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ABSTRACT
We study a multi-armed bandit problem with biased human feed-

back. In our setting, each arm is associated with an unknown reward

distribution. When an arm is played, a user receives a realized re-

ward drawn from the distribution of the arm. She then provides

feedback, a biased report of the realized reward, that depends on

both the realized reward and the feedback history of the arm. The

learner can observe only the biased feedback but not the realized

rewards. The goal is to design a strategy to sequentially choose

arms to maximize the total rewards users receive while only having

access to the biased user feedback. We explore two natural feedback

models. When user feedback is biased only by the average feedback

of the arm (i.e., the ratio of positive feedback), we demonstrate that

the evolution of the average feedback over time is mathematically

equivalent to users performing online gradient descent for some

latent function with a decreasing step size. With this mathematical

connection, we show that under some mild conditions, it is possible

to design a bandit algorithm achieving regret (i.e., the difference
between the algorithm performance and the optimal performance

of always choosing the best arm) sublinear in the number of rounds.

However, in anothermodel when user feedback is biased by both the

average feedback and the number of feedback instances, we show

that there exist no bandit algorithms that could achieve sublinear

regret. Our results demonstrate the importance of understanding

human behavior when applying bandit approaches in systems with

humans in the loop.
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1 INTRODUCTION
In a multi-armed bandit problem, a learner sequentially selects

from a set of arms. Each arm is associated with some unknown

reward distribution. After selecting an arm, the learner observes

the realized reward for the selected arm. The goal of the learner

is to maximize the total rewards obtained from selected arms over
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time. The performance of the bandit algorithm is often measured

in terms of regret, defined as the difference between the algorithm

performance and the performance of an oracle which can select the

best arm in hindsight. The multi-armed bandit formulation provides

a theoretical framework for resolving the classical exploration-

exploitation tradeoffs in online decision problems under uncertainty.

Therefore, multi-armed bandits have been studied in a wide range

of applications in various domains, such as medical trials, online

auctions, or web advertisements.

We explore the applications of bandits settings to human-in-

the-loop systems. For example, consider user-generated content

platforms, such as Youtube, Quora, or Stack Exchange. On these

platforms, content qualities vary across a wide spectrum. Ideally,

the platform would like to select the best content to display to

users to optimize users’ experience. However, the content qualities

are often not known in advance, and the platform needs to learn

the content qualities through user feedback (e.g., number of likes,

upvotes, etc). This naturally leads to a bandit problem, in which

the platform needs to balance exploration (display content with

fewer feedback instances to users to acquire more information)

and exploitation (display content with higher empirical ratings to

optimize users’ happiness), as studied in the literature [13, 19].

Many challenges arise when humans are involved in the ban-

dit learning process. In recent years, researchers have addressed

various strategic issues brought up by humans involved in bandit

learning [13, 19, 20, 24]. However, in these works, it is assumed that

users’ feedback is unbiased in representing the reward of selecting

an arm (e.g., in user-generated content platforms, users’ average

ratings are used as the estimates for content qualities). On the other

hand, as the empirical studies suggest [21, 27, 28], user feedback is

often biased by other users’ feedback. For example, users have the

tendency to provide feedback that agrees with the majority opinion

even if their experience disagrees (i.e., the herding effect). These

empirical evidences suggest a different stochastic model in that

each observed feedback instance might be biased by the feedback

history. Moreover, this biased user feedback introduces additional

challenges. Since user feedback only represents biased reports of

the realized rewards, suppose the goal of the platform is to maxi-

mize the total rewards over time (which may be interpreted as the

overall user experience), can a platform achieve sublinear regret

from only observing biased feedback?

In this paper, we study a variant of the multi-armed bandit prob-

lemwith human biased feedback. In our setting, the learner/platform

only observes human-generated feedback instead of the realized

reward when selecting an arm. The human feedback depends on

both the realized reward and other users’ feedback for the selected

arm. The goal of the learner is to maximize the total realized re-

wards for the selected arms while only having access to biased

human-generated feedback.



To address the issues of user biased feedback, we explore two

natural user feedback models and study their impacts to the design

of bandit algorithms. The first model, avg-herding feedback model,

assumes that user feedback for an arm depends on the realized

reward and the average feedback (i.e., the ratio of positive feedback)

of the arm so far. We show that, under this model, the dynamics of

user feedback over time is mathematically connected to asymptotic

approximation [26]. In particular, the average feedback changes

over time as if users are performing online gradient descent on a

latent function with a decreasing step size. With this mathematical

connection, we characterize the convergence and convergence rates

for the average feedback of an arm under some mild conditions.

These convergence results enable us to design a bandit algorithm

based on UCB (Upper Confidence Bound) algorithm and achieve

sublinear regret.

While the results on the first model are promising, our results

on another natural model, beta-herding feedback model, paint a

very different picture. In this model, user feedback is biased by

not only the average feedback in the past, but also the number of

feedback instances the arm has received so far. This model captures

a natural scenario that users might be biased more heavily if there

exists more feedback instances in the history. We show that, under

this model, the average feedback of an arm converges to a random

variable with non-zero variance. This implies that, even with an

infinitely number of feedback instances for the arm, the learner is

not able to infer the expected reward of the arm through observing

the average user feedback. We further show that, using arguments

from information theory, there exist no bandit algorithms that can

achieve sublinear regret when user feedback follows beta-herding

feedback model.

We next present a toy example to demonstrate that it is pos-

sible to get around the above impossible result by modifying the

information structure to break the assumption that users follow

beta-herding feedback model. In particular, if the learner is allowed

to hide the historical information from a small portion of the users,

under some styled usermodels on how users respond to information

structures, it is possible to design an algorithm achieving sublin-

ear regret. This result opens up a potentially interesting line of

future research: Can the learner adaptively design the information

structures to improve the overall utility?

Our results demonstrate the importance of understanding hu-

man behavior when learning from human generated feedback. A

small deviation on the user behavior model and/or the design of

the information structure could have significant impacts on the

overall system outcome. Therefore, platforms and decision makers

should carefully take these into account when designing learning

algorithms in systems with humans in the loop.

2 RELATEDWORK
In this section, we review the relevant literature in multi-armed

bandit problems, recent studies on human-in-the-loop bandit learn-

ing, and the literature on social influences and social learning that

share similar motivations of this work.

Multi-armed bandit problems. Our work is a variant of the well-

studied multi-armed bandit problem [18]. Bandit problems tradi-

tionally assume the rewards generated by each arm at each round

are directly observable, and the research focus has been divided into

settings in which rewards are either independent and identically

distributed (i.i.d.) [3] or adversarial [2, 4]. There exist other works

that assume rewards are neither i.i.d. drawn nor adversarial. For

example, bandits with Markovian rewards [22, 23] assume the state

of each arm evolves according to a Markov process. Other non-

stationary bandit problems [6, 11] consider the setting in which the

rewards distribution might change over time, independent of previ-

ous actions. More recently, researchers have addressed the setting

in which the rewards are strategic choices of humans and could

be influenced by how the bandit algorithm is designed [13, 19].

Our work differs from the above works in that, in our setting, the

“state” (history information) of each arm is correlated with learner’s

actions and there might be infinitely many states. Moreover, in our

setting, the algorithm cannot observe realized rewards but only has

access to biased feedback while previous work assume the realized

rewards are observable.

Human-in-the-loop bandit learning. Recently, there have been
works exploring bandit learning with humans in the loop [9, 17,

20, 24]. In the setting of these works, the learner cannot directly

choose which arms to play. Instead, at each time step, a myopic

agent, who only aims to maximize her own reward at the single

time step she is involved in, chooses which arm to play. Since the

agent only cares about her instant payoff, she does not have in-

centives to explore and tends to always exploit, and this collective

arm playing will lead to the convergence to the suboptimal arm.

Researchers have been attempting to address this problem by con-

sidering different ways of persuading agents to perform exploration,

including offering agents payments to perform exploration [9] or

utilizing information asymmetry to lead agents to explore by de-

signing what information to show to each agent [17, 20, 24]. The

idea of utilizing information asymmetry to persuade agents is sim-

ilar to Bayesian Persuasion [16] in economics. The above line of

work has focused on settings in which humans are involved in arm
selection, i.e., which arm is played in each round. In this work, we

focus on a parallel aspect of human involvements, in which humans

are involved in feedback generation.

Social influences and social learning. Our feedback models are

motivated by the empirical evidences that users’ decisions are in-

fluenced by not only their own experience but also other users’

decisions [21, 27, 28]. For example, Muchnik et al. [21] empirically

show that, a post on a forum is more likely to receive positive feed-

back (i.e., upvotes) if the platform insert an upvote right after the

post is made. Similar discussion also appears in the social learn-

ing literature in economics [5, 7, 29]. They discuss the setting in

which users’ decisions might be influenced by other users’ deci-

sions. Therefore, under certain conditions, users might collectively

make the bad decision since they might follow what other users do

regardless of what they privately know. In prior work, there is not

much discussion on either the convergence rate of users’ aggregate

behavior or the impacts on the system designer’s perspective. In

this work, we focus on deriving the dynamics of user feedback over

time and explore the impacts on the design of bandit algorithms.



3 PROBLEM SETTING
Let K be the number of arms. Each arm k ∈ [K] = {1, ...,K } is asso-
ciated with an unknown quality θk ∈ [0,1]. Let I∗ = argmaxk θk
and θ∗ = θI ∗ be the index of the best arm and the associated highest

expected quality. At each round t , a user randomly drawn from the

population arrives, the learner selects an arm It ∈ {1, ...,K } for the
arriving user. The user then gets a binary reward Zt (positive or
negative experience) with mean θIt .

Zt ∼ Bernoulli[θIt ]

The reward is not observable to the learner. However, after re-

ceiving the reward, each user provides a binary feedbackXt ∈ {0,1}
about this arm. The goal of the learner is to maximize the total re-

wards users receive while observing only the (potentially biased)

feedback. Note that when the feedback is the same as the realized

reward, i.e., Xt = Zt for all t , this problem reduces to standard

bandit setting. Below we describe the user feedback models, i.e.,

how Xt is generated.

User feedback models
Users’ feedback depends on both the realized rewards and the

feedback history of the arms. The feedback history of arm k up to

time t can be summarized by nk,t and ρk,t , which represent the

number of feedback instances and the ratio of positive feedback for

arm k up to round t . We assume nk,0 = ρk,0 = 0 to simplify the

presentation, however, our results can be easily extended to settings

with non-zero nk,0 and ρk,0, which can be used to represent the

users’ prior of the arm quality. Again, if users provide unbiased

feedback, we should have Xt = Zt for all t .
In this paper, we model the feedback generation as a stochastic

process. We define a feedback function to model the probability

of obtaining positive feedback for an arm from a user randomly

drawn from the population. Note that a feedback function describes

the characteristics of the user population the platform is interacting

with instead of a single specific user. In particular, we introduce

Feedback(θ ,ρ,n) to model the probability of obtaining positive

feedback from a user given that the arm quality is θ and the history

information of the arm is summarized by its average feedback ρ
and the number of feedback instances n.

As a special case, when Feedback(θ ,ρ,n) = θ , user feedback
represents unbiased samples of the arm quality.

In this paper, we explore two natural feedback models.

• Avg-herding feedback model:

In this feedbackmodel, user feedback is biased by the average

feedback of the arm. In particular, the feedback function has

the form

Feedback(θ ,ρ,n) = F (θ ,ρ).

In Section 4, we study the stochastic process of user feedback

specified by a general set of feedback functions F . We then

discuss the impacts of this stochastic feedback generation

on the design of bandit algorithms.

• Beta-herding feedback model:

In this feedback model, user feedback is biased by the av-

erage feedback and the number of feedback instances. In

particular, we consider a natural setting and assume users

update their beliefs about the arm quality in a Bayesian man-

ner. Users treat the historical ratings as the prior signals of

the arm quality and update the posterior based on their own

experience. They then provide feedback according to their

posterior.

We introduce a factorm ≥ 0,which can be interpreted as the

weights users put on their own experience. When the arm

quality is θ and the arm history is (n,ρ), the expected number

of positive signals the user will obtain ismθ + nρ, where the
first term is the expected positive signals the users receive

from their own experience (i.e., arm quality multiplied by

the weight) and the second term is the number of positive

signals from other users. The total number of signals ism+n.

Therefore, the probability of obtaining positive feedback for

arm k at round t can be written as

Feedback(θ ,ρ,n) =
mθ + nρ

m + n
. (1)

Note that whenm → ∞, user feedback provides unbiased

samples of the arm quality.

Regret notions
The goal of the learner is to maximize the sum of rewards users

receive over time. Let A be the algorithm the learner deploys and

{It } are the arms selected by A. We define the regret as RA (T ).

E[RA (T )] = Tθ∗ − EA

[ T∑
t=1

θIt

]
,

where the expectation is taken over the randomness of the reward

realization and the algorithm. In particular, we are interested in the

region of T → ∞ and aim to understand under what conditions we

can achieve asymptotic sublinear regret, i.e., E[R (T )] = o(T ), when
user feedback is biased by historical feedback.

4 BANDITS WITH AVG-HERDING FEEDBACK
MODEL

In this section, we explore the bandit learning problem when user

feedback follows avg-herding feedback model. We first derive the

stochastic process of the feedback generation for a single arm and

characterize the convergence and convergence rate of users’ aver-

age feedback over time. We then discuss how this user feedback

model impacts the design and analysis of bandit algorithms.

4.1 Stochastic process of feedback generation
In the following discussion, we explore the feedback dynamics of a

single arm, i.e., the stochastic process of feedback generation. We

omit the arm’s index k in the subscript when it is clear from the

context. Also, since user feedback is biased by the history of only

the selected arm, to simplify the presentation, we consider the case

that the same arm is repeatedly selected and therefore nt ≡ t when
studying the stochastic process for a single arm.

4.1.1 Connection to stochastic approximation. Recall that in avg-

herding feedback model, when the quality of the arm is θ and the

average feedback of the arm is ρ, the probability for a user to

provide a positive feedback is F (θ ,ρ). The stochastic process of

the feedback dynamics can be expressed as follows: at the (t +



1)−th round, the feedback Xt+1 provided by the user is drawn

randomly from a Bernoulli distribution: Bernoulli[F (θ ,ρt )]. The
history information of the arm (nt+1,ρt+1) are updated based on

the realized feedback.

As mentioned, we simplify the presentation by setting nt ≡
t . Therefore, we focus on how ρt evolves over time. By simple

weighted averaging, we have

ρt+1 =
t

t + 1

ρt +
1

t + 1

Xt+1 = ρt −
1

t + 1

(ρt − Xt+1) .

Define the noise term ξt = E[Xt |Ft−1] − Xt = F (θ ,ρt−1) − Xt ,
where Ft = σ ({Xt }t ≥1) is the filtration of the stochastic process. It

is easy to see that E[ξt |Ft−1] = 0. Also let ηt = 1/t be the step size

(learning rate). We can rewrite the above recursive definition as an

update rule in stochastic approximation [10, 26].

ρt+1 = ρt − ηt+1 (ρt − F (θ ,ρt ) + ξt+1) (2)

In particular, suppose there exists a latent functionG (θ ,ρ), such
that ∂G/∂ρ = ρ − F (θ ,ρ), then Equation (2) is equivalent to the

update rule for stochastic gradient descent with step size ηt+1:

ρt+1 = ρt − ηt+1 (∇ρG (θ ,ρt ) + ξt+1)

With this observation, the stochastic process of the average

feedback updates is equivalent to users collectively performing

stochastic gradient descent for a latent functionG with a decreasing

step size. Belowwe utilize this mathematical connection and discuss

conditions on the convergence and convergence rates of the average

feedback ρ. We then discuss the impacts of this stochastic process

on the design and analysis of bandit algorithms.

4.1.2 On the convergence and convergence rate of limt→∞ ρt .
We first specify the assumptions needed to establish the asymptotic

behavior of the limit of average feedback.

A1. F (θ ,ρ) is strictly increasing in θ and non-decreasing in ρ;

A2. F (θ ,ρ) is differentiable and L
ρ
F−Lipschitz continuous with

respect to ρ.

A1 implies that, conditional on the same quality (average feed-

back), an arm with better average feedback (quality) receives more

positive feedback in expectation. A2 assumes the improvement is

smooth with respect to ρ. While the differentiable property of F
can be satisfied if the population is large and smooth, we note that

the differentiable property is only for analytical convenience. Our

results still hold even if F is only continuously differentiable in

some local neighbourhood of equilibrium points.

We would also like to note that these two assumptions are rela-

tively mild. As an example, below we give a general set of feedback

functions F that satisfy the above assumptions.

Example 4.1. Consider the following set of feedback functions:

F (θ ,ρ) = w1θ + w2ρ, for any w1,w2 ≥ 0 and w1 + w2 = 1. This

set of feedback functions satisfies both of the assumptions. It also

has very natural interpretations. In particular, it specifies that, the

probability of receiving a positive feedback from a random user

(drawn from the population) F (θ ,ρ) is the weighted average of the

arm quality θ and other users’ average feedback ρ.

Armedwith the above assumptions, we can formally characterize

the convergence of ρt .

Lemma 4.2. LetSθ := {ρ : ρ−F (θ ,ρ) = 0}. We have P(limt→∞ ρt ∈
Sθ ) = 1.

The above lemma demonstrates that ρt converges to one of the

points in a set Sθ and characterizes the points in Sθ . Recall that the

latent functionG (θ ,ρ) satisfies ∂G/∂ρ = ρ − F (θ ,ρ). Therefore, the
lemma illustrates that the average feedback will converge to one of

the points in Sθ , the set of the local optimal points for the latent

functionG . This intuition suggests that, when the latent functionG
is strongly convex, since there exists only one local optimal point

(which is the global optimal), we should be able to show that ρt
will almost surely converge to the global optimal.

Moreover, the convexity of G is correlated with the value of the

Lipschitz constant L
ρ
F . In particular, when L

ρ
F < 1, by definition,

we have ∇ρF (θ ,ρ) < 1 for all θ and ρ. Since ∇2

ρG (θ ,ρ) = 1 −

∇ρF (θ ,ρ), when L
ρ
F < 1, ∇2

ρG (θ ,ρ) > 0 for all θ and ρ. Therefore,

G is strongly convex when L
ρ
F < 1. Below we formally characterize

the convergence of ρt when G is strongly convex.

Corollary 4.3. Given LρF < 1, i.e., G is strongly convex, there ex-
ists a unique ρ∗ that satisfies ρ∗−F (θ ,ρ∗) = 0, such that P(limt→∞ ρt =
ρ∗) = 1.

Next we provide the results on the convergence rate of ρt and
focus on the case when G is strongly convex. In particular, we

introduce
¯λ > 0, such that ∇2

ρG ≥
¯λ > 0.

Theorem 4.4. Given LρF < 1, i.e.,G is strongly convex. ∀ϵ > 0, we
have,

P( |ρt − ρ
∗ | ≥ ϵ ) ≤ exp

*
,
−
(ϵ − ϵt )

2

2

∑t
i=1

Li
+
-
,

where Li = η2

i (
∏t−1

j=i (η
2

j+1
(L
ρ
F − 1)2) − 2

¯ληj+1 + 1),

ϵt = exp(− ¯λSt ) |ρ0 − ρ
∗ | +

√∑t−1

i=0
η2

i+1
exp(−2

¯λ(St − Si+1)),

and St =
∑t
i=1

ηi .

Proof Sketch. In the proof, we decompose |ρt − ρ
∗ | into two

terms, with the first term corresponding to the empirical iterate
error, i.e., the difference between the absolute value of error at a

given time and its mean, and the second term corresponding to the

expectation error :

|ρt − ρ
∗ | = ( |ρt − ρ

∗ | − E[|ρt − ρ
∗ |]) + E[|ρt − ρ

∗ |] (3)

To derive the probabilistic tail bound for the |ρt −ρ
∗ |, we bound the

empirical iterate error |ρt − ρ
∗ | − E[|ρt − ρ

∗ |] and the expectation

errorE[|ρt −ρ
∗ |] separately usingmartingale concentration bounds.

□

Remark 1. We would like to offer a few observations to help inter-
pret the convergence bound1. In particular,
• when t → ∞, ϵt → 0,
• when ¯λ ∈ (0,1/2),

∑t
i=1

Li = O (t
−2

¯λ ), and
• when ¯λ ∈ [1/2,∞),

∑t
i=1

Li = O (1/t ).
So we can characterize the bound in two regions based on whether
¯λ ≥ 1/2. As a special case, when user feedback is unbiased, i.e.,
F (θ ,ρ) = θ , we have ¯λ = 1, and the bound reduces to P( |ρt − ρ∗ |) ≥

1
The detailed derivations are included in the appendix of the full paper.



ϵ ) ≤ O (e−ϵ
2t ), the same as the standard Chernoff bound. Moreover,

in our setting, since F (θ ,ρ) is non-decreasing in ρ, i.e., ∇ρF ≥ 0. We
have ∇2

ρG = 1 − ∇ρF ≤ 1. Therefore, while our bound holds for the
region ¯λ ∈ (0,∞), in our setting, we focus on the region ¯λ ∈ (0,1].

Note that in this theorem, the convergence rate is a function of

¯λ, which is the property of the function G (hence the property of

the feedback model F ). As an intuitive interpretation, recall that

∇2

ρG ≥
¯λ and ∇ρG = ρ − F (θ ,ρ). Therefore, small

¯λ implies large

∂F/∂ρ, which means user’ feedback is influenced more by the other

users’ feedback and relatively less by the arm quality. When users’

feedback depends less on the arm quality, it requires more feedback

to infer the arm quality, and therefore the convergence is slower.

This intuition aligns with the theorem, in which smaller
¯λ leads to

a slower convergence rate.

4.2 Designing bandit algorithms
Given the convergence bound in Theorem 4.4, we can design a

UCB-like algorithm that achieves sublinear regret. We assume the

learner has knowledge of the feedback model F . Note that since F
models the behavior of feedback generation for the user population
the platform is interacting with, this assumption only requires

the platform to have knowledge of the population instead of any

particular users
2
.

In each round of our algorithm, the learner maintains an es-

timator
ˆθk,t of arm k’s quality from the observation of average

feedback ρk,t . From Lemma 4.2, an asymptotically unbiased and

consistent estimator of arm’s quality
ˆθk,t can be obtained by solving

the following equation.

ˆθk,t = max{min({ ˆθk,t : F ( ˆθk,t ,ρk,t ) = ρk,t },1),0} (4)

Intuitively, the solutions of the above equation represent the set of

local optimal points ofG . Moreover, we can show that the estimator

ˆθk,t is unique for every ρk,t if A1 is satisfied.

Lemma 4.5. Suppose A1 is satisfied, for any ρk,t , there exists a
unique ˆθk,t that satisfies Equation (4).

Given the convergence bounds and the estimator
ˆθk,t , we are

ready to describe our proposed UCB-like algorithm Avg-UCB, as

specified in Algorithm 1. The key differences to the standard UCB

algorithms are that: First, we maintain a quality estimate
ˆθk,t for

each arm k at each time t by solving Equation (4) instead of using

empirical average feedback. Second, the confidence interval in the

UCB index is derived from the convergence rates as specified in

Theorem 4.4. Our algorithm takes as input parameters β and
¯λ.

β plays a similar role as the constant in UCB confidence radius

to balance exploration and exploitation.
¯λ is the parameter of the

problem instance. Note that our algorithm only requires to find

some
¯λ such that ∇2

ρG ≥
¯λ.

The following theorem gives the regret bound for the algorithm

Avg-UCB.

2
In practice, this assumption can be approximately satisfied through market research

or behavioral experiments, which study the connection between users’ real experience

(i.e., Zt ) and reported feedback (i.e., Xt ). Moreover, our results are robust to small

estimation noises of F .

Algorithm 1 Avg-UCB for Avg-Herding Feedback Model

1: Input: β , ¯λ , K .
2: Initializations: first K rounds, play each arm once

3: for t = K + 1, ...,T do
4: for each k ∈ {1, ...,K } do
5: Compute

ˆθk,t−1
from (4).

6: UCBk,t = ˆθk,t−1
+

√
β ln(t−1)

nmin{1,2 ¯λ}
k,t−1

.

7: Choose arm It ∈ argmaxk=1, ...,K UCBk,t .
8: (Ties are broken in some consistent way)

9: Receive feedback Xt .
10: ρIt ,t ← (ρIt ,t−1 × nIt ,t−1 + Xt )/(nIt ,t−1 + 1)
11: ρk,t = ρk,t−1

, ∀k , It .
12: nIt ,t ← nIt ,t−1 + 1

13: nk,t ← nk,t−1
, ∀k , It .

Theorem 4.6. Suppose A1 and A2 are satisfied and LρF < 1. Let
¯λ′ = max{1,1/(2¯λ)}, ∆k = θ∗ − θk . With appropriately chosen β 3

the expected regret for Avg-UCB is bounded by:

E[R (T )] ≤
∑
k,I ∗

∆k (4 lnT /(C∆2

k ))
¯λ′ + Kπ 2/6,

where C is a constant that is dependent on the properties of feedback
function F .

We introduce an additional notion
¯λ′ = max{1,1/(2¯λ)} to sim-

plify the presentation due to the different convergence rates on

whether
¯λ < 1/2 as discussed in Remark 1. Similar to the discussion

on the convergence rate, the dependency of the above upper regret

bound on
¯λ′ implies that it is harder to learn the quality of an arm

if users are biased more by the historical information rather than

the arm quality.

The above regret bound is a gap-dependent bound. In particu-

lar, let ∆min = mink :k,I ∗ ∆k . The regret bound can be written as:

E[R (T )] = O

(
(lnT )

¯λ′

∆2
¯λ′−1

min

)
. Observe that limT→∞ E[R (T )]/T → 0 for

any
¯λ′ > 0. Therefore, the algorithm achieves sublinear regret as

long as G is strongly convex (i.e.,
¯λ′ > 0).

Moreover,we can derive gap-independent bounds from the above

bound.When
¯λ ≥ 1/2 (which includes the unbiased feedback setting

with
¯λ = 1), we can show that E[R (T )] = O (

√
T lnT ), which

matches the standard regret bound without biased feedback.

What if G is not convex. Our algorithm relies on the assumption

that the latent functionG is convex, i.e., L
ρ
F < 1. This assumption

implies that users’ feedback is not influenced too heavily by the

change of feedback history. While this assumption seems mild, it is

natural to wonder whether we can obtain similar results whenG is

not convex.

We would like to note that even in settings when G is non-

convex, the statements of Lemma 4.2 and 4.5 still hold. This means

the average user feedback for each arm still converges to some

point, and we can infer the arm quality from the converged av-

erage feedback. The main obstacle to overcome is to derive the

3
The choice of β depends on the parameters of F (θ , ρ ). The detailed derivation is

tied with the proof and is included in the appendix of the full paper.



convergence rate as in Theorem 4.4. This problem is challenging

as it is equivalent to deriving the convergence rate of optimization

for non-convex functions. There have been recent works focusing

on deriving the convergence rates in non-convex optimization in

different settings [1, 12]. As long as one could characterize the con-

vergence rate of ρt for non-convex function G , our bandit strategy
can be adapted to generate a sublinear regret strategy (by changing

the “confidence interval” in the UCB index based on the derived

convergence rate).

5 BANDITS WITH BETA-HERDING
FEEDBACK MODEL

In the previous section, we explore avg-herding feedback model,

in which user feedback is biased only by the average feedback

of the selected arm. We show that, under some mild conditions,

the average feedback for an arm almost surely converges to some

value, and we can infer the arm quality from the average feedback,

and therefore we can design a UCB-like algorithm for achieving

sublinear regret.

However, in some scenarios, user feedback may be biased by

not only the average feedback but also the number of feedback

instances of the arm. In this section, we explore another natural

feedback model, beta-herding feedback model, and prove impos-

sibility results. In particular, we assume users give feedback in

a Bayesian manner. They treat the feedback history as the prior,

i.e., for an arm with history (n,ρ), there are nρ positive signals

and n(1 − ρ) negative signals for the arm. After they experience

the binary reward (drawn according to the arm’s quality distri-

bution), they update their posterior by treating their experience

as m signals and then provide feedback according to the poste-

rior. Therefore, in expectation, the probability for them to provide

positive feedback for an arm with quality θ and history (n,ρ) is
Feedback(θ ,ρ,n) = (mθ + nρ)/(m + n).

5.1 Stochastic process of feedback generation
The first natural attempt is to replace F (θ ,ρt )with Feedback(θ ,ρ,n)
in Equation (2) and apply similar analysis using stochastic approx-

imation. However, when Feedback(θ ,ρ,n) follows beta-herding
feedback model, one can not directly apply this approach. Briefly

speaking, the update rule in Equation (2) aims to find the equilib-

rium points of the feedback function. However, in beta-herding

feedback model, the feedback function is changing over time, and

it is not trivial whether the converged points satisfy the set of

properties as derived with avg-herding feedback model.

Instead, we make the observation that the stochastic process of

beta-herding feedback model is similar to the urn process [14]. We

utilize the property of exchangeability for the feedback history to

give the characterization of ρt process. Below we formally char-

acterize the stochastic process of ρt with beta-herding feedback

model.

Lemma 5.1. Consider the stochastic process in Equation (2) with
the feedback model described in Equation (1), limt→∞ ρt converges
almost surely to a random variable specified by a beta distribution.

In particular,

lim

t→∞
ρt ∼ Beta(mθ ,m(1 − θ )).

Proof Sketch. Let St =
∑t
i=1

xi , where xi is the realization

of the feedback random variable Xi . It is easy to show that the

sequence of random variables Xi satisfies the exchangeable prop-
erty. Therefore, the probability that St = l , i.e., there are l positive
feedback among t feedback, can be written as∏l−1

i=0
(mθ + i ) ·

∏t−1−l
j=0

(m(1 − θ ) + j )∏t−1

i=0
(m + i )

.

By Stirling’s approximation, when t → ∞, we have

P(St = l ) =
lmθ−1

B (mθ ,m(1−θ ))
· (t − l )m (1−θ )−1 · t1−m ,

where B (·) is the Beta function. Denote l = ρt for some 0 < ρ < 1,

P(
St
t
≤ ρ) =

⌊tρ ⌋∑
i=0

P(
St
t
=

i

t
)

When t → ∞, the summation can be written as an integral

P(
St
t
≤ ρ) = t

∫ ρ

0

P(
St
t
= u)du .

Plug in the above P(St = l ) expression and replace l with ρt ,

P(
St
t
≤ ρ) =

1

B (mθ ,m(1 − θ ))

∫ ρ

0

umθ−1 (1 − u)m (1−θ )−1du,

which is the CDF of the beta distribution. This completes the proof.

□

Note that when the feedback is unbiased, i.e., whenm → ∞, the
beta distribution will shrink to a Dirac delta function which has

the point mass exactly in θ .

5.2 The impossibility result
In this section, we show that there exist no bandit algorithms that

achieve sublinear regret if user feedback follows beta-herding feed-

back model.

Lemma 5.1 implies that, even if we obtain an infinite number of

feedback instances for an arm, we cannot accurately infer the arm

quality with high probability from the empirical average feedback

ρ∞. A natural next question to ask is, if we take into account all the

feedback generated in the process, whether it is possible to infer

the true arm quality. Below we use the notion of Fisher information

to answer the question. In short, Fisher information provides a way

to quantify the amount of information about the latent parameter

θ we can obtain for observing each sample of a random variable

Xi . Since Fisher information is additive, we can show that,

Lemma 5.2. Consider the stochastic process in Equation (2) with
the feedback model described in Equation (1). Let It (θ ) denote the
Fisher information of θ for observing t−th sample. We have

lim

t→∞

t∑
i=1

Ii (θ ) = O (1).



Proof Sketch. Let f (x |θ ) be the probability mass function of

random variable X and xt be the realization of Xt . Considering the
stochastic process specified in Equation (1),

f (xt |θ ) = (
mθ + St−1

m + t − 1

)xt · (1 −
mθ + St−1

m + t − 1

)1−xt ,

where xt = 1 or xt = 0, St =
∑t
i=1

Xi . Define l (xt |θ ) = log f (xt |θ ).
By definition of Fisher information for a single observation, and

the chain rule for multiple observations, we have:

t∑
i=1

Ii (θ ) =
t∑
i=1

−E[l
′′

(xi |θ )]

=

t∑
i=1

m2

m+i− 1

(E[

1

mθ+Si−1

] + E[

1

m(1−θ )+i− 1−Si−1

])

Since we know that {Xt }t ≥1 are exchangeable random variables,

E[

1

mθ+St
] =

t∑
l=0

(
t
l

) ∏l−1

i=0
(mθ+i ) ·

∏t−l−1

j=0
(m(1−θ )+j )∏t−1

i=0
(m + i )

·
1

mθ+l

= O (t−1)

Similarly, we also have:

E[

1

m(1 − θ ) + t − 1 − St−1

] = O (t−1)

Thus:

lim

t→∞

t∑
i=1

Ii (θ ) = lim

t→∞

t∑
i=1

m2

m + i − 1

O (i−1)

= O (1)

where O (1) is a constant. This completes the proof. □

Using this fact, by the general Cramér-Rao bound, we know that,

for any estimator
ˆθt , the variance of ˆθt must follow:

Var( ˆθt ) ≥ Θ *
,

1∑t
i=1
Ii (θ )

+
-

Since limt→∞
∑t
i=1
Ii (θ ) is bounded, the variance of any estimator

will not shrink to zero even with infinitely many observations.

Therefore, the learner cannot accurately infer the arm quality with

high probability in the beta-herding feedback model and therefore

cannot guarantee to identify the best arms evenwith infinitelymany

feedback instances. Since the learner only observes the feedback,

we can conclude the following.

Theorem 5.3. If users’ feedback follows beta-herding feedback
model, there exists no bandit algorithm that can achieve sublinear
regrets in our setting.

Proof Sketch. We prove this by contradiction. Consider the

case with two arms. Without loss of generality, assume arm 1 is op-

timal and arm 2 is suboptimal, i.e., θ1 > θ2, and suppose there

exists an algorithm A which can achieve sublinear regret, i.e.,

E(RA (T )) = o(T ). Let kt denote the arm chosen by algorithm

A at time t . One must have limt→∞ P(kt = 1) = 1. Let
ˆθ t
1
, ˆθ t

2
be

the algorithm’s estimators on θ1,θ2 given the history information

accumulated till time round t . The ability to almost surely choose

arm 1 by algorithm A when t → ∞ indicates that we are able to

differentiate the two arms, i.e.,

lim

t→∞
P( ˆθ t

1
> ˆθ t

2
) = 1

However, as shown in Lemma 5.2, since the fisher information

on the estimator are always bounded even when given infinitely

many observations. It implies the estimators are not consistent, and

that limt→∞ P( ˆθ t
1
< ˆθ t

2
) > 0. This leads to the contradiction and

completes the proof. □

We note that the technique used in the proof can be extended

to a more general feedback model for impossibility results. The

intuition is to use Fisher information to quantify how informative

a given data is with respect to a set of parameters and the influ-

ence of the data itself on the estimate. For different models, if the

amount information for each feedback can be quantified, the same

techniques can be applied.

5.3 An alternative approach: Designing
information structures

Theorem 5.3 presents a strong impossibility result: if all feedback

instances are generated according to beta-herding feedback model,

we cannot design any bandit algorithms to achieve sublinear regret.

A natural approach to get over this impossibility results is to break

the assumption by taking interventions. Inspired by Bayesian per-

suasion [16], which designs the information structure to persuade
agents to take certain actions, we explore whether we could design

information structures to induce certain types of “feedback”. For

example, in the extreme case, if we do not show any historical infor-

mation to users, and assume users provide unbiased feedback when

no information is presented, then the problem reduces to standard

bandit settings. However, in practice, we might not want to dramat-

ically change the whole platform and might want to take as few

interventions as possible. This leads to an interesting research ques-

tion on whether we can minimally intervene the existing design

of information structure, such that it is possible to design bandit

algorithms with sublinear regrets.

In this section, we present a simple algorithm as a toy example
to demonstrate the idea. A full study along this direction requires a

careful and thorough modeling and is out of the scope of this paper.

We consider the constrained setting in which the platform can only

choose among two information design in each round, either show-

ing all history information to users (and assuming users’ feedback

follow beta-herding feedback model) or showing no history infor-

mation (and assuming users provide unbiased feedback). Our goal

is to minimize the number of rounds that show no information to

users while achieving sublinear regret. In particular, we propose

a two-stage policy, as described in Algorithm 2, which shows no

historical information for the first ⌊T α ⌋ rounds and resumes to

standard design afterwards.

The regret bound of Algorithm 2 is given as follows.

Theorem 5.4. Let Θ = {θ1, ...,θK } be a bandit instance, and α ≥
ln(K (K +2))/ lnT , then the expected regret of two-stage policy, where



Algorithm 2 two-stage policy

1: Input: learning rounds parameter α ∈ (0,1), exploration pa-

rameter β > 0, number of arms K .
2: Initializations: first K rounds, play each arm once

3: for t = K + 1, ..., ⌊T α ⌋ do
4: for each k ∈ {1, ...,K } do
5: UCBk,t = ˆθ ′k,t−1

+

√
β ln(t−1)
nk,t−1

, where
ˆθ ′k,t−1

=∑nk,t−1

s=1
1{Is=k }Xt−1

nk,t−1

.

6: Choose arm It ∈ argmaxk=1, ...,K UCBk,t .
7: Present arm It without showing its history information to

the user, and get feedback Xt .
8: ρIt ,t ← (ρIt ,t−1 × nIt ,t−1 + Xt )/(nIt ,t−1 + 1).
9: ρk,t = ρk,t−1

for k , It .
10: nIt ,t ← nIt ,t−1 + 1.

11: nk,t ← nk,t−1
for k , It .

12: Let Iτ ∈ argmaxk=1, ...,K nk, ⌊T α ⌋ .

13: Present arm Iτ with associated history information to the user

in the remaining rounds.

14: (all ties broken in some consistent way)

β > 1, is bounded from above by:

E[R (T )] ≤
∑
k,I ∗

(
4αβ lnT

∆k
+ 8β∆k

)
+

(T −T α ) *
,

√
4Kαβ lnT

T α − K
+

K

β − 1

(
T α − K

K

)
2−2β

+
-

where the second term is in an order of O
(
(T −T α )

√
Kβα lnT

T α

)
.

To interpret the bound, when α ≥ 1/2, the above regret bound

is in the order of O (
√
αT α

lnT ), while when α < 1/2, the above

regret bound is in the order of O (
√
αT 1−α

lnT ).
Algorithm 2 presents an example that we can achieve sublinear

regrets by modifying the information structures presented to users.

In particular, we only need to hide the historical information from

T α
users, with α < 1, out of T users to achieve subliner regrets.

Note that we only consider a naive approach in a styled model,

i.e., showing no information at all in some rounds, and assume

simple user feedback models. We hope our results will encourage

research that considers more fine-tuned information design and

more thorough models of user feedback and platform utility.

6 DISCUSSION ON THE APPLICATIONS
In this section, we provide discussion on the applications of our

setting. As the motivating example of this paper, we consider user-

generated content platforms that need to learn content qualities

through user feedback. Our analysis and results naturally extend

to platforms that rely on user reviews to provide recommendations

(such as Yelp or Amazon). However, to formulate the recommen-

dation problem as a bandit learning problem, we need to make a

simplifying assumption, as made in prior work [13, 19], that users

are going to follow the recommendations. While this assumption

seems strong, in practice, it approximates users’ behavior to a cer-

tain degree. In particular, empirical studies demonstrate that the

probability for a users to view an item drops significantly when

the position of the item decreases [8, 15, 25]. These empirical ob-

servations suggest that a significant amount of users are indeed

following recommendations (since recommended items are ranked

higher). Moreover, there have been recent studies on incentiviz-

ing exploration using information asymmetry [17, 20, 24] which

demonstrate it is possible to make recommendations that users will

choose to follow. The techniques in this paper can be applied in that

line of work to explore the dynamics of feedback generation.

In addition to the above example, our setting applies to scenarios

when the platform cannot observe the true objective but can only

use (potentially biased) estimates as the proxy for the objective.

Consider the following illustrating scenario: the police station needs

to decide which area to send police officers to patrol at each time

step. Each area i has an intrinsic, unknown crime rate pi . When

sending police officers to an area i , the police station obtains an

unobserved rewardu (pi ), representing the value of increased safety
for the area. Assumeu (pi ) is increasing inpi . After the patrol, police
officers need to report the amount of criminal activities during their

patrol. However, these reports might be biased by the history of

reported crime rate of the area. For example, if there aremore reports

of illegal activities in the area in the history, they might stop more

people for inspection. This creates biases in the reports. If the goal is

to maximize the sum ofu (pi ), this problem can be formulated using

our setting, since the objective is a function of true crime rates,

while the decision maker only has access to reported crime rates.

Now assume the feedback model follows beta-herding feedback

model. According to our results, without additional interventions,

the police station might make unfair decisions in where to patrol

using only the biased feedback, since it is impossible for them to

infer the true crime rate from the reports. This example further

emphasizes the importance of understanding human behavior in

learning problems, especially when the corresponding actions have

significant impacts on humans.

7 CONCLUSION AND FUTUREWORK
We explore bandit problems with biased human feedback under two

different feedback models. In avg-herding feedback model, where

users’ feedback is biased only by the average feedback of the arm,

we show that the updates of average feedback over time is math-

ematically equivalent to users collectively performing stochastic

gradient descent. With this connection, we design a UCB-like algo-

rithm that achieves sublinear regret under some mild conditions.

However, in beta-herding feedback model, where users’ feedback

is biased both by the average feedback and the number of feedback

instances of the arm, using arguments from information theory,

we show that there exist no bandit algorithms that can achieve

sublinear regret.

We hope our work will open more discussion on better under-

standing human behavior when designing algorithms for systems

with humans in the loop. Our results also point to potentially future

research directions on designing interfaces (e.g., in terms of how

information is exchanged) between humans and machine learning

algorithms to leverage the power of both ends.
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