_{i,-})^2\right) = 1.$$

$$\mathcal{P}_+ p_{i,+} + \mathcal{P}_- (1 - p_{i,-}) = 1. \quad \Rightarrow \tilde{p}_{i,+} = 1$$

⇒ the solution interprets the missing of +1 as high error rate.

$$\tilde{l}(t, y = -1) := \frac{(1 - \tilde{p}_{i,+})l(t, -1) - \tilde{p}_{i,-}l(t, +1)}{1 - \tilde{p}_{i,+} - \tilde{p}_{i,-}} = l(t, +1)$$

⇒ the surrogate loss punishes this particular class

⇒ better to report +1 to match.
A case study: collusion is not an equilibria

Suppose \(j \neq i \) collude by reporting \(-1\)

\[
P_+(p_{i,+}^2 + (1 - p_{i,+})^2] + P_-(p_{i,-}^2 + (1 - p_{i,-})^2] = 1.
\]

\[
P_+p_{i,+} + P_-(1 - p_{i,-}) = 1.
\]

\(\Rightarrow\) the solution interprets the missing of \(+1\) as high error rate.

\[
\tilde{l}(t, y = -1) := \frac{(1 - \tilde{p}_{i,+})l(t, -1) - \tilde{p}_{i,-}l(t, +1)}{1 - \tilde{p}_{i,+} - \tilde{p}_{i,-}} = l(t, +1)
\]

\(\Rightarrow\) the surrogate loss punishes this particular class

\(\Rightarrow\) better to report \(+1\) to match.
Summary

What we achieve

- A classification problem with strategic data sources.
- A classification aided approach to elicit information.
- Enjoy several favorable properties.

Hope to see more on how machine learning can help information elicitation

Thank you!