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ABSTRACT OF THE DISSERTATION

Designing Behavior-Aware AI Systems to Influence Human Decision-Making

by
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Professor Chien-Ju Ho, Advisor

Artificial intelligence (AI) demonstrates superiority over humans in many applications, such

as image processing, speech recognition, and decision-making. AI systems are more efficient

and accurate in information processing and computation, making them invaluable in assisting

human decision-making across domains like healthcare, finance, and academia. Despite

these strengths, real-world applications often involve complex, context-specific judgments

and a deep understanding of human values, which current AI systems might not fully grasp.

In domains requiring creativity and critical thinking, AI systems heavily rely on existing

human knowledge. Humans, however, possess unique strengths such as intuition, which aids

decision-making in uncertain or novel situations, and moral reasoning, which transcends

mere efficiency or optimization. Therefore, combining the strengths of both humans and AI

systems is essential for effective decision-making in real-world applications.

While AI systems offer significant advantages in supporting human decision-making, their

incorporation poses considerable challenges. Human decision-making is complex and charac-

terized by numerous unique traits. Empirical studies reveal that humans can be irrational,

unconscious, and sometimes unpredictable, exhibiting various biases such as framing effects

and confirmation bias. To develop AI systems that can interact effectively with humans, it

is crucial to consider these human traits. However, the integration of human decision models

xiv



into AI systems has not been sufficiently explored in the field of human-AI interaction. Un-

derstanding and predicting human behavior and beliefs can enhance AI’s ability to support

and influence human decision-making, leading to more effective and human-aligned out-

comes. By incorporating human decision models, AI systems can provide more personalized

and context-aware assistance, improving both decision quality and human satisfaction.

In this dissertation, we address the characteristics of human decision-makers and explicitly

incorporate human models into algorithm design. Our study aims to model human behavior

and beliefs about AI systems in both one-shot and sequential decision-making scenarios. By

leveraging existing research in psychology and economics, as well as data-driven methods us-

ing data collected from real humans, we develop models that predict actions more accurately

than those based on the assumption of human rationality. We also construct belief models

to describe how humans adjust their actions in response to other players within the same

decision-making environment. Utilizing these human models, we explore strategies to assist

or influence human decisions by designing information signals, modifying decision-making

environments, and developing AI teammates that operate alongside humans. Real human-

subject experiments are conducted to gain a deeper understanding of human behavior in

specific applications and to validate that our designed AI systems can effectively interact

with human decision-makers, guiding their decisions toward predefined goals.
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Chapter 1

Introduction

Artificial Intelligence (AI) has made significant changes in our daily life. In game playing,

AI can achieve better performance than even the most talented human player; for example,

DeepMind’s AlphaGo beat the world champion in 2016. AI models can help humans conduct

dangerous missions or perform simple repetitive tasks, such as Boston Dynamics’ robot dogs

utilized in search and rescue missions. Reinforcement learning algorithms can solve complex

tasks when a proper reward function is defined, and recommender systems might know users’

preferences better than they do themselves, thanks to large-scale data mining techniques.

Large language models (LLMs) can pass some professional and academic exams (e.g., GPT-4

scored in the top 10% in GRE Verbal and AP Statistics [2]), and even possibly outperform

human experts in some domains [188, 114]. Compared with human decision-makers, AI

algorithms show advantages in accuracy, scalability, and speed, so they are deployed to

assist human decision-makers or even significantly influence their decisions.

However, AI systems are not yet ready to replace human decision-makers in every domain. AI

systems can exhibit biases in their decisions, such as in healthcare (for example, [133] found

that computer-aided diagnosis (CAD) systems have lower accuracy for minority groups than

for the majority), hiring, and image generation. They might violate privacy requirements

or intellectual property rights and raise ethical concerns in high-stakes domains when their

decisions are not aligned with human values. It is often challenging to design AI systems

that align with human-intended goals. Many advanced models rely on a predefined loss

function, which can be challenging or even impossible to define in some cases (for example,

designing an AI system to solve the problem of Goldbach’s conjecture). Therefore, it is

necessary to involve both humans and AI systems in the decision-making process to leverage

the advantages of both.
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Incorporating human models into algorithm design could make AI more accurate, efficient,

and transparent when humans are in the loop. Human decision-making models include per-

sonal utility, preferences, beliefs, intents, and other external factors such as social norms

and cultural differences. It is hard to precisely capture human behavior because real hu-

mans are irrational, unconscious, and often unpredictable. Previous work has investigated

the characteristics of the human decision-making process and proposed models to describe

specific types of biased behaviors. For example, the hyperbolic discounting factor [134] is

proposed to capture the inconsistency and disproportion of human discounting of short-term

rewards and long-term rewards. Even without prior knowledge, it is still feasible to collect

human behavior and responses, and then build human models using a data-driven approach

[89]. Whether from prior knowledge or through a data-driven approach, realistic human

models are far from the rational assumption (maximizing expected utility), which changes

the optimization problem for designing AI systems to interact with human decision-makers.

This dissertation examines the interactions between AI systems and human decision-makers,

focusing on scenarios where human decisions will result in rewards for another party. For

example, when customers purchase items online, the shopping website earns profits. The

website can design its layout, modify product information, and adjust item prices to attract

potential customers. In this context, the shopping website is referred to as the principal,

defined as the party or individual with the ability and power to influence human decision-

makers. The principal aims to utilize AI systems (e.g., the recommendation system used by

the shopping website) to guide human decisions in alignment with its preferences.

Figure 1.1 provides a general decision-making framework used in this dissertation. The

decision-maker collects information from the decision-making environment, and their deci-

sions subsequently update the environment. AI systems can be deployed into almost every

aspect of this decision-making framework to influence human decisions and their outcomes.

To design AI systems that can effectively interact with human decision-makers, we begin by

modeling human behavior in both one-shot and sequential decision-making environments.

We propose both method-based and data-driven approaches to build human behavior mod-

els, demonstrating their superiority in predicting human actions over commonly assumed

rational models. Using these human models, we explore strategies to influence decisions by

designing information signals, modifying decision-making environments, and developing AI

teammates that act concurrently with humans.
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Figure 1.1: The decision-making framework discussed in this dissertation involves the deci-
sion maker gathering information from the environment and taking actions that subsequently
update the environment. We explore methods to modify the environment (in Chapter 3),
select relevant information (in Chapter 4 and Chapter 5), and design AI teammates (in
Chapter 6) for the decision-maker, with the goal of influencing the decisions made by real
humans.

The dissertation is organized as follows:

In Chapter 2, we discuss the decision-making problem setup in both one-shot games and

sequential cases. We introduce the common assumption of rationality or optimal behavior,

as well as some state-of-the-art methods to solve those decision-making problems, which will

be used as baselines in our study.

In Chapter 3, we discuss how AI systems could update the decision-making environment to

induce humans to take certain actions or make (near) optimal decisions in sequential decision-

making problems. We relax the common assumption that the decision-maker is rational and

incorporate a biased human model into the environment design problem. We propose two

design methods for AI models and run experiments to evaluate human decisions influenced

by the proposed AI systems. Our findings highlight the need to incorporate realistic human

behavior models when designing AI systems to work with real humans. This Chapter is

based on

Yu, G., & Ho, C. J. (2022). Environment Design for Biased Decision Makers. In

IJCAI (pp. 592-598).

In Chapter 4, we investigate what information an AI system should present to the decision-

maker. We seek the answer by framing the question as an information design problem. In
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information design, a sender (the AI system) aims to design an information disclosure pol-

icy to influence the receiver (the human decision-maker) in decision-making. We propose

a general architecture to solve this problem for various behavior patterns beyond the stan-

dard Bayesian rational assumption. To accurately model human decision-makers, we utilize

a similar method-based approach as in Chapter 3, and we also explore some data-driven

method and find the data-driven method could predict human actions more accurately than

the method-based approach in our experiment setup. This Chapter is based on

Yu, G., Tang, W., Narayanan, S., & Ho, C. J. (2023). Encoding human behavior

in information design through deep learning. In Proceedings of the 37th Inter-

national Conference on Neural Information Processing Systems (pp. 7506-7528).

In Chapter 5, we expand our research beyond the optimization of pre-defined utility functions

in AI systems to address ethical decision-making challenges. Here, AI systems are tasked

with assisting human decision-makers in the allocation of medical resources. We examine

the impact of predictive information, the sources of these predictions, and the alignment

of values between AI systems and humans on human ethical decision-making. Our findings

indicate that predictive information significantly influences human ethical preferences during

the decision-making process. This work is based on

Narayanan, S., Yu, G., Tang, W., Ho, C. J., & Yin, M. (2022). How Does

Predictive Information Affect Human Ethical Preferences?. In Proceedings of

the 2022 AAAI/ACM Conference on AI, Ethics, and Society (pp. 508-517).

and

Narayanan, S., Yu, G., Ho, C. J., & Yin, M. (2023). How does Value Similarity

affect Human Reliance in AI-Assisted Ethical Decision Making?. In Proceedings

of the 2023 AAAI/ACM Conference on AI, Ethics, and Society (pp. 49-57).

In Chapter 6, we explore the design of AI teammates as decision-makers that influence

human decisions. Rather than having humans as the sole decision-makers, an AI teammate

collaborates with them in real times, with joint rewards determined by the actions of both

humans and AI systems. This cooperation introduces new challenges related to human

dynamic behavior. To address these challenges, we consider the beliefs of human players and
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how they perceive the behavior of their AI partners. We train AI teammates to act in ways

that reveal their action plans, thereby facilitating smoother collaboration with their human

counterparts. We design various two-player cooperation games to assess the effectiveness of

human-AI collaboration. This Chapter is based on

Yu, G., Kasumba, R., Ho, C. J., & Yeoh, W. (2024). On the Utility of Accounting

for Human Beliefs about AI Behavior in Human-AI Collaboration. Under review.

We summarize the dissertation in Chapter 7, and discuss limitations of our work and some

future directions along this line of research. We include proofs of theorems, extensive exper-

imental results, and details of our human-subject experiments in the Appendix.

5



Chapter 2

Background

In this chapter, we present the background and an overview of the techniques employed

in this dissertation. We begin by discussing the general problem settings for one-shot and

sequential decision-making problems, as well as models of rational (or optimal) decision-

makers. Following this, we delve into the techniques used to design AI systems, which will

serve as baselines in the following chapters.

2.1 Game Theory

Game theory is a mathematical framework that investigates the strategic interactions of

multiple agents and the outcome of their decisions [207, 186]. It’s prevalent in numerous

fields, such as economics, business, political science and computer science. In a one-shot

game with single player, we define the action space as a ∈ A, and utility function U : A→ R.
For games with n players, we define the joint action space as A = A1× · · · ×An and reward

function Ui : A → R for each player i ∈ [n]. Here Ai is the action space of the i-th player,

and Ui is the utility function of the i-th player. The notation (ai, a−i) refers to the action

taken by the i-th player and the actions of all other players except the i-th player.

Rational agents. The assumption of rational agents is widely adopted in game theory. All

players in a game are usually assumed to be rational, meaning they consistently act in a

way that maximizes their own utility based on their preferences and knowledge of the game.

This assumption implies that agents can reason about the possible outcomes of their choices

and select the one that best serves their interests or matches their preferences. Additionally,

rational agents can reason about the actions of other players. Key concepts such as Nash

Equilibrium are derived from the rationality assumption. In Nash Equilibrium, each player’s
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strategy is optimal given the strategies of others, and no player has an incentive to deviate

from their chosen actions.

We model the rational/optimal agent as a player who always chooses actions to maximize

their utility. That is, in one-shot game, a rational agent will always choose action to maxi-

mize their utility, a∗ = argmaxa U(a). For multi-player games, we take the notion of Nash

Equilibrium. Optimal agents will take a∗i which satisfies Ui(a
∗
i , a

∗
−i) ≥ Ui(ai, a

∗
−i),∀i ∈ N ,

meaning no agent could gain more utility via changing their actions. In the scope of this

dissertation, we simply assume the existence of at least one equilibrium, although this is not

always true in the general case.

Level-k reasoning. In multi-player games, level-k reasoning describes how players make

decisions based on their predictions of the likely actions of other players. A level-0 agent

ignores the actions of other players and takes actions to maximize their own utility. A level-k

player assumes all other players are behaving as level-(k− 1) players, and thus their optimal

policy is the best response to level-(k − 1) players. For player i at level-k, their action is

denoted as a∗i,k = argmaxa∈Ai
Ui(a, a

∗
−i,k−1), where all other players are assumed to take their

actions as level-(k − 1) agents, a∗−i,k−1. The optimal solution (which can be derived using

the definition of Nash Equilibrium) can be viewed as all players taking level-∞ actions.

Biased agents. The rationality assumption may not hold when decision-makers are real

humans. Previous research in psychology and economics has shown that humans often devi-

ate from being rational in multiple cases. To model biased decision-makers, we utilize both

model-based methods (such as hyperbolic discounting factors and discrete choice models)

and data-driven approaches using real human datasets collected from designed experiments.

We will discuss the details of biased decision-maker models in the following chapters.

2.2 Markov Decision Process

For sequential decision problems, a Markov decision process (MDP) is a common approach

to describe the problem setup. Here, we introduce the formulation of MDPs and techniques

to find optimal solutions. We will extend the discussion to cases involving irrational or biased

decision-makers and explore methods to address these challenges later.
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MDP formulations. A standard formulation of MDP is defined asW = ⟨S,A, P,R⟩, where
S is the set of states, A is the set of agent actions, P (s′|s, a) is the transition probability

from state s to state s′ after taking action a, and R(s, a) is the bounded reward obtained by

the agent after he takes action a at state s. The transition dynamics describe the key feature

of MDP, the Markov property, which states that the future state will only depend on the

current state and the action taken, while being independent of the action or state history.

Optimal policy. The agent aims to find a (stochastic) policy Π : S×A→ [0, 1], specifying

the probability of actions to be taken in each state. The objective is to maximize the

cumulative reward over either a finite or infinite time horizon. The cumulative reward is

defined as shown in Equation 2.1, where T is the maximum decision time in cases of finite

time horizon, and 0 < γ ≤ 1 is the discount factor for cases of infinite time horizon. In this

formulation, (st, at) represents the state and action at time t, the initial state is given as s0,

and st+1 ∼ P (s|st, at) is drawn from the transition dynamics.

E

[
T∑
t=0

R(st, at)

]
or E

[
∞∑
t=0

γtR(st, at)

]
(2.1)

Multi-agent MDP. When multiple decision-makers are available, we could extend the

formulation into a multi-agent case, represented as W =
〈
S, α,Ai|i∈[α], Pi|i∈[α], R

〉
, where α is

a finite set of players; Ai is the action set available to player i. P : S×A1×· · ·×A|α|×S →
[0, 1] is the transition function that determines the next state given all players’ joint actions.

Ri : S × A1 × · · · × A|α| → R is the reward function assigned to player i given their joint

actions.

The challenge brought by multi-agent MDP is that when each agent optimizes their own

policy without considering the actions of others, it can disrupt the Markov property, making

solutions non-stationary or unstable. Some techniques have been proposed to solve this

challenge in some special cases, such as the two-player adversarial case and the multi-player

cooperative case. In this work, we discuss a special two-player cooperation case in Chapter 6.
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2.3 Techniques

In this dissertation, we use value iteration, policy gradient, and their variants to solve the

sequential decision-making problems. Here, we introduce the standard techniques to solve

MDPs with an infinite time horizon, and these approaches could be applied to the finite time

horizon case as well.

2.3.1 Value Iteration

Before we introduce value iteration, we introduce the concept of the Bellman Equation, which

decomposes solving the optimization problem into simpler sub-problems. It introduces a

value function V (s), which is the expected cumulative reward starting from the initial state.

The optimal value function V ∗ satisfies Equation (2.2).

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′

P (s′|s, a)V ∗(s′)

]
(2.2)

We derive the value iteration method from the Bellman Equation. Value iteration is known

for its simplicity and effectiveness in finding the optimal policy for finite MDPs. However, it

can be computationally intensive for large state spaces, as it requires updating the value for

each state at every iteration. Despite this, value iteration remains a fundamental algorithm

in reinforcement learning, providing a clear and direct approach to solving MDPs. As shown

in Equation (2.3), we iteratively update the value function and Q-values until convergence

to find the optimal solution a∗ at each state. The convergence properties and theoretical

guarantees of value iteration make it a reliable method for policy determination.

a∗ = argmax
a

Q(s, a)

V (s) = max
a

Q(s, a)

Q(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)V (s′)

(2.3)
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For problems with large or continuous action spaces or state spaces, where the table repre-

sentation of Q values might not be feasible, methods such as Deep-Q Network (DQN) have

been proposed to solve the problem.

2.3.2 Policy Gradient

Policy gradient methods are a class of reinforcement learning algorithms that optimize the

policy directly, rather than estimating value functions. These methods are particularly useful

in environments with continuous action spaces or where the policy needs to be represented

by complex functions, such as neural networks. The key idea is to parameterize the policy

πθ(a|s) with a set of parameters θ (for example, the weights of a neural network), and

optimize the policy parameters using the gradient of the expected return J as shown in

Equation (2.4). The policy gradient theorem provides the foundation for these methods (the

proof can be found in [170] Section 13.2), where Qπ(s, a) is the Q-value under policy π.

J = E

[
∞∑
t=0

γtR(st, πθ(a|s))
]

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Qπ(s, a)]

(2.4)

Policy gradient methods, such as REINFORCE and Actor-Critic algorithms, leverage the

gradient ∇θJ(θ) to iteratively update the policy parameters in a direction that increases the

expected return. These methods are powerful for their flexibility and capability to handle

high-dimensional and continuous action spaces.

Actor-Critic. Actor-Critic methods combine both policy-based methods (the Actor) and

value-based methods (the Critic). The actor will learns a policy to make a decision, and the

critic evaluates the actions taken by the actor. In our work, we use neural networks of the

same structure to represent the actor and the citric respectively, and optimize the neural

network parameters with gradient methods.
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2.3.3 Proximal Policy Optimization

Traditional policy gradient methods, while effective, often suffer from high variance and

instability during training. [157] introduce a variant of policy gradient methods called Prox-

imal Policy Optimization (PPO), which utilizes a surrogate objective function that ensures

the new policy does not deviate too much from the old policy. This is achieved by constrain-

ing the policy update to stay within a small, trust region around the current policy, thereby

preventing large, potentially harmful updates. The policy objective function is shown in

Equation (2.5):

Ât(s, a) = R(s, a) + γ
∑
s′

V (s′)P (s′|s, a)− V (s),

LCLIP (θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

(2.5)

where:

• rt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio between the new policy and the old policy.

• Ât is the estimated advantage function at time step t.

• ϵ is a hyperparameter that controls the clip range.

• clip(rt(θ), 1−ϵ, 1+ϵ) constrains the probability ratio to lie within the range [1−ϵ, 1+ϵ].

The clipping mechanism ensures that the update is conservative by limiting the extent to

which the policy can change at each step. This helps maintain a balance between exploration

and exploitation, reducing the risk of catastrophic performance drops. Due to its robustness,

ease of tuning, and strong empirical performance, we use this method as baselines to develop

our AI systems.

11



Chapter 3

Updating Decision-Making

Environments

In this chapter, we examine how AI systems can modify the decision-making environment

to encourage humans to take specific actions or make (near) optimal decisions in sequential

decision-making problems. Given that real humans may exhibit biases during the decision-

making process, it is essential to account for these biases when designing AI systems. Our

findings indicate that ignoring these biases can render AI systems ineffective, whereas incor-

porating prior knowledge of these biases can maintain the effectiveness of the AI systems.

This chapter is based on joint work with Chien-Ju Ho [203]. I contributed to this work by

framing the problem formulation, proposing solutions, and conducting both simulations and

human-subject experiments.

To study this problem, we consider instances where AI systems and human decision makers

might have mis-aligned objectives. More specifically, AI systems are playing as a principal,

and human decision makers are playing as an agent, in the same sequential decision making

environment. The goal of the agent is to take a sequence of actions to maximize his total

payoff1. The principal cannot directly take actions but can update the environment to

influence the agent’s actions and receive reward based on the agent’s actions. The goal of

the principal is to update the environment such that the agent takes actions that maximize

the principal’s payoff.

This problem setting is motivated by several existing and potential applications. For exam-

ple, a user-generated content website might want to update their site to provide incentives,

such as badges or virtual points, to encourage users to consume and rate the content on their

website. An online retailer might want to decide when and whether to provide coupons to

1We use she to denote the principal and he to denote the agent respectively.
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nudge the user to make the purchase. An assistive AI agent might want to provide interven-

tions, such as reminding messages, to help humans achieve personal goals, such as reducing

the amount of time spent on social networking sites.

If we assume the agent is rational and makes decisions according to the optimal policy,

this problem is similar to several existing works in the literature, including policy teach-

ing [209, 210], in which the principal updates the reward functions to induce the agent to

take certain policies, and the poisoning attack for reinforcement learning [145, 212], in which

an adversarial principal aims to modify the training environment such that the agent learns

the undesired policy. In this work, we are motivated by the natural setting in which the

agent is a human being and might exhibit biases in decision making. As observed in em-

pirical studies, humans are known to exhibit systematic biases in making decisions. For

example, humans might not have the ability to reason far ahead into the future [91] or might

exhibit present bias [134], giving stronger weights on immediate costs and benefits rather

than balancing them against those in the future.

We study this decision making problem under the formulation of MDP. Our setting deviates

from the standard MDP in two perspectives. First, there are two parties, a principal and

an agent, in the same decision making environment. The principal and the agent share

the same information about the state, state transition, and action set. However, they have

different reward functions. Moreover, while the agent can take actions in the environment,

the principal can only update the environment to influence the agent’s actions. Second,

the agent exhibits decision-making biases in his solution to the MDP. Since the focus of this

paper is in sequential decision making, we focus on the time-related decision biases, including

myopic decision making, bounded rationality, and present bias.

We consider two sets of design spaces that the principal can choose from to update the

environment. In the first design space, the principal can modify the agent’s reward function

in MDP, and the agent’s policy is based on the modified reward function. This design space

corresponds to the scenario in which the principal can update the environment in a global

manner (e.g., changing the badge design in social networking sites), and the agent will take

actions in the updated environment. In the second design space, when the agent is choosing

an action during decision time, the principal can offer additional incentives to nudge the

agent to choose a different action. This design space corresponds to the scenario in which

the principal can take interventions during the agent’s decision time (e.g., offering a coupon
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when the user navigates to a certain page). In environment design with both design spaces,

the goal of the principal is to maximize her own total rewards, depending on the principal’s

reward function and the agent’s actions, subject to a budget constraint that the amount of

environment updates is limited.

We formulate the principal’s environment design problems as constrained optimization prob-

lems under both design spaces. We first show that the optimization problems are generally

NP-hard to solve for both design spaces. We then propose relaxed formulations and corre-

sponding algorithms for solving the problems. To evaluate the effectiveness of our proposed

algorithms for environment design, we conduct simulations to understand the algorithm

performance over a range of scenarios and parameters. Moreover, to examine whether we

can indeed update the environment to influence the decisions of real-world human decision

makers, we conduct a human-subject experiment with 300 workers from Amazon Mechani-

cal Turk. Our results demonstrate the environment updates derived by our algorithms can

effectively influence humans’ decisions and lead to better total payoff.

3.1 Related Work

The work in this chapter is built on the formulation of Markov decision process commonly

seen in reinforcement learning. Instead of solving the agent’s optimal policy, in this work,

we consider a Stackelberg game formulation, in which the principal can first choose how to

update the decision-making environment, and then the agent makes decisions in the updated

environment. The goal of the principal is to obtain the maximum total rewards derived

from the agent’s actions. When the agent is rational and chooses the optimal policy, our

problem is similar to policy teaching [209, 208, 210] and poisoning attack for reinforcement

learning [145, 212] in the literature. Our work deviates from these works by incorporating

human behavioral models in the framework and in conducting real-world human subject

experiments to evaluate our approaches.

We incorporate the human behavioral models about biased decision-making from behavioral

economics. In particular, we include the bounded rationality [91], which describes the in-

tuitions that human decisions might not be optimal due to limited computation power or

lack of future information (a myopic agent can be considered as a bounded-rational agent

that only cares about the current payoff), and present bias [134], which describes humans’
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tendency to give stronger weights on immediate costs and benefits rather than balancing

them against costs and benefits in the future. While these behavioral models are empirically

observed to often better align with real human behavior, there are still relatively limited

research that incorporate them in studying computational systems with humans in the loop.

There have been works that aim to incorporate behavioral models in computational frame-

works. For example, the research on incentivizing exploration [63, 116] (see Chapter 11 in

the recent survey by [164]) studies how a principal can incentivize myopic agents to per-

form exploration in bandit learning via designing specific monetary payments or information

policies. Similarly, there have been studies that incorporate human models in bandit learn-

ing through accounting for the setting in which the arm quality is generated by humans

that respond to algorithm behavior [110], the feedback of each arm pull is generated by

humans with herding bias [171], and the reward distribution of each arm is influenced by

the arm pull [174]. [172] relax the Bayesian rational assumption in incentive design; [100]

and [101] study the planning for time-inconsistent agents in environments characterized

by graphical models; [120, 121, 95] incorporate biased human model in goal recognition.

Moreover, there have been works examining real-world human behavior in computational

environments [211, 155, 73, 46, 47, 176]. Our work aligns with this line of research which

incorporates realistic human behavioral models in computation. In particular, we focus on

the study of environment design in sequential decision-making environments characterized

by Markov decision process with biased decision makers.

There have been other lines of research that also includes humans in the loop of reinforcement

learning frameworks. For example, inverse reinforcement learning [129, 1, 146] aims to infer

the reward functions in MDP through observing demonstrations of the optimal policy. If

the demonstrator is a human being, the demonstrations could be noisy or contain behavioral

biases. There have been studies [58, 159, 87, 215] aiming to incorporate human behavioral

biases in the inference process and infer both the rewards and biases simultaneously. While

the research goal is different, this line of research complements our study in that the tech-

niques can be applied to infer the reward function and human biases in our formulation.

This work differs from this line of work in that our goal is to induce humans to perform

desired behavior through finding optimal ways to update the decision-making environment

instead of improving the learning algorithms.
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3.2 Problem Formulations and Models

We discuss the problem formulation for environment design and two proposed methods in

this section.

3.2.1 Environment Design Formulations

Decision-making environment. The decision-making environment formulation differs

from the standard MDP introduced in Section 2.2. Specifically, we define the environment

as a finite-time horizon MDP with two sets of reward functions: W = ⟨S,A, P,Ra, Rp, T ⟩,
where S is the set of states, A is the set of agent actions, P (s′|s, a) is the transition probability

from state s to state s′ after taking action a, T is the time horizon, Ra(s, a) is the bounded

reward obtained by the agent after he takes action a at state s, and Rp(s, a) is the bounded

reward obtained by the principal after the agent takes a at state s.

Agent decision-making policy. Since the agent could be biased and might not make time-

consistent decisions, we represent the agent policy in a time-inconsistent manner: Π : S×T→
A. In particular, for an agent policy π ∈ Π, π(s, t) denotes the action the agent will take in

state s at time t when following policy π. We formulate the agent as a planner H : W→Π,

with input being an environment w ∈ W and output being a policy π ∈ Π according to his

decision-making model. The agent’s goal is to maximize his perceived (potentially biased)

rewards. To characterize the time-inconsistent behavior of the agent, we define the notion

d(t), the discounting factor that the agent perceives the payoff obtained t steps ahead. In

the standard setting, d(t) is often assumed to be in the form of γt with γ ∈ (0, 1] being

the time-discounting factor. In this paper, we address different forms of d(t) that captures

different agent models, which will be discussed later.

With d(t) defined, we now characterize the agent policy by defining a perceived Q-function2

Qπ(s, a, t, t̂), specifying the agent’s perceived value at time t for him to take action a in state

s at a future time t+ t̂ and follows policy π afterwards. This additional t̂ parameter captures

the agent’s time-inconsistent belief: what the agent thinks he will do in a future time t + t̂

while at time t might be different from what he will actually do at time t+ t̂. We also abuse

the notation and let π(s, t, t̂) denote the action the agent thinks what he would do in state

2This definition extends the standard Q-function to incorporate the agent’s biased decision making.
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s in a future time t + t̂ while at time t. This perceived Qπ(s, a, t, t̂) can be expressed as

the sum of (1) the perceived reward for taking action a in a future time step t + t̂ while at

time t: d(t̂)Ra(s, a) and (2) the expected future reward for following policy π after t + t̂:

E[
∑T

t′=t+t̂+1 d(t
′ − t)Ra(sπt′ , π(s

π
t′ , t, t

′ − t))]], where sπt′ is the random variable denoting the

state at t′ if the agent follows π after t + t̂. The expectation is over the randomness of the

state transition.

Since the policy is only executed with t̂= 0 (t̂ > 0 represents the agent’s belief of what he

would do t̂ steps ahead), we let Qπ(s, a, t) = Qπ(s, a, t, 0) and π(s, t) = π(s, t, 0). The agent

policy π∗ can then be written as:

π∗(s, t) = argmax
a

Qπ∗
(s, a, t) (3.1)

For a given environment, the agent policy can be solved by applying standard techniques,

such as backward induction or value iterations as in Section 2.3.1.

Biased agent models. As discussed above, we use the notion d(t), denoting how much

the agent discounts the payoff t steps in the future to characterize the agent’s behavior.

This notion characterizes many common behavioral models, with some illustrative examples

below:

• Standard model: in the literature, The agent is often assumed to have a consistent time-

discounting factor γ ∈ (0, 1] for discounting future payoff. Therefore, we can set d(t) = γt

to represent this standard assumption.

• Bounded rationality or short-sightedness: It considers the scenario in which the agent can

only perform limited computation due to either time, cognitive, or information constraints.

This can be approximated by considering that the agent only has information or only can

reason about information within τ steps. We can formulate this by setting d(t) = γt for

all 0 ≤ t ≤ τ , and d(t) = 0 for all τ < t ≤ T . In the special case of myopic agent, who

only cares about the immediate payoff and not the future payoffs, we can set τ = 0.

• Present bias: When choosing between earning 10 dollars 100 days from now or 11 dollars

101 days from now, most people will choose the latter. However, when again being asked

to choose between earning 10 dollars now or 11 dollars tomorrow, many people will change

their decisions. This example illustrates the present bias, describing humans’ inconsistency
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in discounting future payoffs. One common way to account for this behavior is through

hyperbolic discounting factor: d(t) = 1
1+kt

for k > 0.

Design space of the principal. Recall that the principal aims to update the environment

to influence the agent’s actions. We consider two natural sets of “updates” the principal can

make to the environment:

• Reward function modification: The principal may pay costs to modify the agent’s reward

function to influence the agent’s decisions. Formally, the principal can modify the agent’s

reward from Ra(s, a) to R̄a(s, a) = Ra(s, a)+c(s, a) for taking action a in state s by paying

a cost equal to the absolute value of the modification |c(s, a)|. The agent will only observe

the modified reward function and will make decisions based on R̄a. Note that this type

of environment updates is performed offline in the sense that it updates the environment

before the agent starts to make their decisions in the environment.

• Action nudge: We also consider another design space, in which the principal can offer a

non-negative incentive c(s, a, t) ≥ 0 to nudge the agent to take action a in state s at time

t. The agent’s reward in state s would then be R(s, a)+ c(s, a, t) if taking action a at time

t while the future perceived rewards do not change. Different from the reward function

modification, this nudge influences the agent’s decisions during decision time.

The principal’s goal is to maximize her total rewards derived from the agent’s actions under

the budget constraint that the total cost does not exceed budget B. Given the agent’s policy

π and the initial state distribution p0(s), let p
π
t (s) be the state distribution at time t when

the agent follows policy π, the principal’s total expected reward can be written as3:

T∑
t=0

∑
s∈S

pπt (s)R
p(s, π(s, t)) (3.2)

Hardness of environment design problem for biased agents. Before we discuss our

proposed methods, we first present an important, although perhaps not surprising, result

that if the agent exhibit biases in decision making, being oblivious of the biases could lead to

3We do not include the time-discounting factor for the principal’s payoff to simplify the presentations.
Our results and discussion can be easily extended to the setting with time-discounting factor.
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undesired outcome for the principal. The result showcases the importance of taking human

behavior into account in environment design4.

Lemma 1. If the principal performs environment design by assuming the agent is a standard

agent while the agent is boundedly rational, the ratio between the principal’s reward after

environment design compared with the principal’s reward obtained in environment design

with the correct agent model could be arbitrarily close to 0.

An intuitive example to prove lemma 1 is to consider a case where in order to receive a

high reward, one must sacrifice his current reward. Myopic agent will never sacrifice, so

the larger the high reward, worse myopic agent performed compared with optimal. More

detailed discussion is available in the appendix.

3.2.2 Reward Function Modification

We first consider the environment design problem in which the principal can influence the

agent’s decisions through modifying the agent’s reward functions Ra(s, a). Let c(s, a) be the

modification the principal makes on Ra(s, a), and R̄a(s, a) =Ra(s, a)+c(s, a) is the reward

function that the agent perceives and based on when making decisions. Let the updated

MDP environment be w̄, replacing the agent reward function as R̄a, and the agent policy

on this environment be π = h(w̄). The environment design problem for the principal is to

choose the set of updates {c(s, a)} to maximize her payoff subject to the budget constraint

B. Again, let the initial state distribution be p0(s), and pπt (s) be the state distribution at

time t when the agent follows policy π, we can formulate the environment design problem

as follows,

max
c

T∑
t=0

∑
s∈S

pπt (s)R
p(s, π(s, t))

s.t.
∑
s∈S

∑
a∈A

|c(s, a)| ≤ B ; π = h(w̄)

(3.3)

4All proofs are included in Appendix A.
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Note that this is a bi-level optimization problem, in which the principal is optimizing over

the space of {c(s, a)} while the agent is optimizing his policy in response to the principal’s

update in the form of π=h(w̄). To solve the inner optimization problem (the agent’s optimal

policy), we can define an updated Q̄π by replacing the reward Ra with R̄a and solve the policy

π using backward induction. We show that this bi-level optimization problem is generally

NP-hard to solve.

Theorem 2. It is NP-hard to solve the environment design problem with reward function

modification as defined in Equation (3.3).

Relaxed formulation. To address this hardness result, we propose to use a soft-max

stochastic policy ρ to relax the deterministic policy π. This relaxation makes the inner

optimization differentiable, so first-order optimization methods might be applied. Instead

of using π(s, t) to denote the chosen action, we use ρ(s, a, t) to represents the probability of

choosing action a in state s at time t. Moreover, we again use Q̄ρ to denote the perceived

cumulative reward for policy ρ. The definition is similar to Qπ except that we need to

incorporate the randomness of policy when evaluating the future reward. Moreover, we use

a soft-max form to approximate the agent policy: ρ(s, a, t) = eβQ̄
ρ(s,a,t)∑

a′ e
βQ̄ρ(s,a′,t) ,∀s, a, t.

Below we formulate the relaxed environment design problem. We now use pρt (s) to denote

the state distribution at time t (with pρ0(s) defined as the initial state distribution p0(s)

for notational simplicity) when the agent follows policy ρ. In addition, we explicitly layout

the state distribution over time following policy ρ as a constraint in the third constraint of

the optimization problem. Since the gradient of the optimization variables exists, we can

approach this optimization through a gradient-based algorithm, as in Algorithm 1.
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max
c

T∑
t=0

∑
s∈S

∑
a∈A

pρt (s)R
p(s, a)ρ(s, a, t)

s. t.
∑
s∈S

∑
a∈A

|c(s, a)| ≤ B

ρ(s, a, t) =
eβQ̄

ρ(s,a,t)∑
a′ e

βQ̄ρ(s,a′,t)
,∀s, a, t

pρt+1(s) =
∑
s′∈S

∑
a∈A

pρt (s
′)P (s|s′, a)ρ(s′, a, t),∀s, t

ρ(s, a, t) ≥ 0,∀s, a, t

(3.4)

Algorithm 1 Gradient-based Algorithm for Solving Equation (3.4)

1: Input: learning rate δ, maximal iterations N
2: initialize c, i = 0
3: while i < N do
4: sample ŝ ∈ S, â ∈ A
5: update R̄a(s, a), Q̄(s, a, t), ρ(s, a, t), pρt (s),∀s, a, t
6: calculate ∂ρ(s,a,t)

∂c(ŝ,â)
,
∂pρt (s)

∂c(ŝ,â)
,∀s, a, t

7: c(ŝ, â)← c(ŝ, â) + δ
∂
∑

pρt (s)R
p(s,a)ρ(s,a,t)

∂c(ŝ,â)

8: i← i+ 1
9: end while
10: return c

Discussion. When β→∞, ρ(s, a, t) approximates to a delta function with the probability

mass on the action with the highest Q̄ value, which recovers the original problem. Moreover,

recall that the Q function is defined with respect to the policy (when calculating the expected

future rewards). We can show that this soft-max relaxation converges to the Q function of

deterministic policy exponentially fast in β. In our simulations, we also empirically demon-

strate that setting a small β is enough to approximate the optimal of the original problem

in Equation (3.3).

Lemma 3. For any environment w, let πw and ρw be the agent’s deterministic and stochas-

tic policies following our model. Let Qπw(s, a, t) and Qρw(s, a, t) be the corresponding Q-

functions. For all (s, a, t), we have

|Qπw(s, a, t)−Qρw(s, a, t)| ≤ O(e−βC),
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where C > 0 is a constant and β is the parameter of ρ.

3.2.3 Action Nudge

We now formulate the environment design problem via action nudge. The principal can

choose to pay c(s, a, t) ≥ 0 to the agent if he takes action a in state s at time t. In this

approach, the agent’s perceived Q function does not change, but the agent’s action will be

influenced by this additional incentive, i.e., the agent will choose the action that maximizes

Qπ(s, a, t) + c(s, a, t) in state s at time t. Moreover, since the nudge is calculated offline but

deployed online, the budget constraint is satisfied in expectation. Formally, the principal’s

environment design problem can be written as:

max
c

T∑
t=0

∑
s∈S

pπt (s)R
p(s, π(s, t))

s.t.
T∑
t=0

∑
s∈S

c(s, π(s, t), t)pπt (s) ≤ B

π(s, t) = argmax
a
{Qπ(s, a, t) + c(s, a, t)},∀s, t

(3.5)

Solving this problem directly is again generally NP-hard due to the same bi-level optimization

property and the deterministic policy structure. Below we utilize the problem structure and

develop an alternative formulation.

Alternative formulation. Let π be the agent’s policy in the original decision-making

environment. The goal of action nudge is to make the agent change from action a=π(s, t) to

a new action a′. Assume the principal can break ties in any way she prefers when multiple

actions lead to the same payoff5, the cost the principal needs to pay to make the agent select

action a′ instead of a is c(s, a′, t) =Q(s, a, t)−Q(s, a′, t). We can pre-calculate all the cost

the principal needs to pay for action nudge c(s, a, t) = Q(s, π(s, t), t)−Q(s, a, t),∀s, a, t.
5While this assumption seems strong, it can be approximately satisfied by adding a arbitrarily small value

to c(s, a′, t) to make the agent break ties to align with the principal’s goal.
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With the above observations and the additional tie-breaking assumption, the environment

design problem via action nudge is reduced to selecting which action the principal should

nudge the agent to select for all (s, t). The nudged action a would generate a reward of

Rp(s, a) and incurs a cost c(s, a, t). The goal is to maximize the total rewards such that the

total cost is no larger than budget B in expectation. This problem reduces to a standard

constrained MDP problem.

max
ϕ

T∑
t=0

∑
s∈S

∑
a∈A

Rp(s, a)ϕ(s, a, t)

s.t.

T∑
t=0

∑
s∈S

∑
a∈A

c(s, a, t)ϕ(s, a, t) ≤ B∑
s′∈S

∑
a∈A

P (s|s′,a)ϕ(s′,a,t)=
∑
a∈A

ϕ(s,a,t+1),∀s, t∑
a∈A

ϕ(s, a, 0) = p0(s),∀s

ϕ(s, a, t) ≥ 0,∀s, a, t

(3.6)

In this optimization problem, ϕ(s, a, t) is the optimization variables, representing the joint

probability at time t for the agent to be in state s and take action a. To translate ϕ(s, a, t) to

the stochastic policy ρ(s, a, t), we have ρ(s, a, t) = ϕ(s,a,t)∑
a′∈A ϕ(s,a′,t)

. The optimization problem is

a linear program in ϕ(s, a, t). Therefore we can directly apply standard linear programming

solvers to solve this optimization problem. When the agent is in state s at time t, this

solution indicates that the principal should nudge and offers c(s, a, t) if ϕ(s, a, t) > 0. There

could be multiple actions that lead to ϕ(s, a, t) > 0 for a given (s, t), leading to offering

multiple nudges simultaneously. Lemma 4 shows that there exists a solution such that this

does not happen frequently and we can find such solution in polynomial time. The proof is

available in Appendix A.4.

Lemma 4. There exists an optimal solution ϕ∗ for problem 3.6, such that there are at most

one state-time (ŝ, t̂) and two actions a1, a2 such that ϕ∗(ŝ, a1, t̂) > 0 and ϕ∗(ŝ, a2, t̂) > 0.
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3.3 Experiments

We conduct both simulated and real-human experiments to evaluate our proposed methods

for environment design.

3.3.1 Simulations

In our simulations, we create a grid world of size 10 × 10. Each grid represents a state in

the MDP. There are four actions representing the direction agent can move to: {up, down,
left, right}. After each action, the agent moves to the nearby grid associated with the action

with 70% chance and to a random nearby grid with 30% chance. The initial state is in the

middle of the grid world. The time horizon T is set to be 20.

We initialize the principal’s reward function values to be uniformly drawn from the range

[0, 0.5]. We then randomly choose a 2×2 block as global optimal region and add 0.5 to the

reward values within this block. Similarly, we randomly draw 1 to 3 local optimal regions (2×2
blocks) by setting their reward lower than global optimal but higher than its neighbors. We

randomly generate 1,000 environments following the above procedure and report the average

results. on these 1,000 environments.

Different agent behavioral models. We start with the setting that the agent’s reward

function is the same as the principal’s, i.e., Rp(s, a) = Ra(s, a) for all (s, a). In this setting,

if the agent is behaving optimally, the principal does not need to update the environment.

Therefore, we focus on examining how the agent’s biased behavior impacts the total payoff

and how effectively environment design can help.

We first examine the impact of biased agents without environment design. We consider

agents with bounded rationality (or short-sightedness) and with present bias. Following the

formulation in Section 3.2.1, we modify τ for boundedly-rational agents and k for present-

bias agents. For boundedly-rational agents, we set γ=1 and vary τ to be from 0 to 9. For

present-bias agents, we vary k to be in {0.1,
√
0.1, 1,

√
10, 10}. The performance is measured

in terms of the principal’s objective. As shown in Figure 3.1, the principal’s payoff, even

when the reward function aligns with the agent’s, could decrease significantly when the agent

exhibits decision biases.
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(a) Boundedly-rational agents.
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(b) Present biased agents.

Figure 3.1: The principal’s payoff with biased decision-makers without environment design.
Agents with higher τ or lower k are closer to being rational.

Next we examine the effect of environment design in improving the principal’s payoff. We

apply the algorithms in Section 3.2.2 and 3.2.3, with the soft-max parameter β = 3 (the

choice of β is discussed in the appendix). We examine present-bias agents with k∈{1, 10}
and boundedly-rational agents with τ ∈ {0, 1, 2}. We vary the budget for algorithms with

both design spaces. As in Figure 3.2, our algorithms lead to effective environment design and

improve with larger budget. While action nudge seems more cost efficient, the cost needs

to be incurred for each agent. In reward modification, the environment may need only be

updated once for multiple agents.
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(a) Reward function modification.
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(b) Action nudge.

Figure 3.2: The principal’s payoff with biased decision-makers after applying environment
design. The y-axis is the relative performance compared with the optimal solutions, and the
x-axis is the amount of budget spent relative to the optimal performance.

Mis-alignment of the principal’s and the agent’s objective. We now consider the case

that the agent’s reward function might not align with the principal’s. We fix the principal’s
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reward function as before and vary the agent’s reward function. We consider the cases in

which the agent’s reward function is the inverse (adversarial), randomly drawn (irrelevant),

and the same (cooperative) of the principal’s reward function. The agent’s bias model is set

to be boundedly rational with τ = 1 (the results are qualitatively similar for other agent

models). As shown in Figure 3.3, our algorithm can find the sets of environment updates to

induce desired agent decisions, though it generally requires more budgets when the principal’s

reward function does not align with the agent’s.
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Figure 3.3: Misalignment of the principal’s and the agent’s the agent’s reward function. The
y-axis is the relative performance compared with the optimal performance (in terms of the
principal’s payoff), and the x-axis is the amount of budget spent relative to the optimal
performance.

Additional simulations. Additional simulations are included in Appendix B.1. We show

that setting a small β in Algorithm 1 suffices to approximate the true optimal of Equa-

tion (3.3) and examine its runtime. This result complements Lemma 3 and demonstrates

that we can approximate the overall performance of the optimal. In another simulation, we

demonstrate how to combine off-the-shelf inverse reinforcement learning algorithms to deal

with scenarios when the agent rewards and biases are unknown a priori.

3.3.2 Human-Subject Experiments

While our simulation results are promising, they are under the assumption that the agent

makes decisions following the behavioral model. In this section, we examine whether our

environment design algorithms are effective for real human decision makers whose behavior
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might deviate from the model. We have recruited 300 unique workers from Amazon Me-

chanical Turk. Each worker is paid $0.50 and might earn additional bonuses. The average

hourly rate is around $11.50.

Task description. Each worker is asked to play six navigation games, with each represented

by a grid world of size 10 × 10. The setup is similar to our simulations, except that we

simplify the rewards to depend only on the state, i.e., Ra(s, a)=Rp(s, a)=R(s), to reduce

the cognitive burden for workers. Workers’ bonuses depend on their total rewards. We also

consider the setting in which the principal and the agent share the same reward function.

To induce biased human behavior, a worker can only see the rewards of the nearby states

(to simulate the short-sightedness). Out of six games, there are two games each for vision

length of 1, 2, 3, which we use short-sighted (boundedly rational) agent with τ = 0, 1, 2 to

model when solving the environment design problem. The detailed task setup is included in

Appendix C.1.

Each worker is randomly assigned to one of the three treatments: {baseline, modified reward,

action nudged}. The games are drawn from the same pool for each treatment. In baseline,

workers play the drawn games without modifications. In modified reward, workers see the

modified rewards generated by our algorithm. In action nudge, when a nudge happens, the

workers see an additional messages indicating they might gain bonus for moving towards a

certain direction. Since our goal is to observe whether environment design has impacts to

real human decision-makers, we set the budget to be large enough such that the optimal

decisions can be induced when the agent follows the behavioral model. We also report the

true incurred cost in the experiment results.

Experiment results. As shown in Figure 3.4a, workers under both environment design

treatments generate more rewards for the principal, suggesting that our algorithms lead to

effective environment designs even for real humans that do not always behave as the behav-

ioral model. The actual costs incurred in “modified reward” and “action nudge” treatments

are 73.7 and 50.3 points, while the average gain is 142.9 and 119.2 points. Moreover, since

the principal and the agent share the same reward, the baseline treatment corresponds to the

optimal design (do nothing) for the standard agent model. The performance improvement

of our algorithms re-affirms the importance of incorporating realistic human models.
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Figure 3.4: The human-subject experiment results of environment design. The results are
grouped by the vision length of the games, mapping to different values of τ in short-sighted
(boundedly rational) agents. Figure 3.4a shows the average principal’s payoff with real
human decision makers in treatments, and Figure 3.4b shows the ratio of worker moves
which are the same as short-sighted model predictions.

We also measure whether real humans behave as predicted by the behavioral model. As in

Figure 3.4b, worker behavior aligns with our behavioral models 53.8%, 54.2%, 68.7% of the

time on average in each treatment. We also compare worker behavior with the standard

model, with alignment at only 33.2%, 36.9%, 45.9% of the time. Interestingly, workers

are more likely to behave as predicted in the “action nudge” treatment, likely because this

treatment generates additional information that triggers workers to follow the nudged action.

3.4 Discussions

We investigate environment design with biased decision makers. We explore two natural

design spaces, reward function modifications and action nudges, and we formulate the envi-

ronment design problems as constrained optimization problems under reward function modi-

fications and action nudges. We first show neglecting biased decision maker leads to negative

results. We then show that the environment design problems are NP-hard to solve and pro-

pose corresponding algorithms. We evaluate the algorithms through both simulations and

human-subject experiments. Our work sheds lights on many important applications, such

as AI-assisted decision making or adversarial machine learning.
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Future works include incorporating other bias models, including different environment de-

sign strategies, and addressing potential concerns when When the objective of the principal

aligns with the agent, such as in settings that an AI agent aims to assist humans in making

decisions, our framework provides insights on how AI can update the environment to better

help humans. On the other hand, when the objectives of the principal and the agent differ,

such as in the adversarial setting. For example, can we design robust decision-making envi-

ronments, e.g., imposing regulations/constraints on the environment updates to be allowed,

to better safeguard human welfare. Our framework helps understand the power of an adver-

sary in updating the environment to sabotage human decisions. This understanding could

help us investigate the design of robust decision-making environments, such imposing reg-

ulations/constraints on the environment updates to be allowed, to better safeguard human

welfare. We hope this work can open more discussion in designing assistive AI technology

and in incorporating behavioral models in computation.
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Chapter 4

Sending Persuasive Signals

In Chapter 3, we investigate how to modify decision-making environments to influence human

decisions, using prior knowledge about time-inconsistent behavior to model real humans.

However, our approach is limited by its focus on time-inconsistent behavior and specific

types of biases. Human-subject experiment results reveal that real humans are possible to

deviate from our (assumed) bias models. This raises the question of whether we can model

real humans without relying on prior knowledge. In this chapter, we explore data-driven

methods, using supervised learning to build human behavior models based on collected

human responses. We use this data-driven method to describe human decision-makers and

explore methods for presenting persuasive signals to influence human decisions. The work

in this chapter is based on joint work with Wei Tang, Saumik Narayanan and Chien-Ju

Ho [205]. I contributed to this work by conducting experiments to collect human responses,

training human behavior models, proposing a general framework suitable for different receiver

models, and running experiments to evaluate the proposed approach.

We utilize the information design framework to examine how AI systems can send information

to human decision-makers to influence their decisions. The problem of information design

is ubiquitous in various applications. For example, online retailers can highlight a subset of

product features to influence buyers to make purchases [74, 115]. Recommendation systems

might selectively display other users’ ratings to persuade users to follow recommendations

[185]. Politicians can influence voters’ decisions by designing different policy experiments [5].

There have been various research efforts from economics [122, 147, 69, 71, 108], machine

learning and artificial intelligence [198, 36, 7, 77, 25, 60], and general computer science [56, 48]

devoted to the study of information design. Among the growing literature on information

design, the model of Bayesian persuasion proposed by [94], is one of the most prominent,

and has inspired a rich body of studies.
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While Bayesian persuasion offers an elegant framework for formulating the information design

problem, it has two limitations. First, the receiver is assumed to be Bayesian rational.

This means that the receiver can form a posterior in a Bayesian manner and chooses the

action that maximizes his expected utility. 6 However, as consistently observed in empirical

studies [124, 92], humans often deviate from being Bayesian or rational. Directly applying

the techniques from the information design literature that assume Bayesian rational receivers

could lead to suboptimal outcomes. In this work, we address this limitation by proposing a

general optimization framework that can integrate a wide range of human behavior, expressed

either as traditional analytical closed-form behavioral models or as data-driven models, and

design optimal information policies with respect to the provided human behavior.

Second, despite a decade of effort, characterizing the optimal information policy remains

notoriously difficult. [48] have shown that it is #P-hard to compute the optimal expected

sender utility, and in multi-receiver settings where each receiver only has binary actions, it is

#P-hard to even approximate the optimal sender utility within any constant multiplicative

factor [197]. Moreover, most previous works have assumed that the receiver follows the

Bayesian rational assumption. When this assumption is relaxed [38, 172], there are generally

no known analytical solutions for finding the optimal information policy yet.

To address these two limitations, we encode human behavior into the design process. In-

spired by the recent effort in utilizing deep learning for auction design [50, 135], we propose

HAIDNet, an optimization framework that leverages neural-network architectures for infor-

mation design. Unlike existing works that assume rational human behavior, our optimization

framework can adjust to multiple representations of human behavior patterns, including stan-

dard behavioral models represented in analytic forms, and data-driven models trained using

machine learning approaches. More specifically, we encode receiver behavior as a function

and represent the loss in our optimization framework as a function of the receiver’s responses

to the disclosed information. This approach enables our optimization framework to accom-

modate different representations of human behavior and can lead to corresponding optimal

information policies. We then evaluate our approach via extensive simulations. We show

that HAIDNet can recover the optimal information policies in simpler settings with known

analytical solutions, and HAIDNet can extend to design information policies for settings that

are computationally challenging (e.g., multiple receivers involved), or for settings with no

6We use she/he to denote the sender/receiver respectively.
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known solutions in general (e.g., when the receiver’s behavior does not follow the standard

Bayesian rationality assumption).

4.1 Related Work

The work in this chapter joins a growing number of studies that leverage computational

tools for automated mechanism design [34, 152], the problem of utilizing computational ap-

proaches or learning-based techniques for finding revenue-maximizing mechanisms in auction

settings. One strand of works [33, 153] in this line of research has focused on using learning

approaches for mechanism design where only samples of bidder valuations are used to de-

sign revenue-maximizing mechanisms. More recently, deep neural networks has been utilized

for the automated design of optimal auctions [50], in which the authors propose multiple

neural-network architectures for learning approximately optimal auctions. Several works has

extended this study in various applications [61, 72, 37, 103, 144, 135, 109, 36]. Our work

differs from this line of works in two ways. First, we extend the approach beyond auction

design to address the automated information design problem. Second and more importantly,

we have incorporated human behavior descriptors in our design, while prior works mostly

require standard rationality assumptions.

Our information design formulation builds on top of the seminal work of Bayesian persua-

sion [94], which initiated a rich theoretical literature on communication games in which a

sender can design information to persuade a receiver to take certain actions. Their work has

provided theoretical foundations and inspired an active line of research in information design

(e.g., see the recent surveys by [93, 18]). Our work builds on top of this line of work through

integrating human behavior in the design of information policy, while existing works mostly

assume the receiver is Bayesian rational. In particular, our proposed HAIDNet can dynami-

cally adjust to various forms of model-based or data-driven human behavior descriptors. For

the model-based receiver behavior, as an example, we have included the probability weight-

ing function [195, 141, 149] for belief updating and the discrete choice model [123, 165, 179]

for decision making under uncertainty. Non-Bayesian belief updating in information design

also appears in earlier works [38], and the receiver’s behavior following the discrete choice

model also appears in previous works [172, 59]. Our work generalizes the above in that our

framework can adapt to both the above form and the data-driven form of human behavior.
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The problem of information design and persuasion has received increasing attention both

in research and in practice. For example, researchers have argued that one-quarter of the

GDP in the United States is persuasion [122]. Due to its practical relevance, this problem

is getting attention more broadly in the general research community, as demonstrated by

the recent papers in machine learning and artificial intelligence venues, studying various

problem settings such as in security [198], human language interactions [7], data marketplace

design [28], algorithmic recourse [77], online recommendation [60], and market competitions

[42]. Our work joins this line of study and aims to develop more efficient approaches for

information design under more realistic settings of human behavior.

On a conceptual level, this work is related to the growing attention in understanding, model-

ing, and accounting for human behavior in computational systems, especially in the context of

human-robot or human-AI interactions [31, 159, 104, 26, 148, 128, 127, 180, 181]. Moreover,

our work joins the recent research theme that incorporates human models in computational

and machine learning frameworks [63, 116, 171, 172, 100, 120, 121, 175, 203]. There have

been other lines of research that includes humans in the loop of learning frameworks, such

as inverse reinforcement learning [129, 58, 159, 87, 215] that infers the reward functions in

Markov decision process through (potentially human) demonstrations. Our work differs in

that we focused on the information design problem with realistic human receiver models.

Lastly, in this study, we incorporate insights from human behavior into information design.

Extensive literature from psychology and behavioral economics has been devoted to deepen

our understanding of human behavior. Examples include studies examining deviations from

the standard Bayesian assumption in processing information [130, 97, 13] and the ratio-

nality assumption in decision-making [92, 123, 165, 179, 81]. While these classical models,

often grounded in human data from behavioral experiments [118, 46, 47], offer interpretable

behavioral insights, they tend to lack in terms of predictive accuracy. Recently, given the

advancements of machine learning techniques and the avaialability of a larger amount of

human data, there has been a growing effort to integrate behavioral insights from these

classical models with machine learning techniques to enhance predictive accuracy [22, 138].

These models developed in this line of effort are directly applicable in our framework. More-

over, integrating human behavioral insights into information design can raise concerns about

exploiting human irrationality. One potential solution is to incorporate the concept of dif-

ferential privacy [52, 51, 173]. This would control the amount of personalized information

that can be used, preventing undue exploitation.
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4.2 Problem Formulations and Models

We introduce the problem formulation of Bayesian Persuasion and our proposed AI model

(the sender) in this section.

4.2.1 Bayesian Persuasion Formulations

In Bayesian persuasion, there are two players: a sender and a receiver. The sender’s goal

is to design an information disclosure policy that persuades the receiver to take certain

actions maximizing the sender’s objective. The state of nature θ is drawn from a finite

set Θ ≜ {1, . . . ,m} according to a prior distribution λ ≜ (λ(θ))θ∈Θ ∈ ∆(Θ). The prior

is common knowledge to both the sender and the receiver. The receiver’s utility uR(a, θ)

depends on the receiver action a ∈ A from an action set A and the state θ. The sender’s

utilityuS(a, θ) also depends on the receiver’s action and the state.

The sender can observe the realized state while the receiver cannot, and the sender can

utilize this information advantage to persuade the receiver to take the desired action. In

particular, before observing the realized state, the sender can commit to an information

policy π, specifying what signal to present to the receiver conditional on the realized state.

More formally, an information policy π consists of a signal space Σ and a set of conditional

probabilities {π(·|θ)}θ∈Θ where π(·|θ) = (π(σ|θ))σ∈Σ ∈ ∆(Σ) and π(σ|θ) ∈ [0, 1] denotes the

probability to send signal σ ∈ Σ given the realized state θ. This information disclosure policy

is known to the receiver and specifies how the sender discloses information to the receiver.

When a state θ ∈ Θ is realized, the sender sends a signal σ ∼ π(·|θ) according to the policy.

In Bayesian persuasion, the receiver is assumed to be Bayesian rational in the sense that

upon seeing the signal σ, the receiver forms his posterior belief about the state in a Bayesian

manner and takes an action that maximizes his expected utility. Formally, upon seeing the

signal realization σ, the receiver updates his posterior belief over the state of nature, denoted

by µ(σ) ≜ (µ(θ|σ))θ∈Θ ∈ ∆(Θ), by applying Bayes’ rule: µ(θ|σ) ≜ π(σ|θ)λ(θ)∑
θ′∈Θ π(σ|θ′)λ(θ′) .

Given the posterior induced from the observed signal σ ∈ Σ, the receiver takes an action

aBR(σ) ∈ A that maximizes his expected utility7, namely, aBR(σ) ≜ argmaxa∈A
∑

θ∈Θ µ(θ|σ)uR(a, θ).

7BR here stands for Bayesian rational.
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The sender’s information design problem is to find the optimal information policy that max-

imizes her expected payoff induced by the receiver’s action, as follows:

max
π

∑
θ∈Θ

λ(θ)
∑
σ∈Σ

π(σ|θ)uS
(
aBR(σ), θ

)
. (4.1)

In this work, our goal is to design an automated framework to solve the above bi-level

optimization problem while encoding realistic human behavior in the design process (i.e.,

replacing the Bayesian rational human model aBR(σ) with general human behavior).

Example. Consider the scenario in which an online retailer (the sender) aims to persuade

a buyer (the receiver) to make a purchase. The retailer’s products are directly coming from

the factory, and the product quality (represented by the binary state θ) is drawn from a prior

distribution λ. The buyer’s utility uR(a, θ) depends on both his binary purchase decision

a and the binary product quality θ, while the retailer’s utility uS(a, θ) ≡ uS(a),∀θ is state-

independent and only depends on the buyer’s purchase decision. For example, the goal of the

retailer is to persuade the buyer to make a purchase, i.e., uS(a) = 1 for a = 1 and uS(a) = 0

for a = 0. The buyer only wants to purchase when the product is good, i.e., uR(a, θ) = 1 if

θ = a, and uR(a, θ) = 0 otherwise.

In order to persuade the buyer to purchase, the retailer can commit to performing (noisy)

product inspections π(σ|θ) to reveal information about the product quality. For example,

the inspection might signal the product quality is satisfactory with 80% chance if the quality

of the product is indeed satisfactory (i.e., π(σ = 1|θ = 1) = 0.8) and signal the product

quality is unsatisfactory with 90% chance if the quality is indeed unsatisfactory (i.e., π(σ =

0|θ = 0) = 0.9). The information design problem for the retailer is to identify an inspection

policy that maximizes the probability on selling the product to the buyer.

4.2.2 Encoding Human Behavior in Information Design

To solve the problem, we introduce HAIDNet, an optimization framework based on a neural

network architecture that can adjust to various forms of human behavior. In the following

discussion, we first describe how we modularize human behavior in information design. We

then explain the neural network architecture of our proposed HAIDNet that can adapt to
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Figure 4.1: The HAIDNet framework. The human descriptor module is given to the opti-
mization module before training. The optimization is performed through back propagation
which evaluates the gradient of the loss to update the weights in the neural network struc-
ture.

different forms of human behavior. Finally, we outline the procedures for optimizing the

information policy in HAIDNet.

Bayesian persuasion assumes that the receiver is Bayesian rational. However, in practice,

this assumption often does not hold. The receiver may exhibit systematic biases both in

belief updating and in decision making. In the following discussion, we formulate the sender’s

problem on finding the optimal information policy when taking more general human behavior

into account.

Human Behavior Descriptor. For any receiver utility uR, prior λ, sender information

policy π (and signal space Σ), a human behavior descriptor is denoted by HuR,λ,π(σ, a),

representing the probability for a human receiver to choose action a ∈ A when seeing a

realized signal σ ∈ Σ.

When the context is clear, we omit the subscripts and write HuR,λ,π(σ, a) as H(σ, a) for

notational simplicity. With the above definition, we can rewrite the sender’s information

design problem as:

max
π

∑
θ∈Θ

λ(θ)
∑
σ∈Σ

π(σ|θ)
∑
a∈A

H(σ, a)uS(a, θ) . (4.2)

Below we give a few examples of human behavior descriptors.
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Bayesian rational (BR). In standard Bayesian persuasion, the receiver updates his poste-

rior in a Bayesian manner and takes action that maximizes the expected utility. Following the

definition in Section 4.2.1, the human descriptor can be written as H(σ, a) = 1
{
a = aBR(σ)

}
.

Probability weighting and discrete choice (TH-Model) We present another human

behavior descriptor based on the work by [172] (denoted as the TH-model in the description

of this chapter). In particular, they combine probability weighting, assuming the receiver’s

posterior is distorted based on a function ω(·) : ∆(Θ) → ∆(Θ), and discrete choice model,

assuming the receiver’s action is stochastic, with a higher probability in taking an action

with higher expected utility (based on the distorted posterior belief).

Formally, let ω(θ|σ) be the receiver’s distorted posterior belief after seeing signal σ and

βH be a parameter in the discrete choice model that tunes how stochastic the receiver’s

action is (when βH → ∞, the discrete choice model reduces to standard expected utility

maximization), the human behavior descriptor for this model can be written as:

H(σ, a) =
exp

(
βH

∑
θ∈Θ ω(θ|σ)uR(a, θ)

)∑
a′ exp

(
βH

∑
θ∈Θ ω(θ|σ)uR(a′, θ)

) . (4.3)

Data-driven human behavior descriptor. Note that in our formulation, we use the

function H(σ, a) to represent human behavior. Suppose we have access to sufficient human

behavioral data, instead of expressing H(σ, a) using a closed-form analytical expression, we

can train a machine learning model to approximate this function and utilize the learned

model as the human behavior descriptor.

We now introduce the framework of HAIDNet and explain how we utilize it to optimize the

sender’s information policy for a given human descriptor.

HAIDNet framework. As presented in Figure 4.1, HAIDNet consists of two modules: the

sender’s optimization module and the human descriptor. The sender’s optimization module

is a neural network responsible for optimizing the sender’s optimal information policy. It

takes the information design problem instances as input, including the prior distribution

λ over the states and the payoff functions uS, uR for all players. The module outputs an
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information policy which consists of a set of conditional probabilities {π(·|θ)}θ∈Θ over the

signal space for each state θ ∈ Θ.

The human descriptor can either be model-based (e.g., Bayesian rational model or TH model

in Equation (4.3)), or data-driven (e.g., a neural network modeling the receiver’s behavior).

The human descriptor is treated as a black box from the perspective of the sender’s opti-

mization module, and is fixed before HAIDNet begins training. The input of the descriptor

consists of the receiver utility uR, the prior distribution λ, and the information policy π (i.e.

the output of the sender’s optimization module), while the output is the receiver’s response

strategy H(σ, a) = HuR,λ,π(σ, a).

Optimization procedure. For the sender’s optimization, we follow the recent line of

research on using deep learning for auction design [50]: we randomly draw problem instances

from a pre-specified distribution and perform stochastic gradient descent to minimize the

loss function in the training process. The loss function is defined to be the negative of the

sender’s expected utility, since the goal of the sender is to find the optimal information policy

that maximizes her expected utility.

LuS ,λ(π,H) = −
∑
θ∈Θ

λ(θ)
∑
σ∈Σ

π(σ|θ)
∑
a∈A

H(σ, a)uS (a, θ) . (4.4)

Our work differs from previous works in that we incorporate the human behavior descriptor

in the definition of the loss function. The requirement is that the human descriptor H(σ, a)

needs to be differentiable. This requirement is naturally satisfied in many cases, e.g., when

the human descriptor follows the model defined in Equation (4.3) or is a neural-network-

based model, the gradient always exists. However, in the Bayesian rational model, since

the receiver chooses the action that maximizes his expected utility, this argmax operation

makes the human model not differentiable. To overcome this issue, we approximate the

Bayesian rational model using softmax instead of argmax with a sufficiently large softmax

scale parameter β. 8 More concretely, let u(a) be the expected utility for action a. The

softmax operator approximates the receiver’s behavior by using exp(βu(a))/
∑

a′ exp(βu(a
′))

8The notation β here is different from βH used to model human behavior in Equation (4.3).
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to denote the probability of choosing action a. As a sanity check, when β → ∞, this

expression reduces to argmax, choosing the action maximizing the expected utility.

To optimize HAIDNet, we train a neural network with 3 fully connected layers employing

ReLU activation functions and the Adam optimizer. The model is trained on 100 batches

of size 1024, for a total of 102, 400 uniformly drawn problem instances (i.e., data points for

training). Evaluation of the model is conducted on a test set consisting of 1000 problem

instances. The specification of hyperparameters and implementation details are included in

the Appendix B.2.

4.3 Experiments

We conduct both simulations and human-subject experiments to evaluate proposed HAIDNet.

4.3.1 Simulations

Our simulation results demonstrate that HAIDNet can find the near-optimal information

policy in various settings. Specifically, we show its effectiveness in settings where efficient

methods exist to obtain the optimal information policy and in computationally challenging

settings where finding the optimal information policy is difficult . Moreover, even in settings

where no known solutions exist in general, HAIDNet can generate information policy with

good performance.

We have conducted additional simulations, including examining the convergence of the train-

ing, investigating the scalability of the approach, accounting for varying number of receivers,

comparing with random policy, and examining empirical run-time. Additional simulation

results are included in Appendix B.2.

We start our evaluations with a simple setting where there exist efficient solutions to find

the optimal policy. In this setting, we leverage the efficient solutions as ground truth to

examine whether our approach can also identify the optimal information policy.
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In particular, we consider the setting with a single Bayesian rational receiver. In this setting,

when there are only two actions available for the receiver and there are only two states, there

exists a closed-form characterization of the optimal information policy. When the numbers of

actions and states are finite constants, the optimal information policy can still be computed

efficiently [94]. Therefore, we can evaluate the performance of our approach by comparing

the information policy generated by HAIDNet with the optimal policy.

Binary actions and binary states. We first examine the simplest setting with binary

actions and binary states (a classical setting in Bayesian persuasion [94]), namely, the action

space A = {0, 1} and the state space Θ = {0, 1}, and observe whether HAIDNet produces

near-optimal information policies. For the sender utility, we adopt a stylized setting where

the sender obtains utility 1 when the receiver takes action 1 and utility 0 when the receiver

takes action 0. The receiver aims to take the action that aligns with the true state, i.e.,

uR(0, 1) = uR(1, 0) = 0, and we randomly draw each value for uR(0, 0) and uR(1, 1) from

[0, 1]. In plain words, the receiver prefers action 1 when the state is 1 and action 0 when

the state is 0, and the goal of the sender is to persuade the receiver to take action 1. The

prior distribution λ is drawn from a Dirichlet distribution. We then simulate data using the

setting above and optimize HAIDNet.

We first examine whether the policy generated by HAIDNet matches the known optimal

policy. Note that in this simple setting, via revelation principle [94], an information policy

can be characterized by two signals, i.e., σ ∈ {0, 1}, where each signal corresponds to a

recommended action. Moreover, in the optimal policy, we have π∗(σ = 1|θ = 1) = 1, and

therefore the optimal policy can be characterized by a single parameter π∗(σ = 1|θ = 0). To

examine whether HAIDNet generates the same policy as the optimal policy, we compare the

value of this parameter on different scenarios.

To showcase our results, we present two settings where we have fixed prior distributions:

low prior with λ(θ = 0) = 0.3 and medium prior with λ(θ = 0) = 0.5. 9 For each prior

distribution, we vary the receiver utilities and report the parameter π∗(σ = 1|θ = 0) both

from the optimal policy and from the output of HAIDNet. As visualized in Figure 4.2, the

policy learned by HAIDNet essentially recovers the optimal information policy in almost all

scenarios.

9The results are the same for a wide range of prior distributions.
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(a) Optimal vs. HAIDNet in the low prior case.
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(b) Optimal vs. HAIDNet in the medium prior case.

Figure 4.2: Comparing the optimal information policy and the policy generated by HAIDNet
in the setting with binary actions and binary states.

Multiple actions and multiple states. To examine whether our approach scales with

the size of the problem instances, we increase the number of states and the number of

actions10. The performance is measured using the average sender utility. We report both the

training performance (e.g., average sender utility for 1,000 instances drawn from instances

used for training HAIDNet) and testing performance (e.g., average sender utility for newly

drawn 1,000 instances).11 The results, as shown in Table 4.1, demonstrate that our approach

works well for large-scale problem instances and also generalizes well to instances not used

in training.

Next, we examine the performance of HAIDNet under the setting where there are no known

computationally efficient solutions to characterize the optimal information policy. The goal

is to illustrate that HAIDNet performs well even in complicated scenarios and could provide

a more efficient approach for settings without analytically tractable solutions.

10The results for scaling up both simultaneously are qualitatively the same and are included in the ap-
pendix.

11We have included additional comparisons to the performance of a simple baseline, random policy, in the
appendix. The performance for the random policy is around 0.5 in all scenarios in this setting.
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Table 4.1: Comparing the average sender utility generated by the optimal policy and the
policy from HAIDNet in the setting with a single Bayesian rational receiver.

(a) Increase the number of states M with binary
actions.

M
Training Testing

HAIDNet Optimal HAIDNet Optimal
2 0.7409 0.7498 0.7408 0.7451
3 0.7737 0.7782 0.7598 0.7669
5 0.8171 0.8209 0.8066 0.8225
10 0.8495 0.8699 0.8196 0.8686

(b) Increase the number of actionsN with binary
states.

N
Training Testing

HAIDNet Optimal HAIDNet Optimal
2 0.7409 0.7498 0.7408 0.7451
3 0.7017 0.7214 0.7089 0.7227
5 0.6906 0.7113 0.6690 0.7064
10 0.6861 0.7084 0.6623 0.6963

We consider the setting with multiple receivers and binary actions. The goal is to design a

uniform information policy for all receivers (i.e., public persuasion [197]). This setting has

been shown to be #P-hard to find a policy that approximates the optimal sender utility

within any constant multiplicative factor [49]. This means that, unlike the single receiver

case, finding the optimal solution for a given problem is practically impossible to solve with

a large set of receivers, and we intend HAIDNet to be a new, efficient solver for near-optimal

solutions. To examine whether HAIDNet finds the optimal policy, we utilize a brute-force

linear-programming approach [49] (the time complexity is exponential in the number of

receivers since the number of constraints in the program grows exponentially) to identify

the optimal policy when the number of receivers is small. We then compare the information

policy generated by HAIDNet and the optimal policy output from the linear programming

approach. The receiver utility and prior distributions are generated in the same way as in the

single receiver setting. The sender utility is the fraction of receivers choosing action 1, i.e.,

her utility is given |S|
K

if there are |S| receivers choosing action 1 out of a total K receivers.

The simulation results are shown in Table 4.2. We randomly draw 1, 000 problem instances

from the training/testing set and report the average performance of the optimal policy and

the HAIDNet policy. As we can see in the results, the performance of the information policy

output from HAIDNet is near-optimal. Moreover, HAIDNet provides a much more efficient

approach when the number of receivers is large. As a comparison, solving the exact optimal

information policy for each problem instance is time-consuming (e.g., it takes more than 23

hours to solve an instance with 18 receivers). On the other hand, HAIDNet only needs to

optimize the model once to generate the optimal information policies for all possible problem

instances with the same number of receivers (e.g., training HAIDNet with 18 receivers takes
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slightly more than 1 hour, and generating information policy for a problem instance takes

less than 1 second). The empirical run-time comparison is included in the appendix.

Table 4.2: Comparing the average sender utility generated by the optimal policy and the
policy from HAIDNet in the setting with K Bayesian rational receivers.

K
Training Testing

HAIDNet Optimal HAIDNet Optimal
2 0.7887 0.7934 0.7756 0.7873
3 0.7508 0.7665 0.7379 0.7573
5 0.7217 0.7458 0.7209 0.7570
10 0.6971 0.7152 0.6790 0.6966
15 0.6553 0.6882 0.6621 0.6843

Non-Bayesian-rational receiver case. We now examine the performance of HAIDNet in

settings where there are generally no known analytical solutions yet. The goal is to showcase

that HAIDNet can be leveraged to address information design problems when we do not

have access to solutions.

All our simulations so far have focused on settings which assume that receivers are Bayesian

rational. To examine whether HAIDNet works for non-Bayesian-rational receivers, we adopt

a relaxation of human behavioral formulation as in Equation (4.3). While there are no

known solutions for identifying the optimal policy in this setting in general, [172] derived a

solution for the simple setting with binary actions and binary states. Therefore, we compare

the performance of the optimal policy and the HAIDNet policy in this simple setting under

different choices of βH in the human descriptor in Equation (4.3). Using the same setup as

in previous simulations, we report the results in Table 4.3, showing that HAIDNet works

even for a non-Bayesian-rational receiver.

Next, we would like to examine how HAIDNet performs in scenarios when there are no known

solutions (e.g., in settings with more than binary actions/states). To demonstrate the results,

we choose the setting with three states and three actions. The lack of an optimal solution

means we cannot evaluate the performance of HAIDNet by comparing its performance with

the optimal policy as in the simulations above. Instead, we take a different method and

provide evidence to support our approach: We evaluate the set of all learned policies πβH

against each of the human models βH .

For each human model βH = k, if πk is the best-performing policy, this indicates that

our approach generates a reasonably good information policy. Specifically, for each human
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Figure 4.3: The performance of HAIDNet in settings when the receiver is not Bayesian
rational. We train HAIDNet with non-Bayesian-rational receiver model parameterized by
βH , then evaluate the learned information policy for all receiver models. The performance
is normalized so for each human model, the optimal performance is 1.0 among all policies.

model, we compute the performance of each policy available, and we then normalize the set

of these performances so that the best-performing performance for each human model has

value 1. If our HAIDNet indeed learns a good information policy, we would expect the best

performing HAIDNet to be the one trained on the right human descriptor. The results, as

shown in Figure 4.3, demonstrate this behavior and provides evidence that our HAIDNet

generates good information policy even when the receiver is not Bayesian rational.

4.3.2 Human-Subject Experiments

In the simulations, we have assumed access to a closed-form behavior model of the receiver.

However, in practice, human behavior is complex and there may not exist a single model
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Table 4.3: Comparing the average sender utility by the optimal policy and the policy from
HAIDNet in the setting with a non-Bayesian-rational receiver parameterized by βH .

βH
Training Testing

HAIDNet Optimal HAIDNet Optimal
1 0.5043 0.5051 0.5041 0.5060
5 0.5512 0.5557 0.5506 0.5559
10 0.6045 0.6170 0.5986 0.6168
50 0.7002 0.7134 0.6800 0.7081
100 0.7187 0.7291 0.6964 0.7179

that can perfectly represent human behavior. Motivated by this practical concern, we con-

duct human-subject experiments to examine whether HAIDNet adapts to real-world human

behavior. The goal is to examine whether we can utilize data-driven approaches to learn

human-behavior descriptors and examine whether HAIDNet performs well when it is paired

with data-driven behavior descriptors.

Task description. In our human-subject experiments, we present the product purchasing

example in Section 4.2.1 to human participants. Each human participant is asked to make

multiple rounds of purchase decisions. In each round, the participant is presented a product

with unknown binary quality (good or bad product). The participant is told that a (noisy)

inspection has been performed on the product, and is given the conditional distribution

associated with the inspection (i.e., the probability to receive a good/bad signal given the

product is good/bad). Finally, the participant is given a realization of the inspection signal

and is asked to make a binary decision of purchasing or not. The participant’s payment

depends on both their purchasing decisions and the true product quality. The task interface

is included in Appendix C.2. The experiment is approved by the IRB in Washu.

Experiment procedure. We have recruited 300 workers from Amazon Mechanical Turk.

We set the base payment to be $0.50. Workers could earn additional bonuses depending on

their performance. The average hourly rate was around $11 USD. The experiment contains

two phases as described next.

Phase 1: Learning human behavior descriptors. The goal of the first phase is to exam-

ine whether we could learn accurate human behavior descriptors from worker’s response data.

In this phase, we recruited 100 workers, and each worker completed 20 rounds of product

purchasing decisions. The parameters of each decision (prior, sender utility, receiver utility,

and policy) was drawn uniformly at random. We split the collected data into training/test
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Table 4.4: Test accuracy of different human behavior descriptors in human-subject experi-
ments of Phase 1.

Model Bayesian rational TH-Model Neural network
Testing Accuracy 0.562 0.735 0.770

sets, with 80% of the data for training, and 20% for testing. We trained and examined the

performance of three different human behavior descriptors.

• Bayesian rational: This descriptor makes the standard assumption that humans are Bayesian

rational. There is no training needed for this descriptor.

• TH-Model: We fit the parameters of the TH model, as described in Section 4.2.2, from

data to minimize the least squares error.

• Neural network: We use a 3 fully connected-layer neural network to fit the data in the

training set. We further split the training dataset and use 25% of the data as the validation

set to implement early-stopping during training.

We then examine how accurately each descriptor predicts human behavior in the test data.

The test accuracy is reported in Table 4.4. As we can see from the results, the data-driven

neural network model leads to the best prediction accuracy, and both TH-Model and the

data-driven descriptor significantly outperform the Bayesian rational assumption, reaffirming

the need to relax this common assumption.

Phase 2: Evaluating HAIDNet. In the second phase, we recruited 200 workers to

examine the performance of different information policies. In particular, we examine the

following four information policies:

• Random: This information policy is drawn from a Dirichlet distribution.

• BR-policy: The optimal policy when the receiver is a Bayesian rational receiver.

• TH-policy: The optimal policy when the receiver behavior follows the TH-Model, as in

Section 4.2.2.

• HAIDNet: The policy by HAIDNet when we use the neural network learned from the first

phase as the human model.

When each worker arrives, they are randomly assigned to one of these four policy treat-

ments. They are then presented with 20 rounds of purchase decisions (the parameters of
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each round are randomly drawn from distributions fixed across all treatments) coupled with

the associated information policy in the treatment. We then measure the average sender

utility in each treatment. The results, as shown in Figure 4.4, demonstrate that HAIDNet

achieves the best performance. The results showcase the effectiveness of HAIDNet coupled

with data-driven human behavior descriptors.
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Figure 4.4: Average sender utility of different policies in human-subject experiments of Phase
2. The differences between BR-policy and TH-policy and between BR-policy and HAIDNet
are statistically significant (p < 0.01).

In addition to examining the sender’s utility, we also measure the receiver’s utility in each

treatment. We observe that, the policy of HAIDNet leads to an average receiver utility

of 0.532, which is the lowest of all four treatments. This creates the concern that when we

incorporate the knowledge of receiver behavior to optimize the sender’s utility in information

design, we are potentially exploiting the knowledge of receiver behavior and hurting the

receiver. We offer more discussion on this concern in the next section.

4.4 Discussions

We study the problem behavioral information design and encode human behavior into the

design process. We propose HAIDNet, a neural-network-based optimization framework for

information design that can adjust to multiple forms of human behavior. Through extensive
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simulations and human-subject experiments, we demonstrate the effectiveness of HAIDNet

in response to different human behavior descriptors. Below we discuss the generalization /

limitations and highlight the potential social impacts.

Generalization and limitations. While this work has focused on integrating human

behavior in automated information design, we believe the methodologies are generalizable

to design mechanisms for general human-in-the-loop systems, explicitly encoding realistic

human behavior and/or human responses to the system when designing the system. More-

over, our current investigations have adopted the most standard deep learning setup (e.g.,

full-connected neural networks coupled with stochastic gradient descent). It would be inter-

esting to examine whether the performance could be further improved with carefully crafted

network architecture and optimization procedure.

We would like to note the potential limitations of this approach. The optimization procedure,

based on applying stochastic gradient descent on neural networks, does not guarantee to lead

to globally optimal solutions in general. Therefore, it is important and interesting to explore

whether and when this approach might be faced with the local optimum issue to understand

the limitations and power of this approach. Moreover, compared with analytical solutions

that are guaranteed to be optimal for all problem instances if the receiver behavior follows the

assumption, HAIDNet is a data-driven approach that optimizes the expected utility, which

requires training data to be representative to ensure generalizability. While our results

suggest that HAIDNet recovers the near-optimal policy (e.g., the results in Figure 4.2),

examining the impacts of different training data distributions and whether the results are

robust to distributional shifts are potential important future research directions.

Another limitation pertains to the scalability of our proposed approach. While our method

exhibits better scalability than exact solvers that utilize linear programming (more detailed

discussion is included in Appendix B.2), our current results primarily focus on discrete

action/state spaces. As the number of states and actions expands, so does the input size for

HAIDNet. It could require much more training iterations to reach convergence. Furthermore,

in scenarios with continuous action/state spaces, our approach is not immediately applicable.

While discretization might be employed to address the setting with continuous spaces, such

an approach requires additional smoothness assumptions to ensure small discretization errors.

Overall, understanding and improving the scalability of HAIDNet is an important next step

for increasing its practical applicability.
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Potential negative social impacts. Finally, we highlight the potential negative social

implications of the usage of information design frameworks. In information design, the sender

often represents the party in power (e.g., the government, social networking platforms),

while the receiver is in a less advantageous position (e.g., the general public, users) due

to the asymmetry of information access. While it is possible to use information design

for social good, guiding the receiver towards actions that are beneficial for himself or the

public, the vast majority of information design literature — including our work — focuses

on optimizing the sender’s utility. When the interests of the sender and receiver are not

aligned, optimizing the sender’s utility could result in a negative impact on the receivers,

who are often the general public. In other words, with an ill-specified objective in information

design, the sender could exploit the information advantage and create significant negative

social impacts. This concern is further amplified when we obtain more accurate knowledge

about the receiver. It is therefore important to consider the impacts and potential regulations

on information design.

In light of the concerns raised, to initiate the discussion, we discuss two potential risk mit-

igation methods. Firstly, on the technical front, we could employ differential privacy tech-

niques [52, 51] to control the amount of private human behavior being incorporated into

receiver models. Differential privacy provides a means to balance privacy with utility, typ-

ically by introducing controlled noise into the data. This mechanism might be helpful in

mitigating the exploitation of marginalized groups, an issue that might be exhibited in our

approach. Secondly, from a policy perspective, once we develop a comprehensive under-

standing of the capabilities of information design with data-driven human models, we, as a

society, could and should weigh the utility gains from this method against potential harm.

This discussion could then pave the way for the development of regulations and policies for

deploying information design. For instance, we might impose constraints ensuring that the

deployed information policy does not significantly reduce receiver utility, especially when

compared to policies designed assuming standard models such as Bayesian rationality.
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Chapter 5

Offering Predictions and Suggestions

In the previous Chapter 3 and Chapter 4, we assumed that the utility functions of both

humans and AI systems were given when designing AI systems. However, in real-world

scenarios, especially in ethically-sensitive domains such as healthcare and social services,

these utility functions are difficult to define. To better understand the influence of AI-

generated information on human decision-making, we focus on a medical resource allocation

problem. In this context, we first learn human preferences through collected data and then

utilize AI-generated information to assist humans. This Chapter is based on joint work with

Saumik Narayanan, Wei Tang, Chien-Ju Ho and Ming Yin [128, 127]. I contributed to this

work by designing a portion of the experiments, performing part of the data analysis, and

engaging in the discussion of the results.

More specifically, we explore how predictive information or recommendations will influence

human ethical decision-making. As the capability of artificial intelligence increases, AI sys-

tems are increasingly involved in decision making in high stakes domains, such as medical

decision making [30, 182, 184, 117, 131], loan applications [23, 68, 98], or legal systems [6, 19].

Meanwhile, the growing prevalence of AI in decision making has raised ethical concerns, as

the decisions made by these systems might be biased or might not align with human val-

ues [96, 16, 133, 6]. To address these concerns, we would ideally want to have a set of rules

specifying what it means for a decision to be ethical such that AI researchers and practition-

ers can incorporate these rules when designing and deploying AI in practice. However, in

ethically-sensitive domains, there are often no clear-cut right and wrong decisions. Instead,

we are often forced to choose the “lesser of two evils”, prioritizing and trading off different

ethical values and principles. Moreover, different stakeholders may have different prefer-

ences on the priority of ethical principles. Finding a trade-off between ethical principles that

everyone agrees on for a given task may be challenging or even impossible.
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To explore the above challenges and align the design of AI with human values, one natural

approach is to elicit human preferences on ethical principles from relevant populations and

incorporate the elicited information in the design of AI systems [105, 8, 132, 65]. In this

line of work, during preference elicitation, human participants are presented information on

hypothetical scenarios involving moral dilemmas and asked to express their preferences in

the scenario. For example, [8] considers the moral dilemmas faced by autonomous vehicles;

participants were given hypothetical scenarios in which a vehicle is bound to crash, and were

asked to express their preference on sparing the lives of one group of people over another.

By varying the demographics and attributes of the two groups, researchers can infer which

ethical values (e.g., sparing lives, sparing youth, etc) the population prioritizes. To focus on

the trade-offs in the moral dilemmas, the information presented to participants in most prior

work has been verifiable, meaning that the information only describes the past or present,

and there is no uncertainty associated with the presented information. In the meantime,

as predictive information, which concerns predictions made about the future, is increasingly

integrated in ethical decision making (e.g., judges might utilize predictive risk scores in

making bail decisions), it is important to understand the influence predictive information

has on human ethical preferences.

In this chapter, we aim to understand how the elicitation of human ethical preferences are

impacted by the information shown to humans. We provide a contrast between verifiable

information (e.g., patient demographics or blood test results) and predictive information

(e.g., the probability of organ transplant success). As predictive information, from either

AI or human experts, is increasingly integrated in ethical decision making, we investigate

how the presence and the source of the predictive information affect human ethical pref-

erences. We further advance our understanding of incorporating AI recommendations in

ethical decision-making. We investigate how value similarity between humans and AI affects

the human decision makers’ reliance on AI recommendations in the context of AI-assisted

ethical decision making.

To answer these questions, we conducted randomized online experiments on Amazon Me-

chanical Turk. Using the domain of kidney transplants as a case study, we presented scenar-

ios where two candidates needed a kidney transplant but only one was available, and asked

MTurk workers to express their preference on which candidate should receive the kidney

first.
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We designed three sets of experiments. In the first experiment, we investigated how ethical

preferences varied between workers who saw only verifiable information and workers who

saw both verifiable and predictive information. We find that even when predictions are

equal between candidates, the presence of predictions change human ethical preferences.

We also find that both the direction and magnitude of differences in predictive information

is relevant and important for understanding how human ethical preferences change. In

the second experiment, we analyzed how human ethical preferences change based on the

source of the predictive information. We find that humans rely more on predictions from AI

than predictions from a human doctor, possibly indicating that humans trust AI predictions

more than human predictions. Moreover, humans seem to discount the importance of other

verifiable information more when an AI prediction is presented, implying that humans are

more likely to treat AI predictions as a summary of other verifiable information. In the third

experiment, we measure the ethical preference of the participants, and design AI systems

that are similar or dissimilar from the participant’s own ethical preference. We compare

participants’ decision alignment with the AI recommendation across the two treatments to

understand how human-AI value similarity impacts human reliance on AI. We find that

recommendations provided by a dissimilar AI has a larger effect on human decisions than

recommendations from a similar AI. However, this result is generally due to the high levels

of agreement between the similar AI and user, creating less opportunities to “change their

mind”. If we limit our analysis to the subset of scenarios where humans and AI disagree,

humans are more likely to change their decision when provided with recommendations from

a similar AI than recommendations from a dissimilar AI.

5.1 Related Work

The work in this chapter joins recent research in incorporating human preferences into AI

systems and investigating value similarity between humans and AI systems, and we use

kidney transplant allocation as a case study for human ethical decision-making.

Societal resource allocation. In this work, we study the problem of resource alloca-

tion, especially kidney transplant allocation. There has been a rich body of literature on

developing algorithms for societal resource allocation [107, 43] and the associated ethics con-

siderations [66, 54, 53, 136]. Taking from this literature, there have been a few algorithmic
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experiments understanding human values for kidney allocation. [64] create a methodology

for estimating human values for kidney allocation, and proposed kidney exchange algorith-

mic improvements which better take into account human values. For example, the United

Network for Organ Sharing published a report detailing changes they made to their kidney

algorithm in the last year, and showed that outcomes are now more equitable for racial

minorities and other vulnerable groups [150].

Eliciting and incorporating human ethical preferences. There has been a line of re-

search in aligning the design of AI systems with human values. One natural way to approach

this alignment is to elicit real human ethical preferences in scenarios where multiple ethical

principles conflict, to determine the relative weights of the principles and to understand in

which scenarios, one principle might be favored over another. Correspondingly, there has

been a line of work researching the elicitation of human ethical preferences [8, 65, 154, 27].

Among these works, [8] study human preferences on autonomous driving when faced with

an adaptation of the trolley problem, and learned how these ethical preferences vary across

worldwide cultures. [166] study human preferences in moderation of Wikipedia quality pre-

diction. [65] study human preferences in the allocation of kidneys for transplants. Our work

differs from this line of work in that we focus on discussing the impact of predictive informa-

tion to human ethical preferences while existing work have mostly utilized verifiable infor-

mation only. Another related work by [27] also analyze the elicitation of ethical preferences

in the kidney domain. However, they analyze how assessments of human ethical preferences

impact their ethical decision making, and don’t focus on the impact of predictive information

to human ethical preferences. As a closely related line of research, if we consider different

fairness measures as different ethical principles, our work is also related to the research in

understanding human perceptions of different fairness measures [76, 168, 187, 183], especially

because it’s usually impossible to satisfy all fairness measures simultaneously [21, 35, 99, 32].

Some recent research focus on utilizing participatory design to govern the design and im-

plementation of AI systems [105, 132, 202, 166]. These works look at the next steps after

we have elicited these ethical preferences, namely how to integrate these preferences into

the deployment of the AI systems. For example, [202] look at methods of presenting these

preferences to stakeholders, so that they better understand the trade offs that they must

make. [132] construct a system where multiple models of ethical preferences vote on which

principles should be used for a given scenario, based on pre-elicited human preferences, and
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[105] explore how such a participatory framework could leverage multiple stakeholders during

the decision-making process.

Human reliance on AI systems. In studies of humans’ reliance on AI advice, there

have been mixed results on whether humans rely more on human advice or AI advice. Many

papers have shown evidence of algorithmic aversion, which is the notion that humans tend to

relatively distrust AI advice, and prefer to receive advice from other humans [143, 40, 113].

This aversion extends to second and third parties, who may prefer decision-makers to use

no advice, rather than AI advice [194, 158]. On the other hand, despite the evidence that

decision-makers tend to subjectively prefer human advice over AI advice, [112] find that

human-decision makers tend to rely more on AI advice in practice. This finding has been

validated not only in objective domains, but ethical decision-making domains where there

are no correct answers [128, 177]. One potential explanation is that humans perceive AI

to be more rational and unbiased [41]. Human decision-makers may also want to shift the

cognitive burden of ethical decision making off of them [86], as society tends to hold humans

to higher standards of being unbiased than AI [20]. One aspect which affects human reliance

on AI is trust, or more generally, the level of confidence that humans have in AI outputs. [15]

investigate the mental models that humans have in AI behavior, and find that when model

outputs are more understandable, humans are better able to incorporate these outputs into

their own decision-making strategies, leading to better team performance. [200] investigate

the relationship between model accuracy and trust, and reveal that humans tend to both

trust and rely on advice with a higher stated accuracy more than advice with a lower stated

accuracy. [156] find that when humans are exposed to AI advice and later show that the

prior advice is incorrect, their trust in the AI actually increases. [213] look at methods for

calibrating human trust in AI, and show that confidence scores improve trust calibration,

though this doesn’t necessarily improve overall decision making performance.

Value similarity between human decision-makers and AI systems. We also study

the effects of value similarity to human reliance in AI-assisted ethical decision making. There

is a rich body of sociological work understanding the effects of value similarity on humans.

For example, [163] find that improving reliability is insufficient for restoring trust in interper-

sonal relationships or inter-organizational mechanisms, and a better method for improving

trust is to show value similarity. [161] analyze the effects of value similarity in risk manage-

ment, and show that increased value similarity leads to increased trust and is a significant
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predictive factor in the outcome of risk-benefit analysis for new technology. One of the clos-

est work to ours is by [75]. They focus on objective (non-ethical) domains and measure AI

similarity by comparing model output with human decisions. Similar to our observations,

they find that advice from similar AIs is more likely to change the mind of a human decision

maker, but dissimilar AIs have more opportunities to change minds, giving them a bigger

overall impact. [125] and [201] both investigate the effects of value similarity on AI trust

in various ethical decision-making domains, and find that AI assistants with a higher value

similarity lead to higher levels of trust in the AI assistant. However, the latter two papers

only look at subjective measures of trust in these ethical decision-making domains, without

empirically validating changes in user reliance. We have already seen paradoxical results

when looking at reliance on human and AI advice, where decision-makers prefer and trust

human advice more, but rely on AI advice more. As such, we aim to fill this research gap in

AI-assisted ethical decision-making, by showing that value similarity in AI recommendations

leads to both increased reliance and increased trust.

5.2 Problem Formulations and Research Questions

In this work, we use the domain of kidney transplants as a case study. There has been

extensive literature on the ethical principles in allocating scarce medical interventions [137,

55, 53, 67]. In particular, our task design is based on the work by [137], who list the following

four categories of ethical principles for allocating scarce medical resources.

• Promoting and rewarding social usefulness: This principle could be implemented through

prioritizing instrumental value, e.g., giving medical workers higher priority in receiving

vaccines during a pandemic, or reciprocity, e.g., giving prior organ donors higher priority

to receive a transplant of their own.

• Treating people equally: In this principle, everyone should have equal chance of receiving

medical interventions. It can often be implemented using lottery or first-come-first-serve

approaches.

• Favoring the worst-off: This principle could be implemented through deploying the strat-

egy of sickest first, prioritizing those who have a more severe disease condition or youngest

first, prioritizing those who have not lived as many years yet.
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• Maximizing total benefits: This principle aims to maximize some definition of utility,

e.g., maximizing the number of saved lives or maximizing the increase life-years after

intervention.

These categories of ethical principles are widely used, both in academic contexts [53, 190,

102, 137], and in action for real-world medical organizations [151, 139].

We explore three research questions about the effect of AI systems in ethical decision-making:

• Research Question 1: How does the presence of predictive information affect human

ethical preferences?

• Research Question 2: How does the source of the predictive information (e.g., predic-

tions by human experts or predictions by AI systems ) affect human ethical preferences?

• Research Question 3: How does value similarity affect human reliance on AI recom-

mendations?

To study these problems, we recruit workers to make decisions in a set of kidney transplant

scenarios. In each scenario, workers are presented two patient candidates who both need

a kidney transplant, but only one kidney is available. Given information about each of

these candidates, workers are asked to express their preference on which candidate should

receive the kidney first. Based on the ethical principles which govern the allocation of scarce

medical resources [137], we choose four factors to display to workers. The first three factors

concern the present condition and attributes of the candidates, which we denote as verifiable

information. The fourth factor concerns a future prediction made about the candidates,

which we denote as the predictive information. Specifically, these factors (along with the

corresponding ethical principle) are:

• Kidney Donor Status (Promoting social usefulness): Whether the candidate has do-

nated a kidney of their own in their past. This is a binary feature, with possible values of

{Not prior donor, Prior Donor}.
• Wait Time (Treating people equally): How long the candidate has been waiting to receive

a kidney transplant. This feature has possible values of {Less than 1 year, 1 year, 2 years,

3 years, 4 years, 5 years}.
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• Kidney Disease Stage (Favoring the worst-off): How severe the candidate’s kidney dis-

ease is. This is a binary feature, with possible values of {Stage 4 (Severe kidney damage),

Stage 5 (Kidney failure or near-failure)}.
• Post-Transplant Survival Chance (Maximizing total benefits): The predictive proba-

bility that the candidate will remain alive after 5 years post-transplant. This feature has

possible values between 72% and 98%.

Based on the established ethical principle framework [137], there is a preference ordering on

each factor when all other factors are equal. For example, if two candidates share the same

values for kidney donor status, kidney disease stage, and post-transplant survival chance,

the patient with longer wait time is preferred according to the ethical principle. In our

experiments, we present different scenarios to online workers to understand how humans

make trade-offs on these four factors, mapping to the four corresponding ethical principles.

One example of the experiment task is shown in Figure 5.1, and detailed experiment interfaces

are discussed in Appendix C.3.

Figure 5.1: Human experiment interface of ethical decision-making in kidney allocation with
AI generated predictive information. The information of post-transplant survival chance is
generated by AI systems.
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5.3 Experiments

We conduct three experiments to answer our research questions, and additional results are

available in Appendix B.3.

5.3.1 Experiment 1: the Effect of Predictive Information

To understand the effect of predictive information on human ethical preferences, we con-

ducted a randomized behavioral experiment with two treatments.

• Treatment 1 (Verifiable Only): This treatment group is shown the three factors of

verifiable information. This represents the human priors on human ethical preferences,

and gives us a baseline to measure the effects of the predictive factors against.

• Treatment 2 (Verifiable and Predictive): The treatment group is shown both the

three verifiable factors, and one factor based on predictive information. We did not present

the source, explanation, or any other information about this predictive factor.

Each recruited worker is asked to express their ethical preference in 29 scenarios. In each

scenario, workers are presented with two candidate profiles and are asked to provide their

preference on which candidate should receive the kidney transplant first. We show an exam-

ple of what a worker in the second treatment (verifiable and predictive) see in Figure 5.1.

Workers in the first treatment (verifiable only) see the same design, except they are not

shown the predictive information of post-transplant survival chance in the last row.

Scenario selection. In the first treatment (verifiable only), workers are only presented

verifiable information about the candidates. Each of the three verifiable factors are ordinal,

and we have two candidates presented in each scenario, which we label as A and B. This

gives us three possible orderings for each factor: candidate A is preferred over candidate B,

candidate B is preferred over candidate A, and both candidates are equally preferred. Be-

cause we have three factors and three orderings, we get 27 total scenarios of factor orderings

to assign. We discard the one scenario where both candidates share the same values for all

factors and are left with 26 scenarios. Each worker in the first treatment group will view

each of these 26 combinations once. Each combination is realized with randomly generated

values. If we want donor status to be equal, we may display both patients as ”Prior Kidney
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Donor”, or both ”Not Prior Donor”. If we want the wait time of A to be higher than B, we

may show 2 years and 1 year, or 5 years and 3 years, or any other pair of values as long as

the difference is no more than two years. After the worker views the first 26 scenarios, we

randomly choose three of the scenarios shown and show these scenarios to the worker again,

with the exact same realization of the factor values. We do this as a consistency check, so we

can determine the quality of a particular worker’s data by how consistent their preferences

are over these three repetitions of scenarios. To minimize the potential presentation bias

caused by the ordering of the scenarios, we randomize the first 26 scenarios. To minimize

the potential bias caused by the ordering of the candidates, we randomize the order of the

candidates independently for each scenario.

In the second treatment (verifiable and predictive), workers are presented both verifiable and

predictive information about the candidates. Note that the additional predictive factor is

also ordinal, with three directions. Each worker is also presented 29 scenarios. To generate

the combinations for the second treatment group, we take the same 26 combinations as in

the first treatment, but when we present this to workers, we randomly select a direction for

the predictive information (whether the predicted survival chance of one candidate is larger

than, equal to, or smaller than the other), and show this to workers. As with the wait time

feature, we randomly select a pair of values for each scenario, where values can be between

72% and 98%, and constrain the difference to be no more than 6%. We then again add three

repeated scenarios randomly drawn from the first 26 scenarios for consistency check. We

then apply the randomization procedure for the ordering of the first 26 scenarios and the

presentation order of the two candidates in each scenario.

To answer the first research question, we compare workers’ preferences in the first treatment

with workers’ preferences in the second treatment on the scenarios where the two candidates

have the same predicted survival chance. Given the number of scenarios in the second

treatment for the above comparison is only one-third of the number of scenarios in the

first treatment (as we randomly draw the ordering of predictive information from the three

possible orderings), during random treatment assignment, we assign three times more workers

in the second treatment compared with the number of workers assigned to the first treatment.

We further split the workers’ preference data collected from the second treatment into three

groups, based on the direction of predictive information, and analyze how this direction

affects their ethical preferences.
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Experiment procedure. For this experiment, we recruit participants by posting a HIT on

Amazon Mechanical Turk. The HIT is only open to U.S. workers. In the preview page of the

HIT, workers first view an instruction page, a sample scenario, and the consent form. Workers

need to agree to the consent form to accept the HIT and participate in the experiments.

After accepting the HIT, workers are randomly assigned to one of the treatments, with 25%

chance of being assigned to the first treatment and 75% chance of being assigned to the

second treatment. Workers are then shown a background page explaining the factors used

for determining which candidate would receive a kidney. Workers are only presented the

explanations on the factors used in their corresponding treatments. Afterwards, the workers

begin to evaluate kidney transplant scenarios. While evaluating scenarios, workers are still

able to reference the background information on transplants. Finally, workers are asked to

complete a short demographic survey.

Performance measure. To measure workers’ ethical preferences from collected data, we

use conjoint analysis to compute the average marginal component effect (AMCE) of each

factor (kidney donor status, wait time, kidney disease stage, and post-transplant survival

chance). More concretely, for each factor, we select all scenarios where the factor value is

unequal, and aggregate the average number of times that workers select the higher value

over the lower value (recall that for each factor, there is an ethically preferred direction).

We calculate the percentage of workers who select the higher value and the percentage

of workers who select the lower value, and denote the difference between these values as

∆P . For example, to calculate ethical preferences for the kidney donor status, we select all

scenarios where one patient is a prior kidney donor and the other patient is not, and measure

the difference between the preference of the former and the preference of the latter. This

difference is the reported ∆P .

We recruit a total of 600 workers, with 184 workers being assigned to the first treatment,

and 416 workers being assigned to the second treatment. We discard workers who are not

completely consistent on the three consistency check questions and report the results for

the 202 workers who are fully consistent. We have also performed the same analysis on the

entire worker pool, and the results are qualitatively the same.

The effect of equal prediction on human ethical preferences. We first examine

whether the addition of equal predictions between candidates have any effect on human
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ethical preference compared with no predictive information. We compare the ethical pref-

erence from the first treatment (verifiable only) and the ethical preferences from the subset

of samples with equal values in the predictive factor in the second treatment (verifiable and

predictive).

Figure 5.2: The effect of equal prediction on human decisions. We present ∆P for each
verifiable factor and treatment. There is no significant difference between treatments in the
Prior Donor factor (p = .54). There is a significant difference between treatments in the
Wait Time factor (p = .045). There is a significant difference between treatments in the
Disease Stage factor (p = .0057).

The results are shown in Figure 5.2. We compare ∆P (the difference between preferring

the higher value in a factor and preferring the lower value in a factor) for the three factors

in verifiable information between the first treatment and the second treatment where the

predictive factor is equal between candidates. We also apply Bonferroni correction to our

significance tests to account for multiple comparisons. The first treatment represents the

baseline of human ethical preferences when no predictive information is available, and the

second treatment represents situations where predictive information is shown to humans, but

does not favor either candidate. We find that the presence of equal predictive information

significantly decreases the ethical preference of Wait Time from 0.194 to 0.097 (p = .045),

significantly decreases the ethical preference of Disease Stage from 0.435 to 0.319 (p = .0057),
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and increases the ethical preference of Prior Donor from 0.278 to 0.330, though this increase

is not significant (p = .54). These results show that human ethical preferences do change

even when predictive information is presented and is equal across candidates.

Interestingly, these changes are not consistent for all ethical preferences. We speculate

that the reason for this is because humans may create their own predictions about the

scenario based on the verifiable information we present, but when we present an externally

sourced prediction about the scenario, they no longer create their own predictions and instead

use the prediction provided. For example, one possible conjecture for the explanation of

the result is that workers might think wait time and disease stage is more predictive of

survival outcomes than prior donor status. Therefore, workers in the first treatment without

predictive information may have used these in forming their own predictions which influence

their ethical preferences. But when we present the prediction, this supersedes their own

prediction, and their final preference is weighted less heavily towards wait time and disease

stage when predictive information is available.

The effect of aligned prediction on human ethical preferences. We next examine

whether the addition of predictions strengthens human ethical preferences if the predictions

are aligned with the preferences. The results are shown in Figure 5.3, in which we compare

the difference in ∆P in each factor based on the three possible directions of prediction

alignment from the samples in the second treatment. We also apply Bonferroni correction

to our significance tests to account for multiple comparisons. For each factor, we first select

all scenarios where the factor value is unequal in the second treatment. We then split the

samples into three groups (Aligned, Equal, or Misaligned), depending on how the preference

of the prediction aligns with the preference of the verifiable factor. We then calculate the

values of ∆P , the difference between the ratio of workers choosing the higher value and the

ratio of workers choosing the lower value, for each factor and each group. We find that for all

factors, there is a significant (p < .001) difference between misaligned prediction and equal

prediction, and that there is a significant (p < .003) difference between equal prediction

and aligned prediction. These results show that human ethical preferences are strengthened

when predictions are aligned with the human preferences, and weakened when predictions

are oppositely aligned with the preferences.
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Figure 5.3: The effect of aligned prediction on human decisions. There is a significant
difference between a misaligned prediction and equal prediction for all factors (p < .001).
There is a significant difference between a equal prediction and aligned prediction for all
factors (p < .003).

5.3.2 Experiment 2: the Effect of Prediction Sources

In the second experiment, we investigate our second research question: how the effect of

predictive factors on human ethical preferences changes based on the source of the prediction.

Specifically, we aim to find if there are differences if we tell workers that the prediction is

generated by a human doctor or an AI system. Similar to the setup of Experiment 1, we

recruit works to making decisions in different scenarios with predictive information, but at

this time we also presenting the resource of the prediction. In order to examine whether

there are differences if we tell the user that the prediction is generated by a human doctor

or AI, we create two treatment groups with varying prediction sources:

• Treatment 1 (Doctor): The first treatment group is shown the three demographic

factors, the predictive factor, and an explanation saying that the prediction is generated

by a human doctor.
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• Treatment 2 (AI): The second treatment group is shown the three demographic factors,

the predictive factor, and an explanation saying that the prediction is generated by an AI

system.

Each recruited worker is asked to express their ethical preference in 29 scenarios. The choice

of the 29 scenarios is the same as the second treatment in Experiment 1, with the addition of

the prediction source, which is given along with the predictive value. The first 26 scenarios

reflect all combinations of factors in verifiable information and a random draw of predictive

information. The last three scenarios are randomly drawn from the first 26 for checking

worker consistency.

We recruit a total of 300 workers, with 156 workers being assigned to the first treatment,

and 144 workers being assigned to the second treatment. We discard workers who are not

completely consistent on the three consistency check questions and report the results for

the 127 workers who are fully consistent. We have also conducted the same analysis on the

entire worker pool, and the results are qualitatively the same.

Figure 5.4: The effect of prediction source on human decisions. There is no significant
difference between treatments in the Prior Donor factor, Wait Time factor, or Disease Stage
factor. There is a significant difference between treatments in the Predictive factor (p =
.0316).

64



In Figure 5.4, we see how ∆P changes based on the source of the prediction for each human

ethical preference factor. We also apply Bonferroni scaling to our significance tests. We

see that changing the prediction source from AI to Doctor significantly decreases the ethical

preference of the prediction (p = .0316). From this result, we actually see evidence suggesting

that human ethical preferences from a prediction are weakened when the prediction source is

a human doctor, and strengthened when the prediction source is an AI. We see that changing

the prediction source from AI to Doctor increases the preference of Prior Donor, Wait Time,

and Disease Stage, though not significantly. Combining both observations, one plausible

conjecture is that workers might believe that AI predictions are generated by incorporating

all verifiable information. Therefore, their preferences are influenced more by AI predictions

instead of doctor predictions. Moreover, when AI predictions are available, workers put a

smaller weight on other factors as they might be incorporated in AI predictions already. Our

results suggest that how humans process predictions might vary when the predictions are

from different sources.

Exploratory analysis. In our post-scenario survey, we ask workers to report the perceived

trustworthiness of the predictive information on a five-point scale, as well as demographic

information on age, gender, race, education level, and political leanings. We find that workers

in the doctor treatment rate perceived trustworthiness of the prediction as 1.85/5, and

workers in the AI treatment rate the perceived trustworthiness of the prediction as 1.96/5.

This aligns with our results which show that human preferences are more influenced by AI

predictions than human predictions, and prior literature which suggests that humans trust AI

more than human experts [112]. It is interesting to note that the relative values of perceived

trustworthiness are so low for both, especially considering that the workers involved are

layperson, and prior research shows that experts trust algorithms less than layperson do

[111, 112, 106].

We find that perceived trust is negatively correlated with levels of education. Workers with

a bachelor’s degree report 0.37 lower perceived trust in predictions than workers without

a bachelor’s degree. Workers with a graduate degree report 0.36 lower perceived trust in

predictions than workers with a bachelor’s degree or lower. This trends hold when we split

workers by treatment (Doctor vs AI). We speculate that cause for this trend is that as

humans believe themselves to be more capable, they tend to rely less on advice from others

[45].
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In our main analysis, we analyze the difference in ∆P values between the AI prediction and

Doctor prediction. For context, the total pool of workers have an average ∆P difference of

0.089. This value can be considered as a proxy of the difference between humans’ reliance

on AI prediction and the reliance on doctor prediction. To understand whether there exist

individual differences, we break this down by demographic. We find that workers above

the age of 40 have a ∆P difference of 0.027, while workers below the age of 40 have a ∆P

difference of 0.122, suggesting that the majority of difference in overall workers is based on

age, where younger workers’ preferences are more influenced by AI predictions than doctors’

predictions, compared to older workers. We find that male workers have a ∆P difference

of 0.072, while female workers have a ∆P difference of 0.080, which does not suggest a

strong contrast according to gender. We find that liberal workers have a ∆P difference of

0.058, while conservative workers have a ∆P difference of 0.101. Interestingly, conservative

workers have higher values of ∆P than liberal workers regardless of source, with ∆P values

of 0.407 and 0.276, respectively. While the presented results are not causal, the results as

a whole suggest that there are individual differences in how humans incorporate AI/doctor

predictions, and it would be an interesting future direction to further explore these individual

differences.

5.3.3 Experiment 3: the Effect of Value Similarity

In our third experiment, we explore the effect of the value similarity between AI systems

and humans. Similar to previous two experiments, workers are asked to express their eth-

ical preference on which candidate should receive a kidney transplant first. But instead of

presenting predictive information from AI systems, we directly generate AI suggestions on

final decisions.

When eliciting workers’ ethical preferences, these scenarios can be split into three categories.

The first category includes scenarios where the two candidates differ in only one factor, and

share the same values for the other two factors. For example, in one scenario, Candidate

A may be a prior donor, while Candidate B is not; both candidates have been waiting for

3 years and have Stage 4 Kidney Disease. The primary objective of this category is to

elicit workers’ baseline preferences for each of the factors individually (in this case, Donor

Status). The second category consists of scenarios to understand workers trade-offs between

two factors. In this category, the two candidates share the same value for one factor, one
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factor should prioritize the first candidate, and the remaining factor should prioritize the

second candidate (according to the default preference ordering). For example, Candidate A

may be a prior donor, while Candidate B is not, Candidate A may have been waiting for

2 years, while Candidate B has been waiting for 4 years, and both candidates have Stage 5

Kidney Disease. This category enables us to isolate the trade-offs between pairs of factors

(in this case, Donor Status and Wait Time). The third category involves scenarios where

the two candidates have different values in all three factors. One candidate is prioritized in

one factor, while the other candidate is prioritized by the other two factors. For example,

Candidate A may be a prior donor, while Candidate B is not, Candidate A may have been

waiting for 2 years, while Candidate B has been waiting for 4 years, and Candidate A may

have Stage 4 Kidney Disease, while Candidate B has Stage 5 Kidney Disease. This category

enables us to represent more complex interactions between the factors.

In each of these categories, there are three unique scenarios, giving us a total of nine scenarios.

For each user, we realize each scenario with random values that preserve the preference order.

For instance, if the disease stage needs to be equal, we may display both patients as ”Stage

4” or ”Stage 5”. We also limit wait time differences between candidates to be no more than

2 years.

Similar or dissimilar AI treatments. Given our goal is to investigate the influence of

value similarity between humans and AI on human reliance for ethical decision-making, we

use the similarity of ethical preferences to represent the value similarity. We now describe

how we create AI systems with similar or dissimilar ethical preferences with a given worker.

For a worker’s ethical preference, we can measure their answers on a set of given scenarios, i.e.,

their choices on who to receive a kidney first among several pairs of candidates, when they are

not provided AI recommendations. Using their answers, we can compute their (prior) ethical

preferences without seeing AI recommendations. A worker’s ethical preference is represented

by three values, each indicating how often workers’ answers align with the default ethical

ordering of each factor. This alignment is measured separately for each factor, and indicates

how often the worker chooses the preferred factor value (e.g. ”Prior Donor” over ”Not Prior

Donor” for the ”Donor Status” factor), across all scenarios. For example, if the worker

selected Patient A, then their answer aligns with the preferred factor for the ”Wait Time”

and ”Disease Stage” factors, but not the ”Donor Status” factor. We would then average the

number of times the worker aligns with each preferred factor across all scenarios to generate
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the alignment values for each factor. Using these values, we use the A > B > C notation to

denote a worker’s value ordering in their ethical preferences over factors A, B, and C. For

example, if a worker aligns with the ”Donor Status” factor in 30% of scenarios, with the

”Wait Time” factor 80% of the time, and the ”Disease Stage” factor in 50% of scenarios,

then their prior ethical preference ordering would be ”Wait Time”>”Disease Stage”>”Donor

Status”.

Based on a worker’s value ordering in the prior ethical preference, we can design a similar

AI and a dissimilar AI that share similar and dissimilar ethical preferences with the worker.

In particular, if a worker’s value ordering is A > B > C, the ethical preferences for the

similar/dissimilar AI for that worker are specified below:

• Similar AI: The ethical preference order for a similar AI is chosen uniformly at random to

be either A > B > C or A > C > B, i.e., the top factor of the similar AI is the same as

the top factor of the worker.

• Dissimilar AI: The ethical preference order for a dissimilar AI is chosen uniformly at

random to be either C > A > B or C > B > A, i.e., the top factor of the dissimilar AI is

the same as the bottom factor of the worker.

Besides value similarity, we also instruct AI systems to behave in deterministic manner or

random manner. The deterministic AI will deterministically follow its ethical preference

ordering. If the Deterministic AI’s top ethical preference has different values for the two

candidates, then the AI will pick the candidate whose factor value aligns with its preference.

If the values are tied, then the deterministic AI will move to the second preference, and

then the third if necessary. However, the random AI chooses the recommendation entirely

randomly, without any regard for the candidate attributes.

To understand the effect of AI similarity on the usage of AI recommendations in ethical de-

cision making, we conducted a two-stage, two-treatment randomized behavioral experiment.

In our experiment, each recruited worker begins with the first stage, where they are asked

to express their ethical preferences in 9 scenarios, generated using the approach described

above. After eliciting workers’ prior ethical preferences, we then randomly assign workers to

two treatments:
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• Treatment 1 (Similar AI): In the second stage, each worker in this treatment group

are shown recommendations from AI with similar ethical preferences to their own ethical

preferences.

• Treatment 2 (Dissimilar AI): In the second stage, each worker in this treatment group

are shown recommendations from AI with dissimilar ethical preferences to their own ethical

preferences.

After the first stage, workers are presented with a summary of their own ethical preferences

and the ethical preference of the AI that will make recommendations during their decision-

making during the second stage. Workers are also asked three survey questions: how confi-

dent they are in their own answers, whether they think our estimation of their preferences

is accurate, and how much trust they would have in an AI which behaves according to the

displayed preferences. Each of these is graded on a 5-point Likert scale.

In the second stage, workers are presented with 18 additional scenarios where they make

their decisions with the assistance of the provided AI. The scenarios are generated the same

way as in the first stage, but the number of scenarios are doubled and the realizations of

the factor values might not be the same. In both treatments, workers will encounter a

deterministic AI in 9 scenarios, and a random AI in the other 9 scenarios. These are shuffled

so workers don’t know whether recommendations are deterministic or random. Because the

Random AI could still pick the patient according to its original value preference ordering

by chance, the combined AI (Deterministic+Random) follows its stated value preference

ordering stochastically, about 75% of the time.

Once the worker finishes the second stage of the experiment, they will fill out an additional

survey where we ask workers for a general demographic description, and two more questions

about their experience: which dimension (Prior Donor, Wait Time, Disease Stage) most

impact their decision making without the AI, and how much do they think they rely on the

AI when making decisions in the second stage. We recruit a total of 300 workers, with 160

workers being assigned to the first treatment, and 140 workers being assigned to the second

treatment.

We measure human reliance in two different ways. First, we express reliance as the overall

change in alignment between the human and AI between the first and second stages. Then,

we express reliance as the change in decision-making behavior, computed only on the subset

69



of scenarios where the human and AI differ in the first stage. We present results for both of

these metrics in Figure 5.5. We report the statistical significance values using a t-test and

the effect sizes using Cohen’s d. Error bars in plots represent standard errors.
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Figure 5.5: The effect of value similarity on alignment change between Stage 1 and 2. In the
left figure, we find across all scenarios, the dissimilar AI has a significantly larger change in
alignment (p < .001). In the right figure, we find that in scenarios where the human and AI
disagree, the similar AI has a significantly larger change in alignment (p = 0.003).

Overall change in alignment. In order to measure the overall change in alignment, we

compare the rate at which users match with the (unseen) AI in the first stage with the

matching rate in the second stage. We find that adding a recommendation from a similar

AI significantly increases alignment by 5.9% (t(1286) = 3.58, p < .001, d = 0.10), while

adding a recommendation from a dissimilar AI significantly increases alignment by 15.9%

(t(1439) = 9.98, p < .001, d = 0.26). The difference between the two increases is also

significant with t(2705) = 4.35, p < .001, d = 0.17. Overall, we find that dissimilar AIs have

a bigger overall impact on overall alignment. While this result may seem unintuitive, it can

be explained by the fact that users tend to agree more with a similar AI than a dissimilar

AI, so there is less room to increase agreement for a similar AI in the second stage.
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Conditional change in alignment. As a perhaps more useful measure of reliance, we

can choose to consider only scenarios where the AI gives recommendations which go against

the decision that the user made in the first stage. This comparison is possible because our

experiment design guarantees that each of the nine possible scenarios appear once in the first

stage, and twice in the second stage. We find that when the AI gives a recommendation which

goes against the user’s Stage 1 decision, alignment with a similar AI increases by 64.9%12,

while alignment with a dissimilar AI increases by 58.4%. This difference is significant with

t(1302) = −3.00, p = 0.003, d = 0.17. Overall, we find that similar AIs have a bigger impact

on human alignment when the AI goes against human prior preferences. Additional analysis

is available in Appendix B.3.

5.4 Discussions

In this section, we discuss the limitations, implications, and future work.

Limitations and generalizability. Our study has a few limitations. First, our work

has used the domain of kidney transplants as a case study to investigate how predictive

information affects human ethical preferences. We believe this domain is representative of

the family of problem domains involving allocating scarce medical interventions, e.g., organ

transplants, vaccine distributions, or ventilator allocation. Relaxing the application beyond

medical domains, our problem domain is in the family of domains involving allocation of

scarce societal resources, such as allocating homelessness resources to people in need. We

conjecture that the results of our study are very likely to generalize to the domains of medical

resource allocation and are also likely to generalize to scarce societal resource allocation.

However, it is also possible that our results will not directly generalize to these domains

due to the uniqueness of the domain of kidney transplantation. Therefore, more future

studies should be conducted to examine the generalizability of our results in other domains

thoroughly.

12Because we are only examining scenarios where the human originally disagreed with the AI, these
increases can be interpreted as total alignment in the second phase. E.g., in this subset of scenarios, workers
choose to follow similar AI recommendations 0% of the time in the first stage, and 64.9% of the time in the
second phase.
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Implications of our results. Despite the limitations, our findings suggest a few important

implications. First, our results suggest that the inclusion of predictive information impacts

human ethical preferences in a nontrivial manner. Humans might consider what other factors

might have already been incorporated in generating the predictive information and adjust

their ethical preferences accordingly. We do not have a definite answer on how humans

process predictive information. However, as predictive information is becoming increasingly

involved in ethical decision making, it is important to understand how humans incorporate

predictive information in forming their ethical preferences. Moreover, as shown in our ex-

ploratory analysis in Section 5.3, there exist individual differences in how people process

predictive information. It is therefore important to take this into account when utilizing the

elicited information to inform the design of AI systems.

Another important implication is on the robustness of elicited ethical preferences. Our

results demonstrate that human ethical preferences could change significantly depending on

how information is presented to them (e.g., highlighting the source of predictive information).

This suggests that the elicited human ethical preferences might not be entirely robust and

might be subject to information manipulation. While the growing literature on participatory

design [105, 132, 202] have attempted to involve stakeholders in shaping the design of AI

systems, our results suggest that, using the techniques from the literature on information

design [94, 172], the advantageous party (e.g., the party that performs the elicitation) might

strategically choose the information presentation to lead populations to express preferences

that align with their objective. It is therefore important to understand under what conditions

and to what extent we might rely on these elicited human preferences to guide the design

with the goal of aligning AI with human values.

Future work. Our work has presented interesting findings on the effect of predictive infor-

mation and value similarity to human ethical decision-making. However, there are still a lot

of open questions that deserve future study. For example, how do human ethical preferences

change when the presented predictive information becomes more accurate? If we explain

how the predictive information is generated, does it impact how humans incorporate the

information into their ethical preferences? Again, as predictive information becomes more

ubiquitous, it is important to have a better understanding on how the presence and presen-

tation of the predictive information impact humans. Moreover, as brought up by the above

discussion on the limitations and implications, more studies on different problem domains

and the populations surveyed would help us understand the generalizability of the results.
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It is also important to study how to leverage this elicited information to inform the design of

AI systems and whether the elicited information is robust against potential manipulations.
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Chapter 6

Incorporating Human Beliefs about

AI Behaviors

Previous chapters discussed how to update the decision-making environment and design

the information humans will collect to influence their decision-making. In these scenarios,

humans are the decision-makers, and the reward of AI systems is based on human actions.

However, AI systems can also be decision-makers as humans are, with reward functions

dependent on the joint actions of both AI and humans. This introduces the domain of

human-AI collaboration, where a new challenge arises: humans may adjust their behavior

based on the actions of AI systems. In this chapter, we explore potential methods to model

human dynamic behavior and train AI systems to effectively cooperate with humans. This

Chapter is based on joint work with Robert Kasumba, Chien-Ju Ho, and William Yeoh [204]

(under review). I contributed to this work by proposing the incorporation of human beliefs

about AI teammates, modeling human behavior and beliefs, and designing and conducting

experiments to evaluate the proposed methods.

The potential for human-AI collaboration is immense and spans various domains. In health-

care, AI systems can identify diagnoses that might be overlooked by human profession-

als [29, 126]. In industrial manufacturing, robots work alongside human workers to enhance

efficiency and safety [17, 160]. In workflow productivity, virtual assistants can generate drafts

for humans to refine and finalize [193]. However, despite significant improvements in AI per-

formance over the past decade, designing AI agents to optimize the overall performance of

human-AI collaboration remains a challenge.

In particular, optimizing the AI system in isolation is not sufficient to enhance the perfor-

mance of human-AI collaboration. Both the human and the AI agent need to coordinate by

inferring the goals and intentions of their counterpart and taking complementary actions.

For example, in AI-assisted decision-making, researchers have demonstrated that instead of
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optimizing AI by itself, training AI to focus on improving in areas where humans typically

struggle can significantly enhance the performance of human-AI teams [14, 192]. In human-

AI collaboration, [24] show that incorporating models of human behavior into the training

of the AI agent leads to higher collaborative performance compared to training the agent

to play with themselves through self-play [162]. These studies highlight the importance of

integrating human behavior into the design of collaborative AI. However, a key limitation

of these research efforts is that they mostly assume that human behavior remains static,

irrespective of the actions and behavior of the AI counterpart. In practice, humans may

modify their behavior in response to their beliefs about what AI agents intend to do based

on their observations of AI behavior.

G1 G2

3 steps 2 steps

3 steps7 steps

Figure 6.1: An example task of encoding beliefs about AI models into human-AI cooperation
problem.

In this work, we argue that, in addition to incorporating human behavior, designing an AI

agent that account for humans’ beliefs about AI behavior could significantly improve their

collaborative performance. Consider a simple illustrative example in Figure 6.1, where the

human and AI agents need to go to both goals {G1, G2} to complete the task. Assume that

the human prefersG2 overG1 because it requires fewer steps. When designing a collaborative

AI that accounts for human behavior only, the AI would choose to go to G1, leading to lower

overall collaborative performance. However, if the human would adjust their behavior based

on their belief about AI behavior (e.g., they will avoid going to the same goal that the AI is

going towards), we could incorporate this knowledge into the design of the AI. For example,

the AI can choose to go to G2, anticipating that the human will account for that and go

to G1, leading to improved overall performance. This example underscores the potential

benefits of incorporating human beliefs about AI behavior in AI design. Meanwhile, it also
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highlights the importance of developing accurate models of human beliefs and incorporating

them into the AI design.

We formulate the human-AI collaboration environment as a multi-player goal-oriented MDP.

We begin our investigation by developing models of human beliefs regarding AI behavior.

This modeling effort extends the level-k reasoning framework [169] to account for subopti-

mal human behavior. Specifically, we first develop a behavioral level-0 model that assumes

agents take actions without considering the behavior of other agents. We then enhance the

belief model by introducing a behavioral level-1 model, which assumes humans interpret the

behavior of another player as if the other agent adheres to the behavioral level-0 model. With

the models of human behavior and beliefs established, we proceed to develop collaborative

AI agents that incorporate different assumptions about human models.

To examine proposed approaches, we conduct extensive human-subject experiments on two

environments. To develop and assess the model of human behavior (i.e., the behavioral level-

0 model), we first train models of human behavior using behavioral cloning on real-world

human behavior and evaluate their performance. For the development and assessment of

the model of human beliefs (i.e., the behavioral level-1 model), we conduct experiments that

present each participant with a trace of behavior by an agent and ask them to infer the

agent’s goal, examining whether our model leads to accurate predictions of human inference

on the agent’s goal. Moreover, based on the belief model, we also explore the possibility of

developing AI policies such that humans can more easily infer the goals of AI from its actions.

Finally, utilizing the developed models of human behavior and beliefs, we conduct a final set

of human-subject experiments that pair each human participant with an AI agent in a two-

player coordination game. We assess the human-AI collaborative performance for different

designs of AI agents. Overall, our results demonstrate the effectiveness of our developed

model of human behavior and beliefs. Furthermore, we show that AI agents accounting

for models of human behavior and beliefs achieve better collaborative performance with

humans, compared to AI agents that do not consider human beliefs or those that disregard

both human behavior and beliefs.
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6.1 Related Work

This work joins the recent growing research in human-AI collaborations [24, 90, 14, 192]. [14]

demonstrate that optimizing AI in isolation may lead to suboptimal performance for human-

AI collaboration. [192] show that training AI systems to complement humans, performing

better in areas where humans struggle, leads to improved collaborative performance. [24]

illustrate that incorporating a human model, learned from human data, into the training of AI

results in enhanced performance when these AI systems work with real humans. Additionally,

[90] use population-based reinforcement learning to improve the robustness of trained AI

agents. Our work extends this line of work by proposing to incorporate not only human

behavior but also human beliefs of AI behavior into the design of collaborative AI.

From a technical perspective, our work involves understanding and modeling humans in

decision-making. There has been a significant amount of work in the literature on modeling

human behavior. For example, Inverse Reinforcement Learning (IRL)[129, 1, 146] aims to

infer the reward functions in Markov Decision Processes (MDPs) through observing demon-

strations of the optimal policy. If the demonstrator is a human being, the demonstrations

could be noisy or contain behavioral biases. Studies [58, 159, 87, 215] have aimed to in-

corporate human behavioral biases in the inference process and infer both the rewards and

biases simultaneously. Imitation Learning [88] also aims at developing models that can

mimic human behavior from demonstrations. There have also been an increasing amount

of research efforts that incorporates human models in computational and machine learning

frameworks [100, 171, 172, 120, 121, 203, 205, 59].

From the perspective of modeling human beliefs over others’ behavior, this has been discussed

in level-k reasoning [169, 70] and theory of mind [142, 189]. As a few examples, [206] have

found that real human behavior is close to level-1 and level-2 reasoning models in cooperative

games. [4] survey works on autonomous agents modeling the beliefs and intentions of other

agents. They distinguish methods for modeling stationary or changing agent behaviors. The

belief model includes theory of mind, recursive reasoning models, plan recognition, partially

observable Markov decision processes (POMDPs), and others. [10] propose a Bayesian theory

of mind to describe human modeling of joint belief of state in a partially observable MDP

and conduct human experiments in [12, 11]. A similar human modeling approach is adopted

by [196] and applied to the Overcooked experiment. Their idea is to split delivering a dish

into several subtasks, such as picking up an ingredient or putting an ingredient into a pot,
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and the player is inferring others’ subtasks and selecting their own corresponding subtask

before taking actions.

6.2 Problem Formulations and Models

In this section, we first formulate the human-AI collaboration framework as a multi-player

goal-oriented Markov decision process. We then outline our methods for modeling human

behavior and beliefs about AI behavior. Finally, we present our approaches for integrating

human behavior and beliefs into the development of collaborative AI agents.

6.2.1 Decision-Making Environment

We formulate the human-AI cooperative decision-making environment as a multi-agent MDP,

as defined in Section 2.2. Note that in this work we consider the cooperative setting. There-

fore, our formulation only incorporates a single reward function R for all players, though

this can be easily extended.

While our formulation could address cases with multiple human and AI players, we focus on

a two-player cooperative game in this Chapter, i.e., α = {1, 2}, where one player is a human

and the other is the AI. During the decision-making process, neither the human nor the AI

knows the other player’s next action or future plans, and they cannot communicate directly.

However, they can observe each other’s past actions, enabling them to infer about the other

player and modify their own actions accordingly.

Goal-oriented MDP. In this work, we focus on the setting with goal-oriented MDP, where

there is a set of goals G = {g1, . . . , gk} ⊆ S, which are subset of states that are terminal

states, i.e., P (g|g, a) = 1 ∀g ∈ G, a ∈ A. Moreover, the decision-making agent only receives

rewards when arriving at one of the goal states.
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6.2.2 Modeling Human Behavior and Beliefs

Our models are motivated by the level-k framework [169] in economics. In particular, we

start by considering humans as level-0 agents that do not account for others’ behavior in

the environment. Differing from the literature, we address the natural situation that level-0

agents do not behave optimally, and we call this model behavioral level-0 agents. To account

for human beliefs,13 we model humans as an extension of the level-1 agents, that assume

other agents are behavioral level-0 agents14 and update their beliefs in a Bayesian manner

based on the observations of others’ behavior.

Modeling human behavior. We first model human behavior under the assumption that

humans do not consider other players in the environment (or that they consider other players

as a part of the environment without strategically responding). In this case, a human

behavior model can be represented as H : W → Π, mapping a given environment w ∈ W to

a policy π = H(w). We give two examples of human behavior models utilized in our work

below.

• Standard model. First consider the standard human behavior model in MDPs, in which

the goal of the human is to maximize the expected cumulative reward, and their policy

only depends on the current state. The model can be represented by π(a|s), indicating the

probability of choosing action a at state s. For the standard model that assumes decision

optimality, humans choose actions maximizing the Q-function, where Q(s, a) indicates the

expected cumulative reward if the player takes action a in state s and follows policy π.

Q(s, a) could be calculated by standard reinforcement learning techniques such as value

iteration or Q-learning in Section 2.3.

• Behavioral level-0 model. We also consider the case that we can learn human behavioral

models from their historical behavioral traces through behavioral cloning [140, 178]. Be-

havioral cloning is one of the imitation learning approaches, which learns a policy from

human demonstration by building a map from states to actions with supervised learning

methods [9]. We build a fully connected neural network, where the input is the state en-

coding, and output is the probability over action space, and train the model with standard

gradient descent method with cross-entropy loss.

13In this work, human beliefs refer to humans’ belief about the goal of the AI agent.
14Our model can iteratively progress to higher level-k agents. However, we focus on the case with k ≤ 1.
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Modeling human beliefs. We now describe how we develop models for human beliefs.

As summarized earlier, we consider cases where human decision-makers assume that other

agents in the environments are behavioral level-0 agents. In our discussion, we also describe

this belief model as behavioral level-1 agents.

More specifically, we utilize Bayesian inference to model the human belief updating process,

as in Equation (6.1), where λ(g) represents the prior distribution of goals, and Pr(st, at|g)
denotes the probability of observing (st, at) given the goal, according to the policy model

π(a|s, g). This policy represents how humans perceive the actions of other players. If a

human believes the other agent is following the standard model, then the policy is derived

from the optimal policy, π(a|s, g) ∝ exp(βQ(s, a|g)) 15; if, however, humans believe the

agent follows a data-driven model, then the policy will be the output of the human model,

π = H(w|g).

B(g|(s, a)1:t) ∝ λ(g)Pr((s, a)1:t|g)

= λ(g)
i=t∏
i=1

Pr(si, ai|g)

= λ(g)
i=t∏
i=1

π(ai|si, g)P (si|si−1, ai−1)

(6.1)

6.2.3 Designing AI Agents

To illustrate the effectiveness of incorporating models of human beliefs, we train different

AI agents that work with humans in human-AI collaboration problems via simulations and

real-world human-subject experiments.

Training methodology. The main idea of our training method is through self-play. We

incorporate the models of humans and have AI teammates play with the agents specified by

the human models through simulated plays. We use PPO (as discussed in Section 2.3.3) to

train collaborative AI agents.

15β ≥ 0 controls the level of optimality. When β = ∞, π(a|s, g) = 1 if a = argmaxa′Q(s, a′|g) and
π(a|s, g) = 0 otherwise.
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Collaborative AI agents. Using the methodology above, we have designed several AI

agents based on different assumptions of the behavior of human counterparts.

• Assuming humans are optimal. We first train an AI agent that learns to collaborate with

itself through self-play. This is equivalent to assuming the human counterpart is acting

optimally.

• Assuming humans are behavioral level-0 agents. We next train an AI agent that assumes

the human is a behavioral level-0 agent, using behavioral cloning to train the behavioral

model.

• Incorporating models of human behavior and beliefs. Finally we also train an AI agent that

incorporates both the models of human behavior and beliefs into the design of AI agents.

The details of the setup and implementations are included in Appendix B.4.

6.3 Experiments

We evaluate our approaches from multiple sets of experiments, consisting of both simulations

and human-subject experiments in this Section. For our human-subject experiments, we have

recruited in total 1, 690 participants from Amazon Mechanical Turk (MTurk) for multiple

sets of experiments. The experiments are approved by the IRB of our institution. Workers

were paid $1 base payments with the potential for bonus payments in some experiments.

The average hourly rate is approximately $14 across all our experiments.

6.3.1 Experiment Environments: Grid Worlds with Two Players

Our experiments are conducted in a grid world environment with two players and multiple

goals. We have conducted two variations of the experiments. In the first variation, we

designed the environments such that the two players are not playing in the same grid world.

However, each of them has access to the full information of the environment and the actions

of the other player. This variation abstracts away the interdependency of agent actions,

meaning the agents’ actions do not influence each other directly. This allows us to focus on

how humans and AI reason about each other’s goals and intentions. Note that we obtained
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qualitatively similar results in this first variation and the second, more complicated variation

of environments described next. For simplicity, we have included the setup and results of the

first variation in the appendix. Below, we describe the experiment environment and results

of our second variation.

More specifically, as shown in Figure 6.2, in our second variation of the environment, the

grid world is 8 by 8 in size, containing the positions of both players and four possible goals.

The players can choose to move {Up, Down, Right, Left} or stay in the current grid. They

can see each other’s positions and take actions simultaneously. Each player can navigate to

two of the four goals. In particular, the human player can only reach one of the two goals

colored blue, and the AI player can only reach one of the goals colored green. When both

agents reach the same type of goal (both reaching a ”star” or both reaching a ”triangle”),

they earn positive points. However, they will not earn points if they reach different goals or

if they collide into each other (move into the same position). We set the maximum number

of actions to be 20.

In the first experiment, we recruit real-world humans to play against another pre-defined AI

agent. We then examine the effectiveness of utilizing behavioral cloning as a model to mimic

human behavior. Note that using behavioral cloning to model human behavior is extensively

adopted in the literature, and the purpose of the first experiment serves as the foundation

to develop our human belief models and the design of collaborative AI agents.

To evaluate our proposed approaches in modeling human beliefs and designing cooperative

AI, we have designed and conducted additional two sets of experiments. In the second set

of experiments, we provide participants with different traces of actions from other agents,

and ask participants to infer the goal of the agents. This experiment helps us evaluate

whether our belief model leads to better predictions of human beliefs over others’ behavior.

Afterwards, in the third experiment, we conduct experiments similar to the first experiment.

We team up AI agents and human players to examine the team performance of our design

of collaborative AI when working with real-world human participants. But unlike the first

experiment, we don’t reveal any information about goals the players are trying to reach.
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(a) The interface for experiment 1 & 3.

Start

Start

(b) The interface for experiment 2.

Figure 6.2: The interface of human-subject experiments in human-AI cooperation. In Ex-
periment 1, each participant is playing with an AI agent. The participants in experiment 1
are told what their goal is and only need to focus on reaching the goal without colliding with
the AI agent. In Experiment 2, each participant is provided traces of the behavior by other
agents and is asked to infer which goal one agent is trying to reach. Finally, in Experiment
3, the participants are not told which goal to reach, and they need to make decisions based
on their beliefs over AI behavior. In Experiments 1 and 3, the participants can only receive
bonus rewards by reaching the same type of goals (star or triangle) as the AI agent.

6.3.2 Experiment 1: Evaluating Human Behavior Models

In our first experiment, our goal is to examine the effectiveness of utilizing behavioral cloning

to model human behavior. Our main purpose to conduct this experiment is to ensure whether

this method works well in our setting, as our proposed approaches in developing human belief

models and collaborative AI are built on top of models of human behavior.

Experiment setup. We recruited 190 workers from Amazon Mechanical Turk. Each

recruited worker was asked to play 30 navigation games within a grid world with a pre-defined

AI model, as shown in Figure 6.2a. To collect diverse data, we designed three AI models

to play with humans: random AI (selecting a random goal and taking the shortest path),

self-play AI (trained using self-play), and optimal AI (optimized via joint optimization). In

Experiment 1, we provided additional instructions to participants about which goal they
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should reach in each round, and the AI models controlled the other player to move towards

the same type of goals. In our later Experiment 3, we did not provide these instructions,

and humans needed to infer the goal of the AI agent.

Evaluation of data-driven behavior models. We divided the collected data of human

actions into three sets: training, validation, and testing. The training set comprised data

from 152 workers, including approximately 136,000 instances of user decisions, while the

validation and testing sets each contained data from 19 workers, amounting to around 17,000

instances of user decisions each. We employed a 4-layer Multilayer Perceptron (MLP) model,

where the input is the current environment layout, and the output predicts the next human

action. We fine-tuned the hyperparameters, such as learning rate, hidden layer size, and L2

penalty, based on validation errors.

Our results suggest that human behavior is noisy and is significantly away from being opti-

mal. Even when human participants are provided with suggested goals during data collection,

there is only a 55.0% chance that both players will reach the same type of goals across all

treatments. Besides, there is a notable chance of two players colliding (about 15.8%) or end-

ing in different types of goals (about 25.6%). We compared the performance of our learned

model to a model predicated on optimal agent behavior, defined as taking the shortest path

to the goal. The training, validation, and test accuracies of both models are presented in

Table 6.1. These results clearly reveal that human behavior deviates significantly from the

assumed optimality. This deviation highlights the importance of incorporating a realistic

model of human behavior into human-AI cooperation frameworks.

Table 6.1: The prediction accuracy for human behavior assuming optimal behavior and using
data-driven model in Experiment 1.

Training Accuracy Validation Accuracy Testing Accuracy
Assuming Optimal Behavior 0.4498 0.4327 0.4459
Data-Driven Model 0.8547 0.7831 0.7899

6.3.3 Experiment 2: Evaluating Human Belief Models

We next examine our model of human beliefs. Specifically, we investigate whether we can

design AI behavior such that it is easier for humans to infer the goal of the AI agent.
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In our experiments with a simplified environment, as included in Appendix B.4, we directly

examined how accurately our belief model can infer human beliefs by comparing the predic-

tions of our models with the direct solicitation of users’ inferences about others’ behavior.

The results suggest that our model is more accurate in predicting human beliefs compared

to baselines. However, human beliefs are generally very noisy, and if we randomly draw a

behavior trace from another agent and ask humans to predict the goal, human prediction

accuracy is close to random guessing. Therefore, we next shift our focus to whether AI agents

can design their action plans to make it easier for humans to infer the goal. In this more

complicated environment, we have directly examined this follow-up question of designing AI

policies that are explicable to humans.

Experiment setup. The experiment setup is presented in Figure 6.2b. In addition to

player positions and goal positions, we also display behavioral traces, which are sequences

of actions taken by previous players. For each participant, we show them the traces of two

players and ask the participant to infer which one of the two goals those agents are trying

to reach.

We compare two belief models. The first one is the standard level-1 model: humans assume

the other agent is a level-0 agent that takes the optimal decision (i.e., taking the shortest

path towards the goal). The second one is our proposed behavioral level-1 model: humans

assume the other agent is also a suboptimal decision-maker, taking actions in the same

way as themselves. In our implementation, we leverage the data-driven behavioral model

derived from Experiment 1 as the user behavioral model. More concretely, we construct a

belief model using Bayesian inference, as described in Section 6.2.2, using the corresponding

human model of behavior.

Explicable AI policy. As mentioned earlier, humans generally struggle to infer the goals

of other agents from behavioral traces randomly drawn from history. Therefore, in this

experiment, instead of displaying a randomly drawn historical behavioral trace, we display

the behavioral trace of an AI agent that aims to make its behavior explicable. In particular,

based on the developed belief models, we train AI agents to not only achieve their goals

but also to maximize the likelihood that humans can accurately infer these goals from their

behavior. Our implementation utilizes self-play and awards an additional bonus when the

goal inference aligns with the predictions of a human belief model, in addition to the rewards

for goal achievement. The bonus is proportional to the log likelihood of belief model inference
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log(π(a|s, g)). By conducting experiments with this explicable AI policy, we simultaneously

evaluate whether our belief models are accurate and whether our design of explicable AI

policy is effective.

Simulations. We design the AI agents to incorporate the belief models of standard level-

1 agents and behavioral level-1 agents, enabling them to adopt policies that simplify the

task of goal inference for humans. For each environment with a given goal, we generated

the behavioral traces of both AI policies. The goal is to examine whether the explicable

AI with our belief model makes it easier for humans to infer the goal of the AI. We first

conducted simulations assuming humans are behavioral level-1 agent. The results are shown

in Figure 6.3a. The explicable AI equipped with the belief model of behavioral level-1 agents

leads to behavioral traces that are easier to infer. Note that this result is not surprising is not

surprising since we assume humans infer the goal following the beliefs of behavioral level-1

agent. The results provide evidence that our design of explicable AI is effective.
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(b) Human-subject experiments.

Figure 6.3: Belief inference results in simulations and human-subject experiments in Exper-
iment 2.

Human-subject experiments. We next conducted human-subject experiments to assess

whether our approach results in actions that make it easier for real humans to infer the

goal. We recruited 200 workers from Amazon Mechanical Turk, randomly assigning them

to one of two treatments. Each participant was tasked with identifying the goals of the

player in 30 different scenarios. The length of actions is drawn from the range 4 to 8.

To incentivize effort, participants were awarded a $0.03 bonus for each correctly identified

goal. The results, as shown in Figure 6.3b, demonstrate that humans are better at inferring

the goal of the explicable AI agent, that assumes humans are behavioral level-1 agents. The

difference is statistical significant with p > 0.0001. This comparison demonstrates that when
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coupled with the more accurate human belief models, we can indeed design AI policy to be

explicable, i.e., making it easier for humans to infer AI goals from observing AI actions.

6.3.4 Experiment 3: Designing Collaborative AI Agents

We now examine our design of collaborative AI agents. As described in Section 6.2.3, we

train collaborative AI agents using three different corresponding human models and utilize

both simulations and human-subject experiments to examine the effectiveness of our design.

Experiment setup. The setup of our Experiment 3 is the same as Experiment 1, shown

in Figure 6.2a. But human participants will not receive any hint about which goal their

teammate or themselves are suggested to reach.

Simulations. We first run simulations to evaluate the performance of human-AI teams with

different design of collaborative AI. The evaluation is based on 10, 000 randomly generated

environments. However, we further filter out cases where the distance between the two goals

for the same player is smaller than 3 to encourage models to adjust their behavior based on

the inference of their teammate’s actions. We examine the performance of three designs of

collaborative AI using the methodology described in Section 6.2.3:

• Self-Play is the AI that is trained assuming they are playing with itself.

• Behavior-AI is the AI that assumes the human partner is the behavioral level-0 agent.

• Behavior&Belief-AI is the AI that assumes the human partner is the behavioral level-1

agent.

We partner the collaborative AI agents with the three simulated human agents and measure

the collaborative performance. The simulation results, shown in Table 6.2, highlight the

importance of selecting appropriate human models for training collaborative AI. When an

AI agent is paired with the human model that is used to train the AI, the collaborative

performance is better compared to pairing with other models.

Human-subject experiments. To examine the performance of our collaborative AI de-

sign when pairing with real humans, we recruited 200 workers and divided them into three

treatment groups, each interacting with a different design of AI. Participants were tasked

with playing 30 games, preceded by three tutorial games designed to familiarize them with
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Table 6.2: Simulation results of collaborative performance over 10k testing cases in Exper-
iment 3. Column players are different AI agents, and row players are different simulated
human models.

Human Model
AI Agent

Self-play Behavior-AI Behavior&Belief-AI
Self-play AI 0.6245 0.5250 0.6177
Behavior Model 0.4902 0.6334 0.5755
Behavior&Belief 0.6411 0.6574 0.7675
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Figure 6.4: The average human-AI collaboration performance in human-subject experiment
in Experiment 3.

the gameplay. Participants can receive a $0.05 bonus payment for reaching the same goal

with the AI agent for each of the 30 tasks.

Figure 6.4 presents the average collaborative reward, highlighting that AI trained with mod-

els of human behavior and beliefs achieved the highest collaborative performance when work-

ing with real humans. This outcome not only validates our design of AI but also suggests

that real humans’ actions align with the behavior and belief models in this environment.

Statistical analysis shows significant differences in the performance of AI models paired with

humans, with p < 0.0001 for comparisons between self-play and AI accounting for human be-

haviors, and a p value of 0.0014 for comparisons between AI accounting for human behaviors

versus accounting for both behavior and belief. These results demonstrate that incorporating
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human beliefs into the deign of AI agents enhances collaborative performance when working

with real humans.

6.4 Discussions

This work explores the impact of incorporating human behavior and beliefs into the design

of collaborative AI, aiming to improve collaboration between humans and AI. By developing

models that account for human beliefs regarding AI actions and integrating these models

into AI design, we have observed improved performance in human-AI collaboration. Our ap-

proach, validated through simulations and human-subject experiments, demonstrates that

AI agents designed with an understanding of human behavior and beliefs can be more effec-

tive in working with humans. This suggests a potential path forward for creating AI systems

that are better aligned with human partners, making collaborative tasks more efficient and

intuitive.

Generalization and limitations. We have demonstrated the effectiveness of our approach

through human-subject experiments in commonly used grid world environments with varying

levels of complexity. However, as with most human-subject studies, our findings are limited

to the chosen environments. Moreover, our approach leverages historical data to construct

models of human behavior and beliefs. This approach implicitly assumes that both human

behavior and beliefs remain unchanged over time. Therefore, it is important to improve the

development of human models and examine their generalizability to other environments.

Societal impacts. Our approach highlights the importance of incorporating not only hu-

man behavior but also human beliefs about AI behavior in the design of AI for human-AI

collaboration. We believe this will become increasingly important as AI capabilities grow.

However, while our research focuses on enhancing human-AI collaboration, there is a po-

tential for the same methods to be used negatively, such as designing AI that intentionally

sabotages human utility. One approach to mitigate potential negative impacts is to increase

the transparency of AI models, enabling humans to develop appropriate reliance when work-

ing with AI agents.
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Chapter 7

Conclusion and Future Directions

In summary, this dissertation investigates how to model human decision-makers and design

AI systems for effective interaction with real humans. We show that, in various one-shot

and sequential decision-making problems, real humans often deviate from the common as-

sumption of rationality. Ignoring these biases poses significant challenges in designing AI

systems, impacting both their performance and computational efficiency.

In order to influence human decision-makers, we begin by modifying the decision-making

environments in Chapter 3. We incorporate time-inconsistent bias models into the environ-

ment design problem and demonstrate that solving such problems is NP-hard. We propose

two approaches: modifying reward functions and sending real-time nudges, and show their

effectiveness in a navigation game involving human participants. Although these bias models

align well with real humans in our experimental setup (where humans have limited visibility

of the environment), this method is constrained by the specific assumptions about human

behavior models. To address this limitation, we extend our method-based approach to a

data-driven approach in Chapter 4, where AI systems design information policies to in-

fluence human decision-makers. The data-driven approach does not rely on assumptions

about human biases; instead, it requires sufficient data collected from real humans. We

find that this approach can more accurately predict human behaviors. Furthermore, we

extend our work beyond maximizing a pre-defined utility function to consider how to elicit

human ethical preferences and how AI systems can generate predictive information to as-

sist humans. In Chapter 5, we demonstrate that AI can generate predictive information

to influence decision-making in kidney transplant scenarios, showing that humans are more

likely to accept suggestions from an AI system that shares similar ethical preferences. In

Chapter 6, we further explore scenarios where AI systems make joint decisions with human

decision-makers, aiming to maximize team performance in cooperative tasks. Real-time co-

operation introduces new challenges, as human players may adjust their behavior to better
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collaborate with AI teammates. We use a data-driven approach to model human behavior

in a two-player navigation problem and develop a belief model to describe humans’ beliefs

about their AI teammates. Incorporating these belief models allows us to train AI systems

to cooperate more effectively with real humans.

Overall, our proposed framework leverages both method-based and data-driven approaches

to model human behavior and beliefs about AI systems, enabling the design of AI systems

that interact effectively with humans by updating information signals, modifying decision-

making environments, and developing AI teammates. While we demonstrate the effectiveness

of our proposed approaches, there are several limitations, including challenges in data col-

lection from crowdsourcing platforms, accurately modeling human behavior, and addressing

potential ethical concerns.

Challenges in data collection. We conducted our human-subject experiments and eval-

uated the designed AI systems on Amazon Mechanical Turk. Due to the distributed nature

of crowd work, we cannot guarantee that workers are sufficiently engaged with the tasks,

which might partially explain their deviation from rational or optimal behavior. Common

approaches to improve the quality of crowdsourced data collection include assigning tasks to

suitable workers [83, 80], performing post-hoc aggregation [39, 191, 79, 214], designing proper

incentives [119, 78, 85, 84, 199, 82, 81], and improving task design [62, 3, 44, 176, 46, 47].

From an experimental design perspective, we added bonuses proportional to performance

in some experiments to encourage careful decision-making. Additionally, we included extra

tasks in some experiments to check the consistency of human responses and later used this as

a filter to remove potential noisy responses. Despite these efforts, we cannot guarantee the

high quality of the collected dataset. In particular, in Chapter 5, we study ethical decision-

making, and due to the subjective nature of these tasks, it is difficult to evaluate whether

workers are providing truthful answers. Moreover, we surveyed the ethical preferences of a

general population of laypeople, who might have different interpretations of moral dilemmas

(e.g., whether they believe another kidney will be available soon). It might be helpful to sur-

vey the preferences of relevant domain stakeholders. For example, in the domain of kidney

transplants, we might want to elicit preferences from medical doctors or policymakers. In

the domain of autonomous vehicles, preferences could be gathered from car manufacturers,

drivers, or pedestrians.
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Challenges in modeling human decision-makers. Our work demonstrates that data-

driven methods, such as supervised learning and behavioral cloning, can predict human

actions more accurately than assuming humans are rational. However, we also find that

real human behavior and beliefs are often noisy and inconsistent. A successful AI system

relies on an accurate human model, which in turn depends heavily on the availability of

sufficient high-quality human data. Efficiently building or collecting this data remains a

crucial future direction. Ensuring the data quality and representativeness is essential to

improve the reliability of human behavior models. In the context of sequential decision-

making problems, even if our human models can predict individual actions accurately, the

overall task-level accuracy—such as recovering the entire decision path—often falls short.

This discrepancy highlights the complexity of human behavior in more extended and intricate

tasks. The challenge is not just predicting single actions but understanding and anticipating

the series of actions that comprise human decision-making over time. Moreover, modeling

human behavior in complex tasks introduces additional layers of difficulty. Human decision-

making in real-world scenarios is influenced by various factors, including emotions, stress,

fatigue, and unforeseen events. Capturing these elements are beyond the capacity of this

dissertation, but necessary for creating AI systems that can interact effectively with humans

in realistic settings.

Comparisons between method-based and data-driven approaches. We utilize both

method-based and data-driven approaches to model human decision-makers. Method-based

approaches, as discussed in Chapter 3 and Chapter 4, rely on prior knowledge about hu-

man behavior in specific tasks. These approaches can lead to analytical solutions for AI

systems, clearly revealing the effects of biases. However, they are limited by their reliance

on predefined assumptions about human behavior, and might be hard to transferred to new

scenarios. On the other hand, data-driven approaches, highlighted in Chapter 4 and Chap-

ter 6, generally offer more accurate predictions given sufficient data and do not require extra

assumptions. These models, however, present challenges in AI system design because op-

timal solutions may not translate well when the agent is represented by a neural network.

They require large amounts of high-quality data, are more complex to design, and can be

less interpretable, making it harder to find optimal solutions compared to method-based

approaches. Despite this, we employ data-driven approach (deep learning) to design AI sys-

tems as it does not depend on the formulation of the decision-making model. For realistic

problems, hybrid approaches, combining both method-based and data-driven approaches,
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might be a good choice. Balancing these approaches based on the specific requirements and

constraints of the task at hand can lead to more effective AI system design.

Future work in personalization. The data-driven approach builds behavior models from

datasets collected from crowdsourcing workers. Though this helps to collect diverse data,

it also makes it difficult for us to create a personalized model. Personalization has shown

its superiority in many AI systems, such as recommender systems. In applications where

we can collect massive data for a single person, such as autonomous driving or behavior

tracking on mobile phones, it’s possible to utilize personalized data to develop a more differ-

entiated model. One possible approach is through training models on multiple datasets and

then fine-tuning them for customization. Another way is to encode personalized data into

embeddings and represent individuals’ preferences or biases as part of AI systems. However,

personalization raises privacy concerns during data collection and model deployment. Many

existing research efforts have been conducted in this area, but the advancement of AI will

likely bring more challenges regarding privacy.

Future work in human-AI alignment. In most of our work, we often assume a prede-

fined reward function for both human decision-makers and AI models, whether aligned or

misaligned. However, in practice, rewards might not be directly given in many applications,

making it challenging to ensure that AI behaves in ways that align with the interests of the

designer. Additionally, we find that collecting human beliefs is more difficult than collect-

ing human behavior. This issue becomes more pronounced in applications involving ethical

decision-making (as discussed in Chapter 5) or in rapidly changing domains such as social

media moderation and financial markets. Ethical decision-making often involves diverse and

sometimes conflicting ethical standards. AI systems must navigate these complexities to

make decisions that are broadly acceptable and ethically sound. Moreover, ethical princi-

ples can evolve over time, influenced by cultural shifts, societal debates, and legal changes.

Therefore, AI systems need mechanisms to update their ethical frameworks accordingly. Ad-

dressing these challenges is crucial for the future development of AI systems that are aligned

with human interests.
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V. Borghesani, A. Pashkov, et al. Large language models surpass human experts in
predicting neuroscience results. arXiv preprint arXiv:2403.03230, 2024.

[115] G. Mallapragada, S. R. Chandukala, and Q. Liu. Exploring the effects of
“what”(product) and “where”(website) characteristics on online shopping behavior.
Journal of Marketing, 80(2):21–38, 2016.

102



[116] Y. Mansour, A. Slivkins, and V. Syrgkanis. Bayesian incentive-compatible bandit
exploration. In ACM Conference on Economics and Computation, 2015.

[117] E. Mark, D. Goldsman, B. Gurbaxani, P. Keskinocak, and J. Sokol. Using machine
learning and an ensemble of methods to predict kidney transplant survival. PloS one,
14(1), 2019.

[118] W. Mason and S. Suri. Conducting behavioral research on amazon’s mechanical turk.
Behavior research methods, 44(1):1–23, 2012.

[119] W. Mason and D. Watts. Financial incentives and the “performance of crowds”. In
Proceedings of the 1st Human Computation Workshop (HCOMP), 2009.

[120] P. Masters, M. Kirley, and W. Smith. Extended goal recognition: a planning-based
model for strategic deception. In International Conference on Autonomous Agents and
MultiAgent Systems, 2021.

[121] P. Masters, W. Smith, and M. Kirley. Extended goal recognition: Lessons from magic.
Frontiers in Artificial Intelligence, 4, 2021.

[122] D. McCloskey and A. Klamer. One quarter of gdp is persuasion. The American
Economic Review, 85(2):191–195, 1995.

[123] D. McFadden. Econometric models of probabilistic choice. Structural Analysis of
Discrete Data with Econometric Applications, 198272, 1981.

[124] D. McFadden. Economic choices. American economic review, 91(3):351–378, 2001.

[125] S. Mehrotra, C. M. Jonker, and M. L. Tielman. More similar values, more trust?-the
effect of value similarity on trust in human-agent interaction. In Proceedings of the
2021 AAAI/ACM Conference on AI, Ethics, and Society, pages 777–783, 2021.

[126] P. Mobadersany, S. Yousefi, M. Amgad, D. A. Gutman, J. S. Barnholtz-Sloan, J. E.
Velázquez Vega, D. J. Brat, and L. A. Cooper. Predicting cancer outcomes from
histology and genomics using convolutional networks. Proceedings of the National
Academy of Sciences, 115(13):E2970–E2979, 2018.

[127] S. Narayanan, G. Yu, C.-J. Ho, and M. Yin. How does value similarity affect human
reliance in ai-assisted ethical decision making? In Proceedings of the 2023 AAAI/ACM
Conference on AI, Ethics, and Society, 2023.

[128] S. Narayanan, G. Yu, W. Tang, C.-J. Ho, and M. Yin. How does predictive information
affect human ethical preferences? In Proceedings of the 2022 AAAI/ACM Conference
on AI, Ethics, and Society, 2022.

[129] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. In
International Conference on Machine Learning, 2000.

103



[130] R. S. Nickerson. Confirmation bias: A ubiquitous phenomenon in many guises. Review
of General Psychology, 2(2):175–220, 1998.
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Appendix A

Proofs of Theorems

[111]



We provide proofs of our theorems in the main body of the dissertation.

A.1 Proof of Lemma 1

Proof. We prove the lemma by constructing an example MDP for bounded-rational agents.

Consider a bounded-rational agent with parameter τ . We construct an MDP as show in

Figure A.1, where the circle denotes the state, arrow denotes the action (with deterministic

transition), and the number associate with the arrow is the reward. We consider the case that

the reward functions for the principal and the agent are the same. In this example, the set of

state is {s0, ..., sτ+1}. For states si with i = 1 to τ , there is only one available action “move

right” that moves to state si+1, where the reward Ra(si,move right) = Rp(si,move right) =

1. For state s0, there is an additional action of staying in state s0 that lead to reward of 2,

and for state sτ+1, the only action is to move to state s0 that gives a reward of m.

Figure A.1: The example MDP used for proving Lemma 1 with bounded-rational agents.

Let the initial state be s0 and T = τ+2. If the agent is bounded rational with τ , it is easy to

see that the agent will choose to stay in s0 and generate a total reward of (τ + 2) ∗ 2 for the

principal. If the agent is a standard agent with γ = 1, he will move from s0 to sτ+1 then back

to s0, leading to a total reward of τ + 1 + m. Therefore, without environment design, the

ratio between the reward by a bounded-rational agent and the reward by a standard agent

would be 2(τ +2)/(τ +1+m), which goes to 0 when m→∞. This proves that there exists

an MDP such that the ratio of the reward made by an bounded rational agent compared to

the reward made by a standard agent is arbitrarily close to 0.
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If the principal believes the agent is a standard agent, she does not need to update the

environment to reach the optimal payoff. However, the agent, who is bounded rational,

would take the the sub-optimal action. Therefore, the principal’s performance ratio would

again be 2(τ + 2)/(τ + 1 +m), which could goes to 0 when m→∞.

A.2 Proof of Theorem 2

Proof. We prove the NP-hardness through a reduction from the knapsack problem. The

reduction process is similar to the one by [209], though we use the myopic agent case to

show that the problem is NP-hard with biased agents. Note that this proof holds for both

the problem of environment design via reward function modification and via action nudge.

An instance of the knapsack problem consists of n items. Denote the i-th item value as

ui > 0 and the weight as wi > 0, for 1 ≤ i ≤ n. The knapsack problem aims to find a set

of items that maximizes the total values while ensuring the total weights is within budget

B. Using variables xi ∈ {0, 1} to denote whether item i is included in the set, the knapsack

problem can be formulated as the below integer program, which is NP-hard in general:

max
x

n∑
i=1

uixi; s.t.
n∑

i=1

wixi ≤ B, xi ∈ {0, 1},∀i (A.1)

For the reduction, for each instance of the knapsack problem, we can construct an MDP as

follows. Consider an MDP with n+1 states, s1 to sn+1. The initial state is s1. We also make

the action set from state sn+1 to be empty, effectively making it an end state. There are two

actions {a1, a0} available for each state, except for sn+1, with taking a1 at state si representing

accepting item i, and taking a0 representing not accepting. No matter which action is taken

at state si, the next state will always be si+1. The agent’s reward function corresponds to the

weight for accepting item and the principal’s rewards corresponds to the utility, i.e., agent

reward is Ra(si, a1) = −wi, and principal reward is Rp(si, a1) = ui. Taking action a0 leads

to zero reward for both principal and agent, i.e., Ra(si, a0) = Rp(si, a0) = 0. Let the agent

be myopic, and the budget for the principal is B. Note that in this MDP, the initial state is

s1, and no matter what the agent policy is, the state at time t is st, so we have omitted the

time index in the agent policy to simplify the presentation, which means the myopic agent
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will choose π(si) = argmaxa∈{a0,a1}R
a(si, a). Note also that, without environment design,

the myopic agent will always choose action a0 since Ra(si, a0) = 0 > −wi = Ra(si, a1),∀i,
and therefore the principal’s total reward is 0 in this case.

The environment design problem either via reward function modification or action nudge

can be expressed in the same way as in Equation (A.2). The reason is that 1) in this MDP

construction, the agent policy does not depend on time t, and 2) since the agent is myopic,

both reward function modification and action nudge need to pay same amount of c(si, a) for

agent to change action. Therefore, the optimization formulation for both design spaces is

the same as in Equation (A.2), and this NP-hardness proof holds for both cases.

max
c

n∑
i=1

Rp(si, π(si))

s.t.
n∑

i=1

∑
a∈{a0,a1}

|c(si, a)| ≤ B

π(si) = argmax
a
{Ra(si, a) + c(si, a)},∀si

(A.2)

Below we show that, with the solution of Equation (A.2), we can obtain the solution of

the knapsack problems in polynomial time. Since we can construct the environment design

problem for every instance of the knapsack problem, if our environment design problem is

not NP-hard, the knapsack problem is not NP-hard, which lead to the contradiction since the

knapsack problem is known to be NP-hard. Observe that if we have the solution c(s, a) from

Equation (A.2), we can obtain π(si) as well in the equality constraint. If π(si) = a0, we have

c(si, a0) = c(si, a1) = 0. If π(si) = a1, we have c(si, a1)− c(si, a0) ≥ Ra(si, a0)−Ra(si, a1) =

wi. Therefore, |c(si, a1)|+ |c(si, a0)| ≥ wi, and the equality holds when we set c(si, a1) = wi

and c(si, a0) = 0. With the above observation and our MDP construction, setting xi to be 1

in the knapsack problem if and only if π(si) = a1 could maximize the total utility of selected

items while satisfying the budget constraint on item weights. This means we can solve the

knapsack problem if the solution of Equation (A.2) is given. This finishes the proof.
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A.3 Proof of Lemma 3

Recall that we define Q(s, a, t) as Q(s, a, t, 0). Below we give the proof of a more general

version of Lemma 3, as stated below.

Lemma 5. For any environment w, let πw and ρw be the agent’s deterministic and stochastic

policies following our model. Let Qπw(s, a, t, t̂) and Qρw(s, a, t, t̂) be the corresponding Q-

functions. For all (s, a, t, t̂), we have

|Qπw(s, a, t, t̂)−Qρw(s, a, t, t̂)| ≤ O(e−βC),

where C > 0 is a constant and β is the parameter of ρ.

Proof. This proof extends the results by [167], who prove the convergence for infinite-time

horizon MDP, to address finite horizon and general discounting function. In the following

proof, we omit the subscript w in πw and ρw and represent them using π and ρ. For a biased

agent with discounting function d(t), Let Qπ(s, a, t, t̂) be the biased Q-function following π.

Similar to the standard notation convention, we use the random variable sπt to denote state

at time t when following policy π. The expectation is taken over the randomness of state

transition. Also, since we are considering finite-horizon MDP, we set Qπ(s, a, t, t̂) = 0 for

t+ t̂ > T , which represents the unreachable horizon. We have

Qπ(s, a, t, t̂) = d(t̂)R(s, a) + E[Qπ(sπt+t̂+1, π(s
π
t+t̂+1, t, t̂+ 1), t, t̂+ 1)]

We can write down Qρ(s, a, t, t̂) similarly as Qπ. The only difference is in the second term.

Instead of taking action π(sπ
t+t̂+1

, t, t̂ + 1), the agent takes action a = aρ
t+t̂+1

with proba-

bility ρ(s, a, t, t̂ + 1) = eβQ
ρ(s,a,t,t̂+1)∑

a′ e
βQρ(s,a′,t,t̂+1) . Moreover, the expectation is taken over both state

transition and stochastic policy.

Qρ(s, a, t, t̂) = d(t̂)R(s, a) + E[Qρ(sρ
t+t̂+1

, aρ
t+t̂+1

, t, t̂+ 1)]
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Claim 1: Qπ(s, a, t, t̂)−Qρ(s, a, t, t̂) ≥ 0

Proof. We prove this claim by induction. Note that by definition, both Q functions are 0

when t̂+ t > T .

• When t̂ = T − t, Qπ(s, a, t, T − t)−Qρ(s, a, t, T − t) = R(s, a)−R(s, a) = 0.

• When t̂ < T − t, we have Qπ(s, a, t, t̂ − 1) − Qρ(s, a, t, t̂ − 1) = E[maxa Q
π(s, a, t, t̂) −∑

a ρ(s, a, t, t̂)Q
ρ(s, a, t, t̂)]. Since Qπ(s, a, t, t̂) ≥ Qρ(s, a, t, t̂) for all (s, a, t, t̂), we have

Qπ(s, a, t, t̂)−Qρ(s, a, t, t̂) ≥ 0.

For the purpose of the analysis, we define two functions:

δ(s, t, t̂) = max
a

Qπ(s, a, t, t̂)−
∑
a

ρ(s, a, t, t̂)Qπ(s, a, t, t̂)

ζ(t, t̂) = max
s

δ(s, t, t̂)

Claim 2: Qπ(s, a, t, t̂)−Qρ(s, a, t, t̂)≤∑T
j=t+t̂+1 ζ(t, j − t)

Proof. We again prove it by induction.

• When t̂ = T − t, Qπ(s, a, t, T − t)−Qρ(s, a, t, T − t) = R(s, a)−R(s, a) = 0.

• Suppose the statement is true for t̂. For t̂ − 1, we have (for notation simplicity, we use

s′ to denote st+τ ). The expectation of s′ is over the state transition P (s′|s, a) and the

expectation of a′ is over the stochastic policy ρ.
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Qπ(s, a, t, t̂− 1)−Qρ(s, a, t, t̂− 1)

=E
s′

[
max
a′

Qπ(s′, a′, t, t̂)−E
a′
[Qρ(s′, a′, t, t̂)]

]
≤E

s′

[
max
a′

Qπ(s′, a′, t, t̂)−E
a′
[Qπ(s′, a′, t, t̂)]+

T∑
j=t+t̂+1

ζ(t, j − t)
]

=E
s′
[δ(s′, t, t̂)] +

T∑
j=t+t̂+1

ζ(t, j − t)

≤ζ(t, t̂) +
T∑

j=t+t̂+1

ζ(t, j − t)

=
T∑

j=t+t̂

ζ(t, j − t)

Therefore, by induction, we know the claim is true.

With the above claims, we now show how ζ converges in terms of β. For given (s, t, t̂),

we sort {Qπ(s, a, t, t̂)} such that Qπ(s, a[1], t, t̂) ≥ Qπ(s, a[2], t, t̂) ≥ · · · ≥ Qπ(s, a[m], t, t̂).

Therefore, we have σi = Qπ(s, a[1], t, t̂) − Qπ(s, a[i], t, t̂) ≥ 0. Also, there exists an index

i∗ ≤ m such that σi > 0,∀i∗ ≤ i ≤ m and σi = 0,∀i < i∗. If i∗ does not exist, for all action

Qπ(s, a, t, t̂) = maxa′ Q
π(s, a′, t, t̂), there is no difference in selecting any action. Notice that

i∗ depends on (s, t, t̂), but we omit the dependency for clarity.

Note that we can express δ(s, t, t̂) as below.

δ(s, t, t̂) =Qπ(s, a[1], t, t̂)−
∑
a

ρ(s, a, t, t̂)Qπ(s, a, t, t̂)

=

∑m
i=2 e

−βσiσi

1 +
∑m

i=2 e
−βσi

Since
∑

i xi

1+
∑

i yi
≤ ∑

i
xi

1+yi
for non-negative sequences {xi} and {yi}. By setting xi = e−βσiσi

and yi = e−βσi , we have
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δ(s, t, t̂) =

∑m
i=2 e

−βσiσi

1 +
∑m

i=2 e
−βσi

≤
m∑
i=2

e−βσiσi

1 + e−βσi

=
m∑
i=2

σi

1 + eβσi

=
m∑

i=i∗

σi

1 + eβσi

≤ e−βσi∗
m∑

i=i∗

σi

Therefore, ζ(t, t̂) can be upper bounded as below:

ζ(t, t̂) = max
s

δ(s, t, t̂) ≤ max
s

e−βσi∗
m∑

i=i∗

σi

By applying Claim 2, we have the following

Qπ(s, a, t, t̂)−Qρ(s, a, t, t̂)

≤
T∑

j=t+t̂+1

ζ(t, j − t)

≤(T − t− t̂) max
t+t̂+1≤j≤T

max
s

e−βσi∗
m∑

i=i∗

σi

Note that σi ≤ maxs,a,t,t̂Q
π(s, a, t, t̂) ≤ ∑T

t=0 d(t)Rmax, and Rmax = maxs,a R(s, a) > 0. If

we choose σ∗ = mini,s,t,t̂ σi such that σi > 0 holds, the following bounds holds for all (s, a, t, t̂)

and β > β0:
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Qπ(s, a, t, t̂)−Qρ(s, a, t, t̂) ≤
[
m(T + 1)

T∑
t=0

d(t)Rmax

]
e−βσ∗

which finishes our proof.

A.4 Proof of Lemma 4

Proof. The problem formulated in Equation (3.6) is a LP problem with |S|(T + 1) + 1 con-

straints, with |S|T constraints on transition dynamics, |S| constraints on initial distribution,

and 1 constraint on the nudge budget (excluding the constraints ϕ(s, a, t) ≥ 0). Therefore,

using the property of linear programs, there exists at least one optimal solution with at most

|S|(T + 1) + 1 non-zero variables (the one with the smallest number of non-zero variables is

called the basic feasible solution).

First consider a special case that we can find an optimal solution ϕ∗ that (1) has at most

|S|(T + 1) + 1 non-zero variables and (2) there exists an action a for every (s, t) such that

ϕ∗(s, a, t) > 0. Note that finding ϕ∗ satisfying (1) is always possible using the property of

linear programs as discussed above. If there exists ϕ∗ that satisfies both conditions, the proof

of the lemma is straightforward. Since we have |S|(T +1) sets of (s, t), there will be at least

|S|(T +1) non-zero variables due to the condition. Since there is also at most |S|(T +1)+1

non-zero variables in ϕ∗, we can conclude there exists at most one set of (s, t) such that there

contains two non-zero variables in ϕ∗.

Below we consider the general case that we can only find ϕ′ that satisfies the first condition

but not the second. We demonstrate how to construct a “smaller” problem that satisfies both

conditions in a smaller problem instance. We then argue the optimal solutions in the smaller

problem space is also optimal in the original space. First, we know there always exists a

solution ϕ
′
that satisfies the first condition from the property of linear programs. Now let us

construct a “smaller” problem of the original Equation (3.6). For a given ϕ
′
that satisfies the

first condition, denote Y = {(s, t)|∀s, t}, the set of all (s, t), and X = {(s, t)|∑a ϕ
′
(s, a, t) =
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0}, the set of (s, t) such that
∑

a ϕ
′
(s, a, t) = 0. Now construct an updated problem from

Equation (3.6) such that the the set of state-time pair is Y \X (i.e., the set of state-time pair

that is in Y but not in X), but the transition and cost is still the same, and corresponding

action probability is set to zero, i.e., ϕ(s, a, t) = 0 if (s′, t+ 1) ∈ X and P (s′|s, a) > 0. Note

that ϕ′ is still the optimal solution in new problem, and any optimal solution in new problem

is also going to be optimal in the original problem (since they perform at least as well as ϕ′).

Note that now in the new problem, the number of constraint is |S|(T +1)+1−|X|, and the

number of state-time pair is |S|(T + 1)− |X|. Again, using the property of linear program,

there exists a solution with at most |S|(T + 1) + 1− |X| elements. If we can find a solution

ϕ∗ that satisfies the above while also satisfying the condition that there exists an action a

for every (s, t) ∈ Y \ X such that ϕ∗(s, a, t) > 0, there exists at most one (s, t) with two

nonzero ϕ∗(s, a, t) and we have the proof. If not, we can continue the above process to keep

shrink the set of (s, t) until we find the new problem that satisfies both conditions. Note

since in each new construction, the set of (s, t) is reduced at least by 1, and therefore this

procedure will terminate in a finite number of times.

We demonstrates the existence of solution such that ”multiple competing nudge” only hap-

pens once. Now we show how to leverage the simplex method to find such a solution. The

process is essentially an implementation of the procedure in the proof using the simplex

method. Given problem 3.6, we can first use the simplex method to find a basic feasible

solution, named ϕ1. If ϕ1 satisfies the requirement that ”multiple competing nudge” happens

at most once, then ϕ1 is the desired solution. If not, since ϕ1 is a basic feasible solution, there

must exists some (s, t) such that ϕ1(s, a, t) = 0,∀a. We could then reconstruct a problem

by removing all those state-time in Equation (3.6), then resolve the problem using simplex

method to find a new basic feasible solution ϕ2. Note that ϕ2 has the same performance of

ϕ1 in the original problem. If ϕ2 meets the requirement, we have found the desired solution.

If not, we could repeat above process to construct new problem and find new solution, until

the solution satisfies at most one ”multiple nudge”. Note that each new solution is still an

optimal solution in original problem. In the worst case, we need to repeat the above process

|S|(T + 1) times, i.e., the number of state-time pair. However, this is still linear in terms of

time complexity. By following the above procedure, we can find a solution that ”multiple

competing nudge” happen at most once in polynomial time.
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Appendix B

Supplemental Experiment Results
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B.1 Additional Experiment Results in Chapter 3

We present two additional sets of simulation results in this section. The first one examines

the choice of β in the relaxed formulation in environment design via reward modification.

The second one examines the scenario when the agent reward function and biases are not

known a priori and evaluate whether we can leverage inverse reinforcement learning to infer

agent rewards and biases to be used in our algorithms.

The effect of β in the relaxed formulation. We have shown that solving the environ-

ment design problem as defined in Equation 3.3 is NP-hard and have proposed an relaxed

formulation as in Equation 3.4. The key parameter of this relaxation is β in the soft-max

function. When β → ∞, the relaxation is the same as the original environment design

problem. However, in practice, we can only solve it with a finite β.

Here we examine how much the choices of β impacts the outcome. We consider the mis-

alignment of the principal’s and the agent’s reward function. For the agent model, we

consider the boundedly-rational agent with τ = 1 and present-bias agent with k = 1 (we

have examined a range of different parameters, and the results are qualitatively similar.). For

comparison, we brute-forcedly derive the optimal solution using bi-level solver of Pyomo16

and examine how fast the performance of our algorithms converges to the true optimal as β

increases. As shown in Figure B.1, the performance converges quickly with β increases. It

suggests that setting a small β is enough to reach reasonable approximations. This result

also complements Lemma 3, proving the convergence of Q functions, and demonstrates that

we can approximate the overall performance of the optimal.

We have also measured the runtime improvements for the relaxation. In our simulation

(|S|=100, |A|=4, and T =20), it takes 7.9 seconds for our algorithm to solve an instance on

average in our relaxed formulation while it takes 721.3 seconds to solve the instance exactly.

The results demonstrate the efficiency improvements of the relaxation.

Unknown agent reward and biases. In our setting, we assume the reward function and

agent bias parameters are known. While this assumption might be approximately satisfied

in some cases (e.g., reward functions are payments specified by the system, and biases can

be roughly estimated as in our experiment), it might not be satisfied in other cases. When

16https://github.com/Pyomo/pyomo
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(a) Boundedly-rational agent with τ = 1.
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(b) Present biased agent with k = 1.

Figure B.1: Examining the impact of β to the relaxed reward function modification algo-
rithm. When β is large, the relaxation is close to optimal. The results suggest that a small
β is sufficient for the approximation.

these parameters are unknown, if we have access to data of human behavior in the original

environment (e.g., user action history on the website), we might apply standard approaches

in inverse reinforcement learning to simultaneously infer the reward and human biases first

and then use the inferred values for environment design. In this set of simulations, we

examine whether this idea is feasible.

We use the same simulation setup as in the main paper and apply the techniques by [57]

to infer the reward and bias parameter at the same time from the policy. Since they take a

Bayesian approach, and the prior (initial belief about the parameters) would influence the

outcome, we run simulations by assuming the prior is a noisy observation of the truth. In

particular, let r(s, a) be the true reward. In the prior, we randomly draw the prior of r(s, a)

to be N(N(r(s, a), σ), σ), where N(µ, σ) is a normal distribution with mean µ and variance

σ. Intuitively, larger σ implies a worse prior. We set the agent model to be a bounded

rational agent with τ = 1 (we have tried other agent models and the results are qualitatively

similar). Figure B.2a and B.2b demonstrate how well the inverse reinforcement learning can

estimate the true values with different noise σ in the prior. We then run our environment

design algorithms on the inferred values, and Figure B.2c and B.2d demonstrate that our

algorithms work on inferred rewards and biases as long as we have reasonable initial prior.

While the results in this simulation are exploratory, it showcases the possibility to utilize

environment design even when the rewards and human biases are initially unknown.
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(a) RMSE of inferred rewards.
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(b) RMSE of inferred bias parameters.
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(c) Reward modification method.
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(d) Action nudge method.

Figure B.2: Performance of reward modification and action nudge methods in environment
design problems when the rewards and bias parameters are inferred from observations.
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In this chapter, we discuss additional experimental results to evaluate our proposed AI

models in the dissertation.

B.2 Additional Experiment Results in Chapter 4

We discuss additional sets of simulation results to highlight the properties and performance

of HAIDNet, as well as details of the optimization process of HAIDNet.

B.2.1 Data Generation in Experiments

Here we provide the details in generating data instances for training HAIDNet in our settings.

Single receiver, binary actions and binary states In the simplest setting with binary

actions and binary states, the action space is A = {0, 1} and the state space is Θ = {0, 1}.
We adopt a stylized setting for binary actions where the sender obtains utility 1 when the

receiver takes action 1 and utility 0 when the receiver takes action 0 [94]. The receiver utility

uR is uniformly drawn from [0, 1] and prior distribution is draw from Dirichlet distribution.

We filter out trivial problem instances where the receiver will always choose one action

whatever the information policy, e.g., the receiver always chooses action 1 when receiver

utility uR(1, θ) > uR(1, θ),∀θ ∈ Θ. Total 102,400 instances are generated for training, 1,000

for validation and 1,000 for testing.

Single receiver, multiple actions, and multiple states In the setting withN actions and

M states, the action space is A = {0, 1, . . . , N−1} and the state space is Θ = {0, 1, . . . ,M−
1}. The sender utility is set to uS(a, θ) = a

N−1
,∀θ ∈ Θ if N ≥ 3, and the same as above

binary actions if N = 2. The receiver utility uR is uniformly drawn from [0, 1] and prior

distribution is drawn from Dirichlet distribution. We also filter out trivial cases where the

receiver will always choose one action whatever the information policy is.

Multiple receivers, binary actions, and binary states The receiver utility and prior

distributions are generated in the same way as in the cases of a single receiver, binary actions,

and binary states. The sender utility is the fraction of receivers choosing action 1, i.e., her

utility is given |S|
K

if there are |S| number of receivers choosing action 1 and K is the total
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number of receivers. We also filter out trivial cases where the receiver will always choose one

action whatever the information policy is.

Problem instances in human-subject experiments In our human-subject experiment,

the problem setup is the same as the setting with a single receiver, binary actions, and binary

states. To make the setting easier to understand for experiment participants, the receiver

utility is drawn from {1, 2, 3, 4, 5} when the participant chooses to purchase a good product

or chooses to not purchase a bad product, and the participant utility is 0 for other cases.

The sender utility is set to 1 when the receiver chooses to buy, and 0 otherwise. The prior

distribution is drawn from the Dirichlet distribution, however, we round all probability in the

prior distribution and the information policy to the nearest tenth digit, {0%, 10%, . . . , 100%},
to make it easier to interpret for human participants.

B.2.2 Convergence and Scalability of Proposed Methods

Convergence of training. In this set of simulations, we have examined the convergence

of training with respect to the number of training iterations and also with respect to the

softmax parameter β when dealing with Bayesian rational receivers. Overall, HAIDNet

converges to finding the optimal policy within reasonable setup.

To illustrate the results, here we present the simplest setting with binary actions and binary

states, namely, the action space A = {0, 1} and the state space Θ = {0, 1}, and observe

whether HAIDNet can produce near-optimal information policies. For the sender utility, we

adopt a stylized setting where the sender obtains utility 1 when the receiver takes action 1

and utility 0 when the receiver takes action 0. We randomly draw each value in the receiver

utility uR from [0, 1]. The prior distribution λ is drawn from a Dirichlet distribution. We

then simulate data using the setting above and optimize HAIDNet.

We compare the performance of the policy learned by HAIDNet with the closed-form optimal

policy. Recall that when the receiver is rational (expected utility maximizer), he chooses the

action that maximizes his expected utility given his belief about the state. As introduced in

Section 4.2.2, to enable the gradient-based method in optimizing HAIDNet, we replace this

argmax operation as softmax using a softmax scale parameter β. Therefore, we first examine

the impact of this choice of β and the amount of training (# iterations in gradient descent)
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in optimizing the information policy. As shown in Figure B.3, when β is large enough and

when we optimize over a large enough number of data batches, the learned information policy

from HAIDNet converges to the information policy that achieves near-optimal performance.

0 5000 10000 15000 20000
Iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Se
nd

er
's 

ut
ilit

y

Optimal
HAIDNet

(a) Training iterations.
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(b) β.

Figure B.3: The convergence results, with respect to the number of training iterations and
β, of the sender’s utility derived from the information policy generated by HAIDNet.

Scalability of HAIDNet. One of the benefits of HAIDNet is to provide efficient solutions

for settings when it is computational challenging to derive the optimal policy exactly (e.g.,

in settings with multiple receivers).

To demonstrate this benefit empirically, we first record the time for computing the exact opti-

mal policy for a problem instance with K receivers via a Linear Programming approach [49].

As we can see from Table B.1, the amount of time to compute the optimal information

policy grows significantly (the computational complexity grows exponentially as the number

of constraints is exponential in the number of receivers in the linear programming approach)

as the number of receiver increases. This reaffirms the computational barriers to computing

the exact optimal policy. Note that [197] has shown that it is #P-hard to approximate

the optimal sender utility within any constant multiplicative factor. So this computational

barrier is backed by theoretical analysis.

For HAIDNet, for each class of problems (i.e., a given number of receivers), we only need

to train HAIDNet once. For each new problem instance (different priors, sender/receiver

utilities, etc), we only need to make a test-time prediction (one pass of forward propagation)

to generate an information policy. Again, in Table B.1, we report the time for training

HAIDNet and the time for generating the information policy for each problem instance.

To provide the number comparisons, when the number of receivers is 18, traditional linear

program method of solving the information policy for a problem instance takes more than
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23 hours. On the other hand, for HAIDNet, we only need a little more than 1 hour to train

HAIDNet for all problem instances with 18 receivers, and it takes less than 1 second to

generate the information policy for each receiver. The reported numbers are performed on

the machines with Intel(R) Xeon(R) Gold 6148 CPU (2.40GHz) and a Tesla V100-SXM2-

32GB GPU.

Table B.1: Comparing run-time between HAIDNet and linear programming methods. K is
the number of receivers. The reported run-times are in seconds.

K
Training Time
of HAIDNet

Testing time per instance
of HAIDNet

Optimal policy per instance
via Linear Programming

2 1082 0.184 0.323
3 1291 0.189 0.367
5 1571 0.221 0.371
10 2174 0.270 4.820
15 3284 0.299 235.0
17 3713 0.333 14290
18 4030 0.352 84280

B.2.3 Generalizability of Proposed Methods

Single Bayesian rational receiver case. In Section 4.3, we compare the performance

between the policy from HAIDNet and the optimal policy in the single Bayesian rational

receiver setting with an increasing number of states with binary actions, and an increasing

number of actions with binary states. To further complete the results, we have also run

simulations when we simultaneously increase the number of actions and the number of states

at the same time. To put the performance of HAIDNet into context, we also include the

performance of random policy, which provides random signals all the time. This random

policy serves as the naive baseline setting. The results are shown in Table B.2c. The average

sender utility obtained by HAIDNet policy is close to optimal policy in both training and

testing problem instances (averaged over 1,000 instances) even in cases with large action

and state numbers. We also evaluated the model training error for binary action case and

binary state case in Table B.2, which shows that HAIDNet works well for large-scale problem

instances.

Varying number of receivers, actions and states. In previous sections, we evaluate

HAIDNet can accommodate any problem instance (i.e., different specifications of priors,
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Table B.2: Comparing the average sender utility generated by the optimal policy and the
policy from HAIDNet in the setting with a single Bayesian rational receiver.

(a) Increase the number of states M with binary actions.

M
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
2 0.4901 0.7409 0.7498 0.4909 0.7408 0.7451
3 0.5009 0.7737 0.7782 0.4819 0.7598 0.7669
5 0.4898 0.8171 0.8209 0.5227 0.8066 0.8225
10 0.4841 0.8495 0.8699 0.4838 0.8196 0.8686

(b) Increase the number of actions N with binary states.

N
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
2 0.4901 0.7409 0.7498 0.4909 0.7408 0.7451
3 0.4911 0.7017 0.7214 0.5064 0.7089 0.7227
5 0.4919 0.6906 0.7113 0.5119 0.6690 0.7064
10 0.4907 0.6861 0.7084 0.4861 0.6623 0.6963

(c) Increase both the number of states and actions. M = N represents state number equals
action number.

M = N
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
2 0.4901 0.7409 0.7498 0.4909 0.7408 0.7451
3 0.4791 0.7352 0.7679 0.4854 0.7199 0.7587
5 0.5029 0.7771 0.8113 0.5101 0.7755 0.8121
10 0.4799 0.8613 0.8971 0.4872 0.8323 0.8994
50 0.4903 0.9247 0.9550 0.7058 0.9166 0.9545

receiver utility, and sender utility) with a fixed number of actions, states, and receivers. It is

then natural to wonder whether we can extend the HAIDNet structure so that it can work

with varying numbers of receivers, actions, and states. As a proof of concept, in this set

of simulations, we attempt to address this question and present an approach that can work

with varying numbers of receivers, actions, and states when the numbers are upper bounded.

We first examine the relaxation of a fixed number of receivers. In particular, we can generalize

our approach to address varying numbers of receivers when the number of receivers is upper

bounded. One straightforward approach is to maintain multiple HAIDNet, one for each

fixed number of receivers, for generating the optimal information policy. Another approach

is to train a HAIDNet that can generate information policy for the maximum number of

receivers. In settings when the number of receivers is less than the maximum number,

[129]



Table B.3: Comparing the average sender utility by the optimal policy and the policy from
HAIDNet in the setting with at most 10 Bayesian rational receivers.

K
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
2 0.5042 0.7830 0.8018 0.4986 0.7538 0.7921
3 0.5066 0.7337 0.7586 0.4866 0.7139 0.7450
5 0.5032 0.7245 0.7451 0.5071 0.7121 0.7387
10 0.4944 0.6911 0.7118 0.5009 0.6650 0.6901

we can include “null receivers” who always choose action 0 (by setting the receiver utility

such that the utility for taking action 0 is always larger than taking other actions in both

states). By including this in the training process, we can have a single HAIDNet that can

generate policies for a bounded variable number of receivers. As a proof of concept, we

have implemented the above approach and trained a HAIDNet that can work with up to 10

receivers. We then examine its performance when the number of receivers is smaller than

10. As we can see from Table B.3, this approach achieves reasonable performance and shows

promising results.

Table B.4: Comparing the average sender utility by the optimal policy and the policy from
HAIDNet in the setting with at most 5 states and 5 actions, for a single Bayesian rational
receiver.

(M,N)
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
(2, 3) 0.4994 0.6564 0.7308 0.5276 0.6517 0.7411
(2, 4) 0.4852 0.6450 0.7134 0.5236 0.6535 0.7329
(2, 5) 0.4898 0.6498 0.7042 0.5111 0.6641 0.7258
(3, 2) 0.5094 0.6856 0.7735 0.4731 0.6462 0.7574
(3, 3) 0.5128 0.7072 0.7791 0.4832 0.6689 0.7615
(3, 4) 0.5343 0.7165 0.7729 0.5322 0.6940 0.7672
(3, 5) 0.4798 0.6922 0.7453 0.5308 0.6990 0.7492
(4, 2) 0.4898 0.6849 0.7701 0.5216 0.6922 0.7883
(4, 3) 0.4721 0.7051 0.7761 0.4796 0.6940 0.7844
(4, 4) 0.5032 0.7239 0.7812 0.5143 0.7186 0.7962
(4, 5) 0.4700 0.7347 0.7807 0.5144 0.7421 0.7925
(5, 2) 0.4883 0.7147 0.7915 0.5186 0.7137 0.8038
(5, 3) 0.5394 0.7736 0.8398 0.4928 0.7318 0.8184
(5, 4) 0.4998 0.7810 0.8289 0.4951 0.7494 0.8242
(5, 5) 0.4819 0.7722 0.8159 0.4863 0.7605 0.8079
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We now examine whether this approach also works for extending the number of states M

and the number of actions N . As a proof of concept, we adopt the same approach above and

train a HAIDNet for a maximum of 5 actions and 5 states. We then examine the performance

of HAIDNet for problem instances with less or equal to 5 actions or states. As shown in

Table B.4, this approach also works in addressing varying numbers of actions and states.
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B.3 Additional Experiment Results in Chapter 5

We present additional evaluation of experiment results on human ethical decision-making.

B.3.1 the Effect of Prediction Magnitude

We perform additional exploratory analysis on the collected data in Experiment 1 to gain

more insights on how human ethical preferences are affected by predictive information. We

look at the impact of not just the direction of the preference in predictions, but the magni-

tude of prediction differences. Instead of looking at individual factors, we look at how the

predictive information impacts human preferences as a whole. More concretely, using the

data collected in the first treatment (verifiable only), we can determine the prior preferred

candidate, the candidate who is more preferred for each scenario (i.e., a pair of candidates

with different combination of factor differences) on the population-level in the first treat-

ment. We then split the scenarios in the second treatment (verifiable and predictive) into

7 groups, where the difference between the survival chance of the prior preferred candidate

and the unpreferred candidate is {−6,−4,−2, 0, 2, 4, 6}. We then measure ∆P of the overall

candidate preference (as opposed splitting up by dimension) for each group to understand

the impact of the prediction magnitude on the prior preference.

From the results in Figure B.4, we can see how ∆P changes for various magnitudes of

prediction value difference. This trend is monotonic, which makes sense intuitively, as we

would expect that a larger difference in prediction values has a bigger effect on ethical

preferences than a smaller difference in prediction values. However, when the predictions are

equal between candidates, workers’ ethical preferences decreases compared with the verifiable

only group. This result again supports that adding predictive information could impact

human ethical preferences, even when the predictive information does not seem to provide

differentiating information between candidates.

B.3.2 the Effect of Value Similarity Claims

In our Experiment 3 (in Section 5.3.3), we study the effect of value similarity on AI reliance.

To further understand why we see effects of value similarity on AI reliance, we conduct extra
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Figure B.4: Effect of prediction magnitude in Experiment 1. We present ∆P for each
magnitude of prediction difference in blue, and ∆P for the verifiable only treatment group
in black.

data analysis. Specifically, we want to see if the increases in AI alignment caused by value

similarity can be explained by the workers’ belief that the AI shares a similar set of values

to the workers, or if the increase in AI alignment is due to the actual similarity in values

exposed in AI recommendations reinforcing the workers’ own preferences.

In our experiment design, half of the AI recommendations in the second stage are generated

deterministically according to the claimed ethical preference, and half of the AI recommen-

dations are generated randomly. When the AI is random, any alignment increase is only due

to the perception of the AI having similar or dissimilar values. When the AI is deterministic,

alignment increases are explained by both user perception of AI similarity and the effect of

the AI actually acting according to its preferences. As a result, we can compare these two

to find the isolated effect of AI claims.

We measure the effect of value similarity on conditional AI alignment (as in Section 5.3.3),

and break this data down by AI Behavior: whether the AI is deterministic or random.

These results are presented in Figure B.5. In this experiment, we have two independent

variables (deterministic vs random AI, and similar vs dissimilar AI). The dependent variable
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Figure B.5: The effect of value similarity on alignment change between Stages 1 and 2 in
Experiment 3, across combinations of Deterministic/Random and Similar/Dissimilar treat-
ments. When the AI is Deterministic, the Similar AI leads to a significantly larger change in
conditional alignment (p < .001). However, when the AI is Random, there is no significant
difference between Similar and Dissimilar AI (p = .58).

is the conditional alignment. To examine the significance of the results, we first conduct a

two-way ANOVA test and find a significant interaction effect between the two independent

variables (F (1) = 6.86, p = 0.009). We then conduct post-hoc Tukey’s HSD tests. We

find that when the AI is deterministic, there is a significant difference in the conditional AI

alignment between similar and dissimilar AI (p < 0.001). However, when the AI is random,

we see no significance in the conditional AI alignment between similar and dissimilar AI

(p = 0.58). The results suggest that workers’ reliance on AI is influenced by the realized

AI recommendation instead of the value AI claims to exhibit. With this result, we find no

evidence to support that the effect of value similarity is primarily due to humans relying

on AI recommendations which claim to share similar values, as we see no effect from AI

similarity claims alone on reliance.
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B.4 Additional Experiment Results in Chapter 6

We conducted additional experiments in a simpler grid world environment with multiple

goals to illustrate our study of humans’ beliefs about AI behavior.

B.4.1 Experiment Environments: Grid Worlds with Single Player

We use grid worlds of size of 6× 6 in both simulations and human experiments. Similar to

the environment setup in Section 6.3.1, the grid world contains a start position, two goal

positions, and some blocked positions that the player cannot enter. The player needs to

move from the start position towards one of the goal positions. The player can choose to

move {Up, Down, Right, Left}. The player will get a positive reward upon reaching the

goal, and we set the maximum number of actions to be 20.

We first recruit participants to engage in a single-player game and record their behavior. We

then build human behavior model using behavioral cloning. To evaluate our proposed ap-

proaches in modeling human beliefs and designing cooperative AI, we conducted additional

two sets of experiments. In the second set of experiments, we provide participants with dif-

ferent traces of actions from other agents, again in a single-player game, and ask participants

to infer the goal of the agents. This experiment helps us evaluate whether our belief model

leads to better predictions of human beliefs over others’ behavior. Afterwards, we conduct a

two-player game in the third experiment, where humans are paired with different AI agents

to examine the team performance of our design of collaborative AI.

The interfaces of our experiments can be seen in Figure B.6a, B.6b, and B.6c. The detailed

descriptions of the experiment and interfaces are included in Appendix C.4.

B.4.2 Experiment 4: Evaluating Human Behavior in Single-Player

MDP

Similar to Experiment 1, we recruited 200 workers from Amazon Mechanical Turk. Each

recruited worker was asked to play 15 navigation games within a grid world, as shown in

Figure B.6a. Our goal is to leverage the collected data to create a data-driven model of human
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(a) Experiment 4. (b) Experiment 5.

Human’s Game

AI’s Game

(c) Experiment 6.

Figure B.6: Human-subject experiment interfaces. In Experiment 4, each participant is
asked to control the player to move to the goal (red star). In Experiment 5, each participant
is provided a trace of the behavior by another agent, and is asked to infer which goal the
agent is trying to reach. In Experiment 6, each participant is playing with an AI agent in
separate environments.

behavior. We divided the collected data of human actions into three sets: training, validation,

and testing. The training set comprised data from 160 workers, including approximately

70,000 instances of user decisions, while the validation and testing sets each contained data

from 20 workers, amounting to around 8,800 instances of user decisions each. The model

and parameter tuning were similar to what we did in Experiment 1.

Evaluation of data-driven behavior models. The training, validation, and test accura-

cies of assuming optimal behavior and behavioral models are presented in Table B.5. Results

show that data-driven model could predict human behavior more accurately than assuming

humans are optimal.

Table B.5: The prediction accuracy for human behavior for different human models in Ex-
periment 4.

Training Accuracy Validation Accuracy Testing Accuracy
Assuming Optimal Behavior 0.7266 0.6964 0.7131
Data-Driven Model 0.9189 0.8136 0.8422

B.4.3 Experiment 5: Evaluating Human Belief Models

We developed human belief models (behavioral level-1) similar to previous experiments.

We examine whether belief inference using behavioral model aligns with real humans, and

whether we can design AI behavior such that it is easier for humans to infer the goal of the

AI agent.
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Experiment setup. The experiment setup is presented in Figure B.6b. The grid world

contains a starting position and two goal positions. For each participant, we show them a

trace of behavior from another agent and ask the participant to infer which of the two goal

the agent is trying to reach.

Experiment 5.1: Examining the belief models. We recruited 200 workers from Amazon

Mechanical Turk to compare standard level-1 and behavioral level-1 model. Each worker was

asked to infer the goal for 25 behavioral traces. We compared the performance of two belief

models and the worker accuracy, as shown in Table B.6. As we can see from the table,

humans are generally poor at inferring the goal of other agents: their accuracy only reaches

59.37% in inferring the goal of the other agent. Moreover, the behavioral level-1 model,

which accounts for the human behavior model in the belief model, captures human beliefs

better than the standard level-1 model, which assumes human behavior is optimal.

Table B.6: Performance comparison between Bayesian inference framework using standard
model and human behavior model.

Consistency to Human Predictions Cross Entropy Loss
Standard level-1 0.4977 0.9284
Behavioral level-1 0.5764 0.7506
True goals 0.5937 0.6631

Standard level-1 Behavioral level-1
Treatment
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Figure B.7: Human evaluations of belief inference accuracy regrading AI goals.

Experiment 5.2: Developing explicable AI policy. As demonstrated in Experiment

5.1, humans generally struggle to infer the goals of other agents based on others’ behavior.
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To design AI agents which makes inference of their goals easier by humans, we train AI

agents to maximize the likelihood that humans can accurately infer these goals from their

behavior.

We recruited 400 workers from Amazon Mechanical Turk, randomly assigning them to one

of two treatments, to assess the behavior of AI agents. Each participant was tasked with

identifying the goals of the player in 30 different scenarios. Participants were awarded a $0.03

bonus for each correctly identified goal. Figure B.7 displays the results of human evaluation.

The findings indicate that humans achieve higher accuracy in inferring the correct goals of

AI agents when employing Behavioral level-1 model.

B.4.4 Experiment 6: Evaluating Collaborative AI Agents

Utilizing developed models of human behavior and beliefs, we follow the same methodology in

Experiment 3: train different collaborative AI agents, pair them with different human models,

and examine the collaborative performance in simulations and human subject experiments

(via recruiting 300 workers).

The setup of our Experiment 6 is shown in Figure B.6c. The goal for the human-AI team is

for both agents to reach the same goal in their own environments (both reaching “red star”

or both reaching “green triangle”) within a time limit. The team will not get points if they

reach different goals or one of the players fails to reach any goal.

Simulations results are shown in Table B.7. Simulations indicate that collaborative per-

formance is highest when an AI agent is paired with the human model used to train it.

Figure B.8 presents the average collaborative reward in human-subject experiments. Statis-

tical analysis revealed significant differences in the performance of AI models when paired

with human participants, with p-values of 0.0166 for comparisons between the treatments

self-play and Behavior-AI, and p < 0.0001 for Behavior-AI versus Belief-AI. These results

demonstrate that incorporating human beliefs into the deign of AI agents enhances collabo-

rative performance when working with real humans.
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Table B.7: Simulation results of human-AI collaborative rewards in Experiment 6. Columns
players are different AI agents, and row players are different simulated human models.

Human Model
AI Agent

Self-play Behavior-AI Behavior&Belief-AI
Self-play AI 0.7828 0.4780 0.6164
Behavior 0.5926 0.7584 0.4552
Behavior&Belief 0.6919 0.7268 0.7813

Self-play AI Behvaior-AI Belief-AI
Treatment
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Figure B.8: Average collaborative reward of humans and AI agents in Experiment 6.
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Appendix C

Details of Human-Subject

Experiments

[140]



We provide detailed information about our human-subject experiments in this chapter.

C.1 Human Experiment Details in Chapter 3

In Chapter 3, we study the problem of environment design, and we provide more detailed

description of our human subject experiments in this section.

Experiment design. Our human-subject experiment is approved by the IRB board in

our institution. In our human-subject study, each worker is asked to play six navigation

games, representing the decision-making environments. Similar to our simulation setting,

each navigation game is represented by a grid world of size 10 × 10. The initial state is in

the middle of the grid world, and the time horizon T is set to 20. In order to reduce the

cognitive burden for human subjects, the reward function is simplified to only depend on the

state, and we let the principal’s reward function to be equal to the agent’s reward function,

i.e., Ra(s, a) = Rp(s, a) = R(s).

The reward on each state is an integer from 1 to 100. Similar to the setup in the simulation,

we place a high reward state (uniformly drawn from 80 to 100) in a random corner of grid

as global optimal, and a medium reward state (from 50 to 80) in other three corners as local

optimal. Since the initial point is in the middle of map, we set the reward of path to global

optimal and one local optimal to be low (from 10 to 30), and reward towards other two local

optimal to be relatively high (from 30 to 50). Other places of map is set to be relatively low

(from 1 to 30).

Experiment interface. The interface of the navigation game is shown in Figure C.1.

Workers can move the plane around the map to collect the points in the grid world, and

their bonuses depend on the total points they collected for the six games. For every 100

points collected, they can earn an additional USD $0.01 bonus. Taking into account the

workers’ working time in the task, and the $0.50 base payment for submitting the task, the

average hourly rate is around USD $11.50.

To induce biased human behavior, at each time step, a worker can only see the rewards of

the nearby states (to simulate the short-sightedness). Out of six games, there are two games

each for vision length of 1,2, 3, which we use short-sighted agent with τ = 0, 1, 2 to model
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Figure C.1: Human experiment interface of updating decision-making environments in Chap-
ter 3. Workers can use arrow keys to move the airplane around and collect points. The
information on the bottom of the left-panel is the action nudge presented to workers, which
is shown in action nudge treatment when a nudge is provided by AI model, hidden otherwise.

when solving the environment design problem. Note that the purpose of this design is to

provide us an estimate of human biases to be used in environment design. Worker behavior

might not follow the behavior model.

Each worker is randomly assigned to one of the three treatments: {baseline, modified reward,

action nudged}, with 106, 86, 108 workers assigned to each. The games are drawn from the

same pool for each treatment. In the baseline treatment, workers will play the drawn games

without modifications. In the modified reward treatment, workers will see the modified

rewards generated by our algorithm, while in the action nudge treatment, when the nudge

happens, the workers will see an additional message indicating they might gain bonus for

moving towards a certain direction (as shown in Figure C.1).

C.2 Human Experiment Details in Chapter 4

In Chapter 4, we study the problem for information design and run human-subject exper-

iments to evaluate designed policy. We compare average sender utility of different policies
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in human-subject experiment in Figure 4.4, and we also compute the receiver utility in each

treatment, included in Table C.1. As we can see from the table, while HAIDNet helps find

a policy that leads to the highest sender utility, it comes at the cost of reducing the receiver

utility, a demonstration of the ethical concerns as discussed in Section 4.4.

In our experiment setup, given the sender’s goal is to have the receiver purchase the products

regardless of the product quality, when the sender is more successful, it leads to a lower

receiver utility in general and implies the potential negative social impacts.

Table C.1: Comparing sender and receiver utility of different policies in human-subject
experiments of designing information policy.

Information Policy Random BR-Policy TH-Policy HAIDNet
Sender Utility 0.489 0.524 0.621 0.667
Receiver Utility 0.663 0.634 0.565 0.532

Experiment interface and description. In our human-subject experiments, we simulate

the setting with binary actions and binary states. In particular, we present the product

purchasing example as we discussed in Section 4.2.1. The task interface about our human-

subject experiments is shown in Figure C.2.

Each human participant is asked to make multiple rounds of purchase decisions. In each

round, the participant is presented a product with unknown binary quality (either good

product or bad product). The participant is told that a (noisy) inspection has been performed

on the product, and is given the conditional distribution associated with the inspection (i.e.,

the probability to receive a good/bad signal given the product is good/bad). Finally, the

participant is given a realization of the inspection signal and is asked to make a binary

decision of purchasing or not. The participant’s reward depends on both their purchasing

decisions and the true product quality. When collecting human response in the first phase,

random policy are presented to all participants. In the second phase, different policies are

presented: {Random, BR-policy, TH-policy, HAIDNet policy}. The policies are designed

with the assumption that the sender is persuading human receivers to purchase the product,

and we calculate the probability of participants choosing to purchase and report it as the

sender utility to evaluate performance of different policies.
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Figure C.2: Human experiment interface of designing information policy in Chapter 4.
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C.3 Human Experiment Details in Chapter 5

In Chapter 5, we study the problem of presenting predictive information and recommen-

dations for human ethical decision-making. Besides experiment interface in Figure 5.1, the

other experiment interfaces are shown in Figure C.3.

C.4 Human Experiment Details in Chapter 6

In Chapter 6, we study the problem of modeling human belief and conduct multiple real

human experiments. The experiment interface is shown in Figure C.4.
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(a) Experiment 2 interface: humans make decisions with predictive information
from AI systems or human experts .

(b) Experiment 3 interface: humans make decisions with suggestions from differ-
ent AI systems.

Figure C.3: Human experiment interface of human ethical decision-making in Chapter 5.
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(a) Experiment 1 & 3 interface: humans play
games with AI agents in grid worlds of size 8× 8.

(b) Experiment 2 interface: humans infer goals of
other players in grid worlds of size 8× 8.

(c) Experiment 4 interface: humans play naviga-
tion games in grid worlds of size 6× 6.

(d) Experiment 5 interface: humans infer goals of
other players in grid worlds of size 6× 6.

(e) Experiment 6 interface: humans play games with AI agents in grid worlds of size 6× 6.

Figure C.4: Human experiment interfaces of goal navigation and belief inference tasks in
Chapter 6.
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C.5 Demographic Information of Human-Subject Ex-

periments

For completeness, we include the number of workers in each experiment and their demo-

graphic information below. We recruited workers from Amazon Mechanical Turk for our

human-subject experiments. Table C.2 lists the number of workers, the number of tasks

per worker and the number of treatments in each experiment, and Table C.3 contains the

demographic information of all the workers.

Table C.2: Task setup of each human-subject experiment.

Chapter Experiment Workers Tasks Treatments Base Payment Bonus per Task
Chapter 3 Exp. 1 300 6 3 $0.50 $0.01 per 100 points

Chapter 4
Exp. 1 100 20 1 $0.50 $0.05
Exp. 2 600 20 4 $0.50 $0.05

Chapter 5
Exp. 1 600 29 2 $0.80 $0.00
Exp. 2 300 29 2 $0.80 $0.00
Exp. 3 300 18 2 $1.00 $0.00

Chapter 6

Exp. 1 190 30 3 $1.00 $0.05
Exp. 2 200 30 2 $1.00 $0.03
Exp. 3 200 30 3 $1.00 $0.05
Exp. 4 200 15 1 $1.00 0
Exp. 5.1 200 25 1 $1.00 0
Exp. 5.2 400 30 2 $1.00 $0.03
Exp. 6 300 20 3 $1.50 $0.05
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Table C.3: Demographic information of all the participants in our human-subject experi-
ments.

Group Category Chapter 3 Chapter 4 Chapter 5 Chapter 6

Age

20 to 29 112 88 465 775
30 to 39 110 111 340 642
40 to 49 35 65 243 146

50 or older 43 36 152 127

Gender
Female 121 131 435 547
Male 168 161 733 1118
Other 5 1 32 25

Race /
Ethnicity

Caucasian 196 240 975 1511
Black or African-American 18 18 149 82

American Indian/Alaskan Native 7 5 35 32
Asian or Asian-American 63 22 16 28

Spanish/Hispanic 7 6 13 7
Other 9 9 12 30

Education

High school degree 20 12 67 60
Some college credit, no degree 19 9 32 42

Associate’s degree 13 24 37 39
Bachelor’s degree 216 223 817 1217
Graduate’s degree 29 29 230 293

Other 3 3 17 39
Total 300 300 1200 1690
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